

PREDICTING AND PREVENTING ROTATIONAL DELAYS OF AIRCRAFT

ALISHA RIECKER, LONGTAO LIU, MICHAEL SUHENDRA, LENNART JAYASURIYA, KHADER MOHAMMAD TUM DATA INNOVATION LAB MUNICH, 25.02.2022

AGENDA

THE PROBLEM WE TACKLED Introduction & Motivation

ROTATION PROCESS Ground operations

Feature Engineering & Data Munging

05

06

CONCLUSION & OUTLOOK Future Improvements & Direction

Data Availability & Prediction Pipeline

PREDICTION

DASHBOARD

Celonis Studio

03

MACHINE LEARNING MODEL Model Experiments & Optimization

THE DELAY OF FLIGHTS IS A SEVERE PRODUCTIVITY INHIBITOR THAT COSTS A LOT OF MONEY FOR AIRLINES

Problem & Motivation

- Aircraft are among the most expensive assets for an airline
 → Aircraft productivity should be as high as possible (blockhours/day)
- Delay of one flight influences punctuality of many other flights
 - High number of influencing variables
 - Lufthansa has steadily increased knowledge about these variables through digital ops twin in Celonis EMS

\rightarrow To maximize aircraft productivity, delays should be minimized!

The DI-Lab project should leverage the gathered data to predict and prevent delays

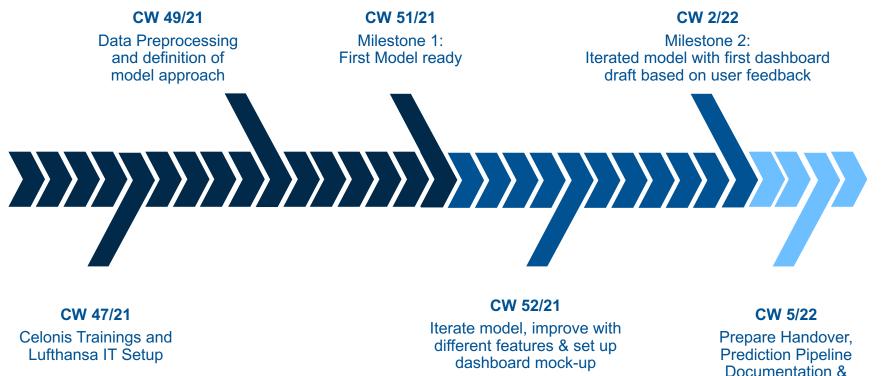
WE FORMULATED A SMART GOAL

Specific Measurable Attainable Relevant Time-based

"We will develop a machine learning model that predicts the estimated delay of flights based on several features in the flight process and a dashboard based on feedback from future users until February 10th in Celonis EMS."

