

TECHNICAL UNIVERSITY OF MUNICH

TUM Data Innovation Lab

„Predictive Process Management for

Aircraft MRO“

Authors Beck, Janina; Bernhardt, Lisa-Marie;
Chauhan, Hemraj; Kirschstein, Tobias;
Maier-Borst, Moritz

Mentor(s) Grindemann, Philipp and Hoffmann,
Maximilian (Lufthansa CityLine GmbH);
Nakladal, Janina (Celonis SE)

Co-Mentor Maximilian Fiedler
Project lead Dr. Ricardo Acevedo Cabra

(Department of Mathematics)
Supervisor Prof. Dr. Massimo Fornasier

(Department of Mathematics)

II

Abstract

Having successfully introduced Celonis as a process mining software to improve internal

processes, the Lufthansa CityLine GmbH (CLH) aims at further improving their Maintenance-

Repair-Overhaul-Process (MRO process) by applying machine learning (ML) prediction

algorithms. The following report describes the project of the TUM DI-LAB dealing with this task.

As the MRO process is highly complex, we conduct several interviews and analyze the process

to understand CLH’s problem in-depth and derive the overall goal: “develop a predictive

process management tool to predict and proactively steer critical cases in the aircraft MRO

processes of Lufthansa CityLine until July 2020 by implementing and evaluating three different

prediction models”. More precisely, we aim at predicting variables for three concrete use cases

(incomplete maintenance, deassignments and work order success) that can help CLH to

recognize possible issues with a maintenance case in time and then try to prevent them.

Based on a literature research on approaches and algorithms in process prediction, we select

three ML models for implementation: Decision Tree, Neural Network and a Relational Graph

Convolutional Network (R-GCN). Furthermore, we implement a Logistic Regression model as

a baseline to evaluate the performance of the other three models.

As the four models require different inputs, we set up a dataset for the R-GCN as well as a

dataset with handcrafted features for the other three approaches. For the sake of consistency,

both datasets contain the same cases as well as the exact same split into training, validation

and test partitions.

After implementing the four different models, we find that the R-GCN achieves the best results

in predicting all of the three use cases. This is probably the case since the R-GCN is able to

take the hierarchical structure of the data into account, as opposed to the other approaches.

However, predicting the use cases shows to be relatively difficult – especially because of the

highly imbalanced distribution of the variables for incomplete maintenance and

deassignments. Nevertheless, the business cases for predicting incomplete maintenance as

well as for deassignments yields a positive business impact by reducing the costs. The use

case of predicting work order success can additionally be used for tracking the success of the

implementation of the models.

Lastly, the interpretation of the model shows that some features such as a particular station to

conduct the work order at are very important for predicting the outcome variables.

All in all, the project showcases the potential of predicting the process flow of cases for a

business. In the future, the models can be further improved by including more cases to train

the model as well as by validating and interpreting it with experts at CLH.

III

Table of Contents

1 Introduction .. 1

1.1 Problem Definition and Goals of the Project .. 2

1.2 State-of-the art approaches and algorithms in Process Prediction 5

2 Data Analysis ... 8

2.1 Data Sources .. 8

2.2 Preprocessing and Feature Engineering ... 8

2.2.1 Feature Engineering ..10

2.2.2 Preprocessing for R-GCN..10

2.2.3 Exploratory Analysis of the Dataset ...11

3 Models ..12

3.1 Metrics Used to Compare Algorithms ...12

3.2 Selected algorithms and Methodology ..13

3.2.1 Logistic Regression ...13

3.2.2 Neural Networks ..16

3.2.3 Decision Trees ..17

3.2.4 Relational Graph Convolutional Networks (R-GCNs).......................................20

4 Results ..21

4.1 Model comparison and business impact ...21

4.1.1 Incomplete Maintenance ...21

4.1.2 Deassignments ...23

4.1.3 Work Order Success ...24

4.1.4 Summary ...24

4.2 Interpretation and Discussion of Results ..25

4.2.1 Explanation of single predictions ...26

4.2.2 Feature importance for incomplete maintenance and deassignments27

5 Conclusion ..29

6 Bibliography ..30

7 Appendix ... I

7.1 Neural Network with cross feature interpretation .. I

7.2 Neural Network without cross feature interpretation – the standard approach II

7.3 Dataset Analysis with statistical Independence Tests ..III

1

1 Introduction
Artificial Intelligence (AI) and Machine Learning (ML) have received a lot of attention in recent

years. While there are many unresolved public discussion about what these developments

mean for humankind or society as a whole, companies are already focusing on applying ML to

either develop completely new products or to improve current processes.

The Lufthansa CityLine GmbH (CLH), the regional carrier of the Lufthansa Group which mainly

performs hub-feeder-flights, has quite a long and successful history with respect to the latter.