OUR PROJECT PLAN WAS DIVIDED INTO THREE PHASES

Project Timeline

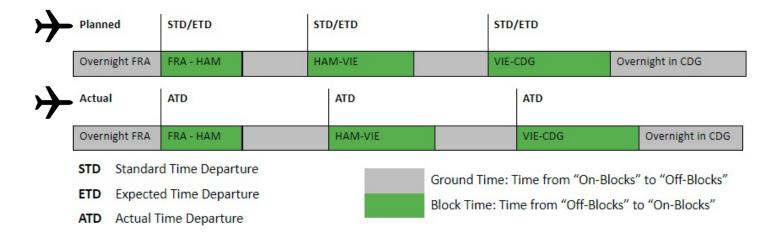


5

ROTATION PROCESS

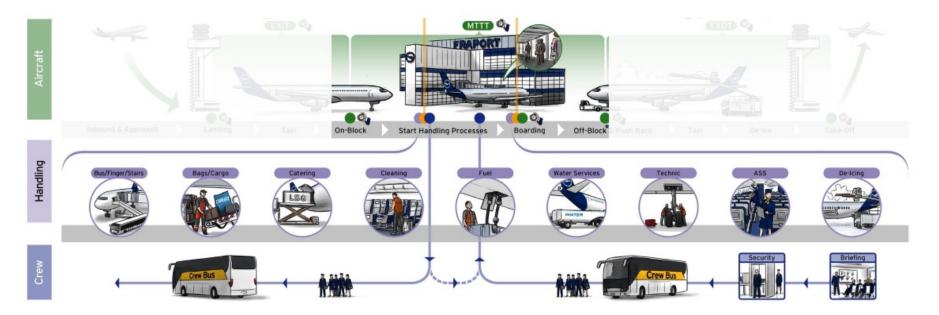
Rotation process overview

- Lufthansa monitors > 300 aircraft with more than 1500 daily flights
- An aircraft flies multiple legs (sectors) a day rotation
- Operations team steers ground processes with tight schedules



ROTATION PROCESS

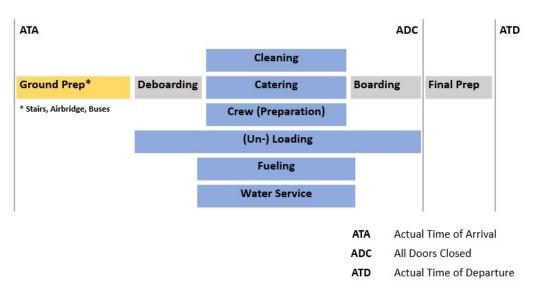
Typical Ground Processes



Ground processes are planned and monitored by operations teams

ROTATION PROCESS

Critical Path



- Not all processes influence the departure time
- Few other factors influcence the departure time (parking position, runway, weather, traffic etc.)
- Detailed ground service timestamps are only available at FRA & MUC hubs.

FEATURE SELECTION

We iteratively refined our Feature Selection

FLIGHT LEG & GROUND OPERATION DATA

- General flight data: Flight number, Flight date, Scheduled time of departure (STD), Departure and Arrival Airport, Subfleet
- **Temporal data:** Month, Day and Weekday of the flight
- Rotational data: Flight of the day and Rotation Type
- Operational flight data: Total number of passengers booked, Departure Runway, Taxi-in and Taxi-out time, Flight Distance and Calculated Flight Time
- Label features: Delay flag or Delay delta

WE ADDED FURTHER FEATURES

Feature Engineering

WEATHER DATA

 wind data, visibility and snow from a public database^{[3][6]}

AIRPORT TRAFFIC DATA

- peak times for FRA and MUC
- indicating peak/ off-peak

DATA ON PREVIOUS FLIGHT

- delay or cancellation of the previous flight
- flight time, distance and number of passengers

EVENT RELATED DATA

- process durations
- medians for actual duration, target duration and delta between both

REAL LIFE DATA = CHAOS

Raw Data

FLIGHT LEG & GROUND OPERATION DATA

Filter for Flights with _Case_Key start with "LH" from 1st December 2020 to 1st December 2021, e.g, LH223_2021-11-30



Clean data with no missing values, as few errors as possible

 \rightarrow approx. 20,000 rows of raw data

DATA MUNGING

Errors or edge cases

- Duplicates of Case Keys -> Remove
 - Triangle Flights
 - Make sure Case Key is unique
- Cancelled Flights -> Remove
 - Where Cancellation Time exists
- Flights with Zero and Negative Passengers -> Remove
 - Ferry Flights i.e. non-revenue-generating flight
 - Input error
- Filtering Flights Departing from MUC & FRA
 - Ground operation data only available for Munich and Frankfurt
 - Around half of flights filtered out