The key element to this success is the close collaboration between CLH and the Technical

University of Munich’s (TUM) first unicorn start-up Celonis SE. The value created by Celonis’

software is derived from the academic discipline of process mining which was introduced by

Wil van der Alst in 2011 [1]. Contrary to the previously quite popular business process

modelling task, the fundamental idea of process mining is the analysis of logs provided by any

kind of IT system. Thereby, the actual process flow of the process’ matter of subject can be

visualized, compared to the desired process flow and actions can be taken to prevent

deviations from the optimal process. Through the application of process mining, CLH already

achieved various improvements within their internal processes, in particular, through carefully

analyzing the ground operations processes (e.g. catering, cargo loading and fueling). In

consequence, punctuality and customer satisfaction improved tremendously.

In order to continue this success story, going beyond the ex-post process discovery stage and

advancing into the area of process prediction is next on the agenda of CLH. Thus, being part

of the TUM Data Innovation Lab, we aim at supporting Lufthansa CityLine to improve their

Maintenance-Repair-Overhaul-Process (MRO process) by applying ML prediction algorithms.

This report describes the whole course of the project:

The first chapter comprehensively describes the problem that is to be solved within the scope

of the project. Thereby, we give a detailed overview of the most important steps and

characteristics of the MRO process as well as the description of the project goal, project setup

and the deliverables. The subsequent subchapter offers information on state-of-the-art

approaches in the area of ML for process prediction. By outlining their most important

characteristics and comparing them with each other, we select three final approaches (namely

Neural Networks, Decision Trees and Relational Graph Convolutional Networks (R-GCN)) to

be implemented on the data of CLH and be compared to the baseline model of Logistic

Regression. Thus, we implement four models in total.

In the second chapter, we detail the process of data analysis: the general approach and the

individual adaptation we made due to the project setting. This encompasses all parts of the

data analysis: set-up, data preprocessing and feature engineering, evaluation, implementation

as well as improvements of the ML models.

The third chapter includes the best results for all the selected algorithms for the three different

use cases derived from interviewing employees of CLH: predicting incomplete maintenance,

predicting deassignments and predicting work order success. It also discusses the results and

feature interpretations and explains the overall outcome of the project. To determine the final

business impact of the project the results chapter additionally presents the expected return on

prediction of the three use cases based on the current performance of the models.

Finally, we draw an overall conclusion in the fourth chapter by summarizing the project and its

outcome followed by drafting ideas on how CLH could continue the project in the future.

2

1.1 Problem Definition and Goals of the Project
This section describes the concrete problem to be solved throughout the project. Before

summarizing the problem and deriving the concrete goal form it, we start by describing the

MRO process at CLH before summarizing the problem and deriving the concrete goal.

Any process consists of several stages which are modelled as so called “activities” in Celonis.

The analyzed log files of the underlying IT system further introduce a timestamp (= when an

activity happened) and a unique case identifier (= which particular process subject has been

affected). In consequence, a particular case consists of multiple activities which in turn depict

a process flow based on the respective timestamps.

As it can be seen in pretty much every application

of Celonis, the actual (as-is) process flow of many

cases does not conform with the desired (to-be)

process flow. Thus, a lot and often very unique

process schemas exist which in turn makes it

challenging to visualize all of them in their entirety.

However, uniqueness often comes along with

rarity. Therefore, analyzing and optimizing the

process flow explaining as many cases as possible

(= most common variant) is likely to yield the

biggest impact on business.

The MRO process at Lufthansa CityLine contains

over 30 distinct activities. Thereby, the most

common alternative of the process flow consists of

eight activities, starting with the issuing of a work

order (WO) as depicted in Illustration 1. A work

order contains information about e.g. what

maintenance needs to be conducted, how long the

aircraft is estimated to be grounded due to this

maintenance event and general information about

the aircraft itself which is subject to the work order.

Each work order is further linked to six or seven

work steps on average which sequentially describe

what needs to be done in order to complete the

required maintenance. However, depending on the

scope of the maintenance to be conducted, the

amount of work steps can scale to an arbitrary

number. A work step also serves as an imaginary

bucket for materials, tooling and other resource

requirements in order to perform the concrete step.

On the other hand, each work order is part of a

work package (WP) which contains multiple work

orders to be performed by the line maintenance

department. A work package usually describes the

scope of either a night or a day shift and quite often

the same aircraft is subject to an entire work

package. The nightshift is the preferred time to

perform the maintenance on the aircraft, because

short/medium haul aircrafts in Europe stay on the

ground due to night curfew anyhow. Illustration 1: most common variant of

the MRO process flow at CLH

3

In order to grant a high security level, the MRO process itself is heavily influenced by the

regulations and directives issued by external stakeholders such as the European Union

Aviation Safety Agency (EASA), the aircraft’s manufacturer or the Federal Aviation Office

(Luftfahrt Bundesamt, LBA). An exemplary directive could demand the inspection of a certain

part of the engine after a certain amount of flight hours. These general but also aircraft type

tailored directives are collected by the engineering department which for instance keeps track

of how many flight hours per aircraft have been completed since the last check. Apart from

such part-specific checks there are also so-called A-, B- and C-checks, which are more

comprehensive, general inspections an aircraft needs to undergo on a regular basis. Based

on these requirements from the external authorities and manufacturers, the engineers issue

the respective work order including its major work steps, set a due date and forward it to the

planning department. While the engineering department’s work orders are of a scheduled

nature, the so-called Maintenance Operation Control Center (MOCC) schedules work orders

based on rather unforeseen events. An example here could be a broken switch in the cockpit

reported by the pilot. The engineers at the MOCC then decide whether the aircraft can continue

to operate and if so, for how long until the maintenance needs to be conducted. The thereby

created work orders are then also sent to the planning department of CLH for further

processing.

Through conducting various interviews with all different departments being actively involved in

the MRO process at CLH, we identified the planning department’s central role to the entire

process, which is depicted in Illustration 2. Thereby, its main objective is to assign work orders

to work packages in the most efficient way. In other words: it is about which work order will be

performed at which point in time and where, considering the availability of materials, tools,

people and other resources. This task requires close coordination with other departments such

as Lufthansa Technik as CLH’s external material supplier as well as with the CLH department

“Commercial & Material”. The latter handles the delivered materials, CLH-owned and rented

tools and provides all the resources to the line maintenance department.

It is worth stating here that the line maintenance department is the least critical to the project

goal as it just carries out the work based on the availability of the above of material, tooling,

people and infrastructure. In consequence any deviation from the “happy” path (optimal path)

during the previous stages of the MRO process are likely to create negative impact on CLH’s

business. The negative consequences vary from rework during the process over delays to

grounded aircrafts and thereby cancelled flights. As three other departments are dependent

on its actions, the planning department was identified to be the part of the MRO process which

has the most impact on the future process flow and would in turn benefit the most from

intelligent predictions.

Illustration 2: Organizational Flow Chart for MRO process at CLH

4

In order to handle the additional heterogeneity among the work orders with respect to their

predictability and consequently urgency to minimize the time of the aircraft being grounded,

the planning department is further split into three teams. While the long-term planning team

focuses on handling work orders with a lead time of more than three months, the mid-term

planning team performs the assignments within a timeframe of three months to three days in

advance. Lastly, the short-term planning team is in charge of assigning work orders within the

last 72 hours before the line maintenance department puts its hands on the aircraft. It is

important to state that the short-term planning’s lead time is already very scarce and efforts

are mainly focused on avoiding the grounding of the aircraft by all means. Therefore,

predictions regarding the further process flow would not be of much help here. Contrary to this,

active steering of a work order, e.g. through the re-assignment to a different work package, is

possible within the scope of the long- and mid-term planning. In order to leverage this potential,

we decided to tailor the project towards supporting these two teams of the planning

department, in particular.

After outlining the complexity of the MRO process and the problems which arise from it, we

want to clearly formulate the prediction targets and the overall goal of this TUM Data Innovation

Lab project in the following.

The overall smart goal is to improve the MRO process e.g. by predicting certain types of events

and process paths of a work order. To facilitate the project planning, we phrased the following

SMART goal for the project:

“We develop a predictive process management tool to predict and proactively

steer critical cases in the aircraft MRO processes of Lufthansa CityLine until July

2020 by implementing and evaluating three different prediction models.”

With this goal formulation in mind, we analyzed the MRO process flow in detail in Celonis while

in particular focusing on the tasks being performed by the planning department. Thereby, we

identified not only inefficiencies within this focus department but also activities affecting the

overall process and thus business success. The prediction targets derived from this analysis

are “incomplete maintenance”, “deassignments” and “work order success”. Each of them yields

different benefits which are summarized in Illustration 3 and outlined in detail in the following.

Illustration 3: The three use cases to predict and their share within the dataset

5

Firstly, we aim at predicting the occurrence of an incomplete maintenance event. If this state

of a work order is reported back by the line maintenance department, this means that the

required maintenance could not be conducted in time or not conducted at all, e.g. due to

missing materials. The worst-case consequence of this scenario can be even an “aircraft on

ground” (AOG) event. In other words, the airplane is no longer allowed to fly. This in turn results

in costs due to short-notice aircraft replacements, re-planning efforts and bears other negative

effects such as customer dissatisfaction, e.g. if a flight does not take place. Therefore,

predicting under which circumstances such an incomplete maintenance event occurs allows

for a better use of resources throughout the entire process. More precisely, if a case is

predicted to end up in incomplete maintenance, one could increase the effort to manage this

case and thus prevent further issues, e.g. by assigning additional workers or scheduling more

time for the completion of the task.