DATA MUNGING

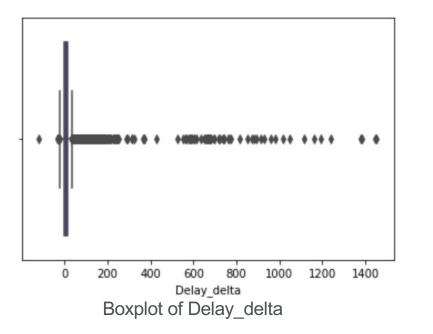
Missing Values

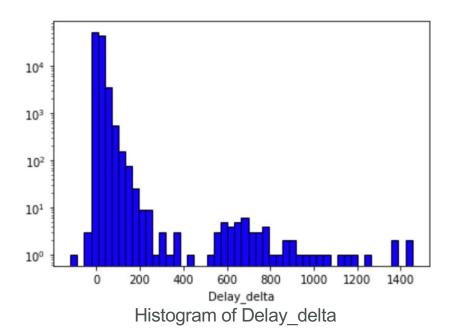
- Missing Independent Variables -> Drop all
 - ML model require target variables (Delay) to train
- Missing Inbound Information -> Drop all
 - Due to removal of triangle flights
- Missing Runway Data -> Imputation
 - Impute through a mapping from wind direction and speed to runway
 - More precise but also require extra engineering step
- Missing Other Dependent Variables -> Imputation
 - Impute based on historical data i.e. median or mode group by flight number
 - E.g. Replace missing Taxi In Time of LH108_2021-05-05 with median Taxi In Time of all LH108 flights

DATA MUNGING

Outliers

- Removing Outliers
 - Flights with Delay Delta > 200 mins





DATA MUNGING - RESULTS

Clean Data

FLIGHT LEG & GROUND OPERATION DATA

Filter for Flights with _Case_Key start with "LH" from 1st December 2020 to 1st December 2021

 \rightarrow approx. 20,000 rows of raw data

Roughly 10,000 rows of clean data to train and test the ML models.

"Assumption" of flights:

- 1. Non-triangle passenger flights
- 2. Flight must have inbound flight
- 3. Flight departs from MUC or FRA (inbound flight can depart from any airport)

MACHINE LEARNING MODEL - ALGORITHM

Chosen Algorithms

Random Forest and its Variants

- Suitable for both regression or classification task
- Able to handle binary features, categorical features, and numerical features
- Great with high dimensional data
- Quick Training/Prediction Speed



MACHINE LEARNING MODEL - METRICS

Evaluation Metrics

Aim: prediction for Lufthansa to take measures to counter the possible delays

Evaluation metrics:

In the context of the project

- Classification:
 - Precision (and recall)

Precision = # correct predicted delays # total predicted delays

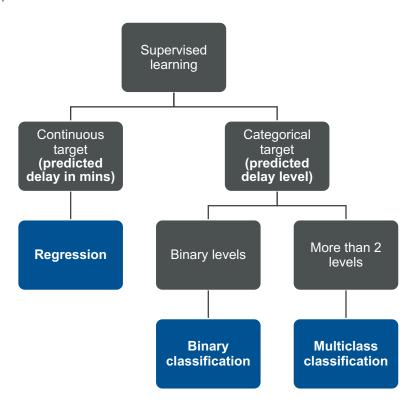
- Regression:
 - R2 score

 $Recall = \frac{\# \text{ correct predicted delays}}{\# \text{ total true delays}}$

R2 score = the proportion of the variance in the delay that is predictable from the features

MODEL – MACHINE LEARNING PROBLEM

What should be shown on the dashboard?



MODEL EXPERIMENTS – BINARY VS. MULTICLASS

How feasible is a fine-grained categorization of delay?

Туре	Class	Precision	Recall	
Binary	0 (0-14mins)	0.88	0.76	
Binary	1 (15-200mins)	0.38	0.60	
Multiclass	class 0 (0-4mins)		0.70	
Multiclass	1 (5-14mins)	0.21	0.40	
Multiclass	ticlass 2 (16-30mins)		0.30	
Multiclass 3 (30-200mins)		0.01	0.01	

- Overall better accuracy and recall for binary classification
- Multiclass: Classes 0 and 3 are often confused
- DECISION: Binary classification

MODEL EXPERIMENTS – UPSAMPLING (SMOTE)

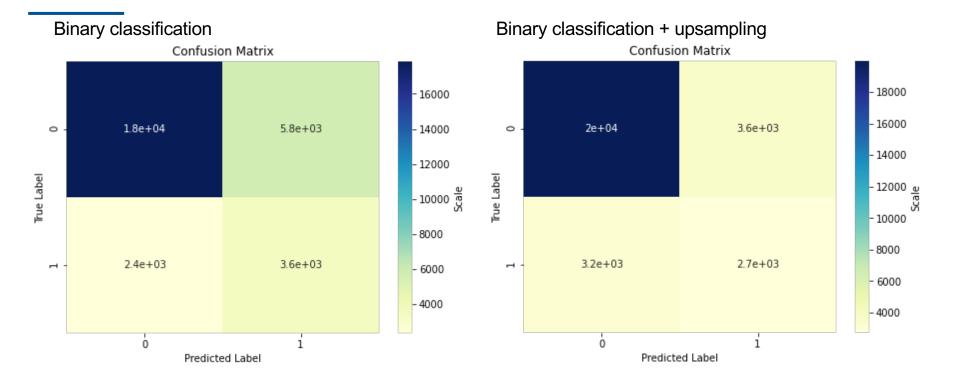
Since random forest is sensitive to imbalanced classes

Upsampling is done with SMOTE-NC: SMOTE for datasets with numerical and categorical features

Туре	/pe Class		Recall	
Binary	0 (0-14mins) 0.88		0.76	
Binary	1 (15-200mins)	0.38	0.60	
Binary with SMOTE-NC	0 (0-14mins)	0.86	0.85	
Binary with SMOTE-NC	1 (15-200mins)	0.43	0.46	

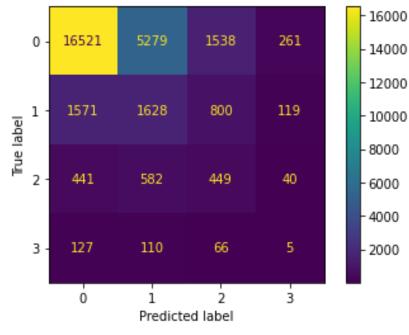
- Better precision with resampling, but less recall for delay = 1
- DECISION: Upsample

MODEL EXPERIMENTS - BINARY

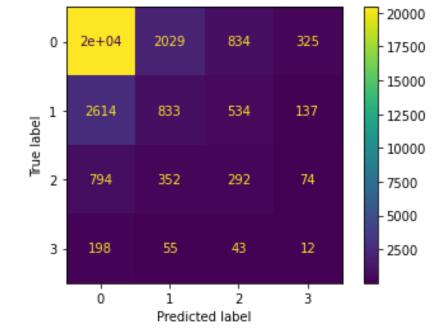


MODEL EXPERIMENTS - MULTICLASS

Multiclass classification



Multiclass classification + upsampling



MODEL EXPERIMENTS – REGRESSION

	R2 on Test Set	R2 on Train Set
Regression	0.10	0.86

- R2 score high on the training set, but low on the test set i.e. Overfitting
- DECISION: Tend towards classification

	index	TARGET	PREDICTION	Month	Day	Weekday	Departure_
0	81533	27.0	9.30	9	11	6.0	
1	81534	4.0	20.70	7	3	6.0	
2	81535	22.0	36.35	10	11	1.0	
3	81536	14.0	18.20	3	26	5.0	
4	81537	8.0	4.40	7	2	5.0	
5	81538	34.0	24.55	8	21	6.0	
6	81539	30.0	30.05	10	15	5.0	
7	81540	4.0	15.15	9	10	5.0	
8	81541	3.0	14.45	11	22	1.0	
9	81542	8.0	11.30	7	22	4.0	