The second use case is the deassignment of a work order from a work package. In other words,

the particular circumstances of the situation require a replanning of the respective work order

to another work package. For instance, this is the case if a part which is required to perform

the task cannot be delivered or any other unforeseen issues happen (e.g. a mechanic with the

required qualification is not available at the currently planned time slot). Naturally, each time a

work order is replanned this requires additional time spent by the planner and therefore is

costly – especially if a work order is deassigned (= has to be replanned) multiple times. Hence,

predicting a deassignment prior to the actual deassignment could reduce this additional effort

as e.g. the case could then be planned very carefully at the first time to avoid replanning under

potentially unforeseen circumstances at a later stage of the process.

Lastly, it might also be helpful to predict if a work order will be completed successfully. In this

case, this means that there are no major issues during the process. For the course of this

project, we defined a work order as being successful if no incomplete maintenance or

deassignment occurred during the process. Having this information can support CLH’s

employees to separate critical from non-critical work orders which allows them to spend their

time more efficiently e.g. by focusing on the more critical work orders and work packages.

In the following, we analyze different Machine Learning approaches that could be used to reach

our SMART goal.

1.2 State-of-the art approaches and algorithms in Process Prediction
Typically, predictive process monitoring is done by mostly considering the process graph, i.e.,

all the past activities of a running case. For the aircraft maintenance process at CLH, this graph

is rather simple, while the objective of predicting problematic cases is very complex. As such,

solely relying on the process graph will not be sufficient, especially since predictions early in

the process are favored. Therefore, we need detailed information about everything that is

involved with a maintenance case, which can be obtained by exploiting the database of CLH’s

maintenance operation tool. On a high level, our task is thus to classify whether a maintenance

case will be problematic based on data from a relational database.

The main challenge of this task is the heterogenous nature of such data. Machine Learning

models usually expect a feature vector of a fixed size as input, which is not the case for

relational data from databases. Relevant data points can be scattered across different tables

in the database, connected via 1:1, 1:N or N:M cardinalities, which makes it difficult to

represent every case with a vector of the same fixed size. Furthermore, important information

can be stored multiple “hops” away from the table containing maintenance cases. As a result,

the amount of datapoints available for different cases varies drastically. To address the issues

arising from relational data, we can either manually aggregate 1:N cardinalities by possibly

6

loosing information (Feature Engineering) or find neural architectures that are suited for

relational data (end-to-end learning). In the following, we will describe suitable approaches for

both streams, compare them and decide on a subset that we will implement. The results of this

comparison are depicted in Illustration 4.

To decide on a set of suitable approaches, we identified a set of criteria that are important for

our use case:

- Expressiveness: can the model capture hierarchical/sequential information? The process

graph is inherently sequential and the data in the database is structured in a hierarchical

manner. A model that is designed for this kind of data is likely to show better results.

- Effort: Do we have to manually craft features? Does it take long to train or fit a model? Is

there already a framework that speeds up implementation?

- Explainability: For real business cases, considering the end user is very important. A user

who does not understand the reasoning behind a model’s decision will be reluctant to use

it. Thus, considering models that can answer why the model predicted a certain class are

crucial. We present some exemplary explanations for the predictions of our final models

later in section 4.2

For the Feature Engineering stream, we focused on Decision Trees, Logistic Regression /

Neural Networks and K-Nearest Neighbors. All these approaches are straight forward to

implement and are either interpretable by design (Decision Trees, K-Nearest Neighbors) or

can be explained by pointing at input features that were crucial for the prediction (Neural

Networks). This is feasible, as the feature vector consists of hand-crafted features which are

human-understandable.

Despite the need for manual feature engineering, we decided to use Decision Trees as well as

Neural Networks due their easy implementation and interpretation. Additionally, we employ

Logistic Regression as a baseline. K-Nearest Neighbors requires defining suitable distance

metrics for every dimension of the feature vector. As this is not straight-forward for all our

handcrafted features, we decided to not further pursue this approach. More details on how we

craft the features via aggregations of 1:N cardinalities can be found in section 2.2.1.

Illustration 4: Overview of Different Approaches for Process Prediction, their (Dis)Advantages

and the Final Selection

7

For the end-to-end learning stream, a literature research revealed two experimental neural

architectures that are capable of operating directly on the data from the database in an end-

to-end manner.

Relational Recurrent Neural Networks (R2NN) [2] interpret the data from the database as a

tree by considering the case row in the main table as the tree root and all linked rows as its

children. Information is then aggregated in a bottom-to-top fashion using Recurrent Neural

Networks (RNNs) as depicted in Illustration 6. After the aggregation, the tree root contains

information from all children which can then be used to make a prediction.

Relational Graph Convolutional Networks (R-GCNs) [3] are an extension of regular Graph

Convolutional Networks (GCNs) for relational data. The idea is to interpret the data from the

database as a graph where table rows correspond to nodes and links between these rows

correspond to edges. Illustration 5 exemplifies this idea. Tables usually contain very different

information. Thus, treating every node equally (as it is done in regular GCNs) would not

account for this fact. R-GCNs solve this shortcoming of regular GCNs by introducing relation-

specific transformations and are thus interesting for our use-case. A more detailed description

of R-GCNs can be found in section 3.2.

Both approaches can directly operate on data from the database and account for its

hierarchical nature. Additionally, R2NNs are well suited for sequential data. However, as both

approaches constitute complex neural architectures, they have long training times, their

predictions are hard to interpret and, in case of R2NNs, do not have an existing easy-to-use

implementation. Since many of the relevant datapoints in the database are not sequential, we

decided on the R-GCN due to the better framework support.

To summarize, we approach the task with Decision Trees and Neural Networks using hand-

crafted features and furthermore employ Relational Graph Convolutional Networks (R-GCNs)

that can work on the raw data from the database in an end-to-end manner. The next chapter

describes the preprocessing procedure including the setup of the infrastructure and the data

inputs.

Illustration 5: Relational Graph

Convolutional Network (R-GCN)

Illustration 6: Relational Recurrent Neural

Network (R2NN)

8

2 Data Analysis
To capture the whole process of the data analysis conducted throughout the project, this

chapter starts by outlining the two main data sources – Celonis and AMOS – that were used.

Afterwards, we describe the feature engineering required to implement the baseline model of

Logistic Regression, the Neural Networks and Decision Trees as well as the preprocessing for

the R-GCNs. Before describing the implementation of the different models we lay the

groundwork for this by presenting the results of an exploratory data analysis on the final input

dataset and describing the metrics used to compare the different algorithms.

2.1 Data Sources
As a result of the different departments, the multiple stakeholders and elements of the MRO

process, there are two main data sources that are relevant to this project: the first and major

one is AMOS (Airline Maintenance & Operational Systems), which is a software solution

developed and maintained by SWISS Aviation Software Ltd.. The engineers, planners and

technicians use it on a daily basis to carry out and document their work. Hence, the information

being stored here is very detailed and also sensitive as it includes, among other data, personal

information on the employees. To summarize, AMOS can be regarded as an MRO process

tailored ERP system. As in other systems of such kind, the data is thereby stored in a relational

manner, linking different tables with each other via foreign keys.

The second system, Celonis, builds upon AMOS and creates value by analyzing the process

flow of a case (= work order) based on its electronic footprints in the system. The three major

things Celonis requires to build analyses are an unique identifier of the case, an activity / action

applied to it and the respective timestamp when this happened. Each case can be further

enriched by an unlimited amount of reference data. This could consist of information about the

material required to perform the work, the technician’s qualification to do so as well as

information about the aircraft’s type, manufacturer or flight hours. Thereby, Celonis provides

the user with a quite holistic view while analyzing the entire process flow in a very user-friendly

manner. Building these analyses is supported by Celonis’ Process Query Language (PQL) –

a SQL dialect with additional process-specific functionalities.

2.2 Preprocessing and Feature Engineering
As described in chapter 1.1, the goal of this project is to support the planning department by

predicting the future process flow in order to prevent incomplete maintenance events and

reduce process friction in the sense of touching a work order again. In the case of an

incomplete maintenance event, another assignment is inevitably coupled to it, as depicted in

the upper process flow of Illustration 7. If this information would have been available to the

Illustration 7: schematic representation of process flows

9

planner in the moment of the first assignment, he could have steered against it, e.g. by

assigning the work order to another work package on a later date.

But also at other stages of the process, the planner faces a very similar if not identical decision

when assigning a work order to a work package. However, the planner (as well as the models

later on) can only refer to the information being available at the moment of the assignment.

Therefore, and also in order to increase the amount of data to train on, we split each work

order based on the amount of its assignments into subcases. Thereby, the assignment

activity’s timestamp is selected as the cut-off criteria in order to avoid data leakage. In other

words, only information being entered into the system no later than the assignment itself is

taken into account. This constraint is applied to process flow as well as to reference data which

also contains respective timestamps, e.g. the creation timestamp of a work step. The lower

process flow of Illustration 7 depicts how a single case is split up into four subcases and which

scope of information (including reference data) is considered.