MODEL – HYPERPARAMETER OPTIMIZATION

- After trying out different variation to search for possibility of improvements, we decide to use binary classification with resampling as our base model.
- Hyperparameter tuning with Optuna library
 - Model-based optimization
 - Optimize with respect to certain metric(s), e.g. precision, recall or average precision
 - Pre-defined parameter grid

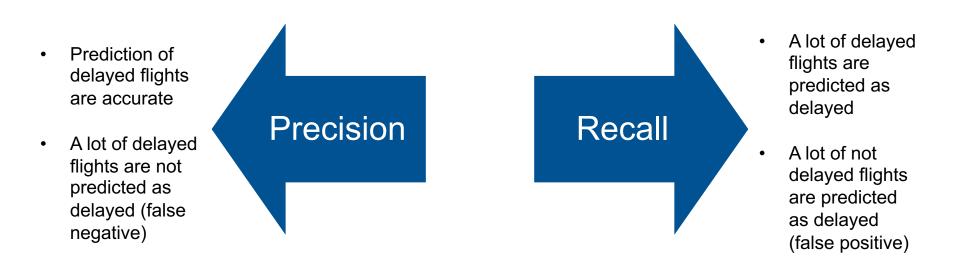
MODEL – RESULTS

Combinations of model, optimized metrics are tested

Model type	odel type Optimized metric(s)		Recall	
RF	Precision	0.61	0.18	
RF	Precision, Recall	0.38	0.67	
RF	Average precision	0.43	0.52	
Balanced RF	Precision	0.38	0.66	
Balanced RF	Precision, Recall	0.50	0.35	
Balanced RF	Average precision	0.47	0.55	
XGBoost	Average precision	0.46	0.51	

No model has a sufficiently high precision and recall \rightarrow **A compromise must be found!**

MODEL – FINAL DECISION



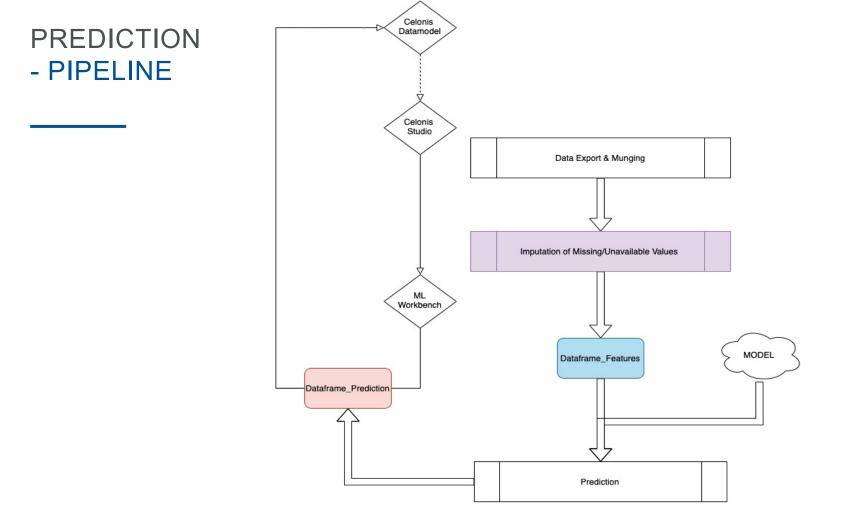
Resampled balancedRF binary classifier optimized for average precision

PREDICTION - FEATURE AVAILABILITY

Availability of features for future flights

Issue : Some features of future flights will not be available by the time running prediction (presumably 7 AM everyday)