This approach of processing the same work order multiple times over its process lifecycle in

different ways breaks with the fundamental assumption of Celonis that every case is unique to

the retrospective analysis of the process. Two additional things which make it challenging to

use Celonis as the primary data source are the following: first, Celonis’ PQL does not allow

subqueries which makes it quite difficult to achieve the desired result in many cases. Second,

Celonis’ ease of use for the majority of its users is based on a fixed data model with predefined

joins among the underlying tables. This circumstance in particular makes it impractical to

achieve the above-mentioned result. Consequently, we transformed the AMOS raw data

directly in SQL Server and used Celonis mainly for data and process visualization purposes.

Feature Engineering R-GCN

Dataset Size 4 MB 582 MB

Scope 70 DB columns, 167 features 133 DB columns

Datatype Handcrafted features Raw data as graphs

Cases 133,664

Table 1: Dataset statistics

Table 2: Both datasets use the exact same train/validation/test splits. Only around 4% of the

cases lead to Incomplete Maintenance, while the amount of Deassignments with 32% is quite

high

To account for the data requirements of the different Machine Learning models, we crafted two

different datasets that contain the exact same work order cases, but in different format. The

feature engineering dataset, that contains manual aggregations of datapoints into fixed sized

feature vectors, and the R-GCN dataset that contains each work order case as a graph. From

Split # Cases # Incomplete Maintenance # Deassignments

Train (80%) 106,931 4,239 (3.96%) 34,397 (32.17%)

Validation (10%) 13,366 575 (4.30%) 4,253 (31.82%)

Test (10%) 13,367 513 (3.84%) 4,346 (32.51%)

∑ Whole dataset 133,664 5,327 (3.99%) 42,996 (32.17%)

10

Table 1 it can be seen that the R-GCN dataset is much bigger as it contains the raw data from

the database without any aggregations. To ensure comparability across the approaches it is

also crucial that the same train/validation/test splits are used. Table 2 shows that the training

set contains around 106k cases and that only very few of these are labelled as Incomplete

Maintenance.

2.2.1 Feature Engineering
As already touched upon in chapter 1.2, two of our three selected baseline and prediction

models, namely Logistic Regression, Neural Networks and the Decision Trees, require feature

engineering. Thereby, the models expect a fixed size feature vector to train on. The starting

point of this vector is logically the table which stores the work orders. In a relational database

environment with many 1:N cardinalities between different tables, this requires aggregating

information to achieve such a fixed size vector. A quite simple example from section 1.1 is the

1:N cardinality between work orders and work steps. As there exists another 1:N cardinality

between a work step and e.g. a resource, one could speak of a “1:N:M” relationship between

the work order table and the resource table.

Any aggregation comes along with a loss of information. Thus, retaining as much information

as possible needs to be achieved in a different way. For instance, encoding the material groups

and counting the occurrence of the material group XYZ within a work order solves this problem

to a certain degree. For numerical data, e.g. the required amount of a particular part, other

forms of aggregation (such as SUM, AVG, MIN, MAX, etc.) are obviously also suitable.

In the end, through applying the domain, process and data knowledge acquired in the first

phase of this project, we manually crafted a feature vector consisting of 167 features in total.

To outline some of these features (without attaching any importance to them), the information

provided to the machine learning models covers the following, among others: the time passed

since the process started (timestamp based), how many incomplete maintenance events

occurred in the past and due to which reason, the last activity before such an event, the

(average) amount of parts within a work order, the categorical encoding of the aforementioned

material groups and in the similar way the required qualifications of the line workers.

2.2.2 Preprocessing for R-GCN

As opposed to Decision Trees, Logistic Regression and Neural Networks, the R-GCN can

directly operate on the relational data from the database. It expects as input a graph comprised

of nodes and edges. In our case, each node represents a row from a table and each edge

Illustration 8: Examplary graph input

from the R-GCN dataset

Work order issued

1st Assignment

Windshield

request

Work

order

in FRA

Workstep 1

Screwdriver

request

Illustration 9: Distribution of graph sizes in the R-

GCN dataset

11

represents a link between two table rows. Additionally, edge types correspond to the table that

a linked row belongs to. Illustration 8 shows an example. Since there is no manual feature

engineering involved in this process, the R-GCN follows an end-to-end learning paradigm.

To process all relevant information for a work order case, the database tables are first mapped

to Python objects via SQLAlchemy1 and then transformed into graphs with the

DeepGraphLibrary2. Additionally, we encode categorical variables and calculate timestamp

features. In the end, each work order case is represented as a graph with the datapoints

attached to the nodes.

Illustration 9 shows that most of the graphs are rather small with 7 nodes on average. The high

number of graphs with 2 nodes can be attributed to the fact that many work orders do not have

much information available at the time of their 1st Assignment. Therefore, these cases are

hard to predict as only rudimentary information is available, such as the airport at which the

aircraft will be maintained, while details about the required parts and planned resources are

missing.

2.2.3 Exploratory Analysis of the Dataset
As logistic regression and neural network requires a feature vector to represent numeric

characteristics of an aspect of an object, exploratory analysis of the dataset is carried out. We

compared the distribution of positive and negative examples over certain features of the

training datasets. This helped us to identify whether the distribution makes sense and to

analyze whether the positive examples contain a higher rate of extreme values. The joint plot

for distinct resources (aircraft, staff, hangar, tooling) vs. total planned time (manhours needed)

for the work order, generated over the distribution of incomplete maintenance labels, is

depicted below.

Illustration 10: Joint plot for distinct resources vs. planned time for incomplete maintenance

In the case of predicting incomplete maintenance, most of the features for positive and

negative samples are very similar. In other words, the positive samples do not have extreme

values or a clear separate region, making it difficult to predict incomplete maintenance with a

higher accuracy.

1 https://www.sqlalchemy.org/
2 https://www.dgl.ai/

12

This joint plot provides a good insight of data but only two features can be compared at a time.

To understand which features can be generally helpful in predicting Incomplete Maintenance

we performed statistical independence tests. In detail, we employed Chi-squared tests for all

categorical features and Analysis of Variance (ANOVA) for all numerical features to find input

variables that are highly dependent on the prediction target. The outcome of these tests is a

p-value for every variable that indicates the probability of observing the dataset instances

under the assumption that the variable is independent of the target variable. As such, the p-

value can be used to select good features by filtering out variables above the significance level.

The detailed analysis of all features can be found in the appendix.

3 Models
Before outlining the different model’s implementation and how we improved them, we will

define a set of metrics in order to measure and compare the results of the four different models

deployed.

3.1 Metrics Used to Compare Algorithms
As we aim at solving a binary classification problem, we only considered metrics that are

commonly used for these types of models.

Firstly, it is important to note that the outcome variables for the dataset are quite imbalanced

as explained before (see section 2.2.3). This has several implications for the evaluation metrics

used as some metrics are highly sensitive to imbalanced datasets. For instance, a metric that

is commonly used is the accuracy (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
). However, in a highly imbalanced dataset,

the accuracy metric will naturally be quite high e.g. if the dataset consists of 90% negative

values and 10% of positive values. In such a case, a model that does not learn from the data

but classifies all cases as negative thereby reaches an accuracy of 90% which seems to be a

good performance – although it is not. Hence, we decided to use metrics that are not affected

by the imbalance of the data or at least take the imbalance into account.

Secondly, we have to take into account that there might be different implications and (negative)

consequences depending on which error the classification model has. In a classification

problem, there are always two basic errors for the classification: False Positives (FP, also:

Type I error, alpha-error) and False Negatives (FN, also: Type II error, beta-error). A false

positive error means that the model classified a case as positive although, in reality, the case

is negative. In the case of CLH, this translates to classifying a case as incomplete maintenance

– although there will not be any issues during the process would constitute an FP. As opposed

to this, a false negative describes a case that is wrongfully classified as negative – actually,

this case is supposed to be positive. At CLH this would mean to predict a case that is not going

to work out well as complete maintenance. Thus, this case will be handled as usual and the

negative consequences arising from an incomplete maintenance event cannot be prevented.

Based on these considerations, we decided to use the confusion matrix as one of the metrics

for evaluation. To measure the precision (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) as well as the recall (

𝑇𝑃

𝑇𝑃+𝐹𝑁
) in one metric, we

decided to use the F1-score (
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) as a leading metric. This allows us to make

models that have high recall and low precision comparable to models with a low recall and a

high precision as both cases might occur in the models. It is important to note that the F1-score

takes FNs and FPs equally into account. However, from a business perspective, these might

not be equally important. Therefore, we decided in accordance with CLH to use the F2-score

13

(
5∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+4∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) as a leading metric as it allows us to compare the models based one score

that takes recall as well as precision into account and weighs recall and therefore the false

negatives higher than precision. This is important as the business impact of false negatives for

CLH is higher than the impact of cases that are false positives. However, the third use case

(predicting work order success) is reversed to the others logically (the planner has to intervene

if “0” and not “1” is predicted). Therefore, also the business impact of the FNs and FPs is

reverses and we use the F0.5-score (
1.25∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+0.25∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) as a leading metric as it is the logical

counterpart to the F2-score.

Lastly, we used the area under the precision-recall curve (AUC PR) as an additional metric for

the logistic regression, the neural network as well as the R-GCN model. This metric is -

opposed to the often used area under the receiver operating characteristic curve (AUC ROC)

- well suited for imbalanced datasets. The AUC PR allows us to measure the performance of

the model across different classification thresholds – more precisely how well the model is able

to distinguish between the two classes. As thresholds are only relevant for models predicting

probabilities, i.e., Logistic Regression, Neural Networks and in the R-GCN, we do not report

this metric for the decision tree models.