Solution: Imputation, similar to data munging process for training data



DASHBOARD

Dashboard in Celonis

ser Inputs (fil	ters)	3. Summary o	f predictions					
	fthansa	#Total Predicted Flights	#Flights Delay: Prediction Probability 0.5	0.5 Precision	Recall	#Flights: True Delay	#True Predicted Delay 0.5	
	i i la 15a	~ ~ ~ ~	44	25%	65%	47	11	
		283	#Flights Delay: Prediction Probability	TH Precision TH	Recall TH		#True Predicted Delay TH	
Departure Airport	*	200		0 = 0/	0 = 0/		4.4	
YYYY-MM-DD	YYYY-MM-DD		44	25%	65%		11	
	• old_(TH) .TH < 1.0) × •	205	port Munich Airpor					
Prediction								
Flight Number	STD	ATD	predicted_Delay_flag		Actual Delay (Y=1)	J. Actual Delay in Mins	adjusted_predicted_Delay_flag	
LH492	2022-02-11 09:50	2022-02-11 10:13	1		88%	1	23	1
LH760	2022-02-11 12:15	2022-02-11 12:30	1		85%	1	15	1
LH630	2022-02-11 12:30	2022-02-11 12:58	1		84%	1	26	1
LH1306	2022-02-11 09:55	2022-02-11 10:24	1		81%	1	29	1
LH498	2022-02-11 12:35	2022-02-11 12:50	1		80%	1	15	1
LH580	2022-02-11 12:30	2022-02-11 13:08	1		80%	1	38	1
LH756	2022-02-11 11:10	2022-02-11 11:25	1		79%	1	15	1
LH1168	2022-02-11 12:15	2022-02-11 12:34	1		74%	1	19	1
LH680	2022-02-11 10:20	2022-02-11 10:52	1		56%	1	32	1

2. Summary table with additional details

Final products

- ☑ We preprocessed relevant data and developed a Random Forest Classification model with relatively good precision and recall to yield rotational delays predictions
- [□] We visualized the prediction results in a Celonis Dashboard
- The dashboard can be used by the Lufthansa Ops Steering Department as a decision aid to initiate countermeasures for flights with an anticipated delay
- □ Thereby we have achieved our SMART goal

LIMITATIONS & OUTLOOK

Basis for future improvements

- Pandemic effects in training data
 - > retrain the model on data resembling the current amount of air traffic
- Imputation of missing values by median or mode
 - use more accurate methods to approximate missing values (e.g., based on influencing features)
- Random Forest model
 - > apply different predictive algorithms (e.g., Recurrent neural networks, Long Short-Term Memory ^[7,8,9])

THANK YOU!

WE ARE EXCITED TO HEAR YOUR FEEDBACK AND QUESTIONS.

REFERENCE

- [1] Lufthansa,Lufthansa Group Website, https://www.lufthansagroup.com/en/company.html,Accessed: 02.02.2022
- [2] Celonis SE, Celonis Website, https://www.celonis.com/company/, Accessed: 02.02.2022
- [3] Iowa Environmental Mesonet, Iowa Stat University Database, https://mesonet.agron.iastate.edu/ASOS/, Accessed: 03.02.2022
- [4] Chawla et al. 2002.SMOTE: Synthetic Minority Over-sampling Technique, https://arxiv.org/pdf/1106.1813.pdf, Accessed: 03.02.2022
- [5] Chen et al. 2004.Using Random Forest to Learn Imbalanced Data, https://statistics.berkeley.edu/tech-reports/666, Accessed: 03.02.2022
- [6] TAF Text Data (by station ID), Aviation Weather Center, https://www.aviationweather.gov/taf/data, Accessed: 03.02.2022
- [7] Gui et al., 2019.Flight delay prediction based on aviation big data and machinelearning. IEEE Transactions on Vehicular Technology, 69(1), pp.140-150.
- [8] Kim et al., 2016.A deep learning approach to flight delay prediction. IEEE/AIAA35th Digital Avionics Systems Conference (DASC), pp. 1-6.
- [9] Huang et al., 2020.Modeling train operation as sequences: A study of delay pre-diction with operation and weather data. Transportation Research Part E: Lo-gistics and Transportation Review, Volume 141, 2020, 102022, ISSN 1366-5545,https://doi.org/10.1016/j.tre.2020.102022.
- [10] Celonis SE, PyCelonis documentation, https://celonis.github.io/pycelonis/index.html/, Accessed: 11.02.2022