3.2 Selected algorithms and Methodology
In the following section, we explain the algorithms we defined, the general method we used for

implementation as well as how we tried to improve each algorithm.

3.2.1 Logistic Regression
Logistic regression is a well-known basic approach in machine learning. Therefore, we decided

to implement this simple algorithm to get a fast and profound understanding of the overall

algorithm pipeline. This includes the data preparation to make the data appropriate for input

criteria of the algorithm, the setup and training of the algorithm itself, as well as creating the

predictions and evaluating them on certain metrics, mentioned in the section 3.1. Furthermore,

logistic regression helps us to set a baseline for performance comparison with the other

algorithms we have implemented.

The structure of logistic regression is very simple and is equivalent to a one layer neural

network. Illustration 11 depicts the structure of the network as well as its underlying principle –

the sigmoid function.

Illustration 11: network structure of Logistic Regression and the sigmoid function.

14

Logistic regression typically consists of 𝑥𝑛 input variables each with an assigned weight

value 𝑤𝑛. The input variables are multiplied with its respective weight, are summed up and a

bias is added. This result is passed on into the sigmoid function, which outputs a value ranging

from 0 to 1. The output can be interpreted as a probability. Depending on which threshold is

used on the probability, it is assigned either to class 0 equal to false or to class 1 equal to true.

Usually one uses a threshold of 0.5. However, in the following paragraphs we will point out

why this was not suitable for our use cases.

In our case, we have designed the network with around 336 learnable parameters. During

training, the network computes its learnable parameters to be able to predict the target variable

𝑦 of the desired use case. To deliver tailored results for each of the three use cases of this

project, including incomplete maintenance, deassignments or work order success, we trained

three different models. Since the use case of incomplete maintenance turned out to be of most

interest, the following paragraphs describe the procedure for its application.

For the application of logistic regression for incomplete maintenance, we have witnessed

various difficulties due to the imbalanced dataset. The dataset for incomplete maintenance

includes 3.96 % positive cases (incomplete maintenance = true) and 96.04 % negative cases

(incomplete maintenance = false). To overcome this issue we implemented four different

methods: the bias, the class weighting, the method of oversampling and the threshold

interpretation.

 Bias

In this method, we set the output layer’s bias to reflect the imbalance in the dataset. The default

bias initialization without any regularization has a loss of about 𝑙𝑛(2). The correct bias 𝑏0 can

be derived from the following equations:

𝑝0 =
𝑝𝑜𝑠

𝑝𝑜𝑠 + 𝑛𝑒𝑔
=

1

1 + 𝑒−𝑏0

𝑏0 = −𝑙𝑜𝑔𝑒(
1

𝑝0
− 1)

𝑏0 = 𝑙𝑜𝑔𝑒(
𝑝𝑜𝑠

𝑛𝑒𝑔
)

The initial loss with this initialization should be: −𝑝0 log(𝑝0) − (1 − 𝑝0)log (1 − 𝑝0)

The initial loss is found to be significantly less compared to naïve initialization. This way the

model doesn’t need to spend the first few epochs just learning that positive examples (True

Positives)

 Class Weighting

Since we want to predict incomplete maintenance and we do not have many positive samples

to work with, we require the classifier to weight that few available positive examples heavily. It

can be achieved by passing weights for each class through a parameter in the framework

Keras. The model will be more attentive towards the examples from an under-represented

class. Applying class weighting to our use case of incomplete maintenance, we compute the

class weights as follows:

(2)

(1)

(3)

15

𝑊𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 0 =
1

𝑎𝑙𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
×

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2.0

𝑊𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 1 =
1

𝑎𝑙𝑙 𝑝𝑜𝑠𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
×

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2.0

We receive the following results:

Weight for class 0: 0.52

Weight for class 1: 12.61

Class weighting can affect the stability of the training depending on the optimizer. Optimizers

like Stochastic Gradient Descent may fail because its step size is dependent on the magnitude

of the gradient. Adam is however unaffected by scaling change and found to be optimum in

this case. As a result of the scaling, the class weight changes the range of loss, making it

incomparable with same model not using class weights.

 Oversampling

 this method, we generate a balanced dataset by replicating the minority class until an even

distribution is reached. ThThe total dataset size is larger, and each epoch runs for more training

steps. Instead of showing each positive example with a large weight (as in case of class

weight), they are shown with a small weight in many different batches each time. The

oversampled data provides a smoother gradient signal, making it easier to train the model.

To use this dataset, we need the number of steps per epoch, which defines the number of

batches of samples to be used in one epoch. The value assigned will trigger the completion of

one epoch and starting of the next epoch. Oversampling often leads to overfitting due to the

duplication of samples, which is why we implemented another hyperparameter “steps per

epoch” which allows a final control over training by breaking up the epoch earlier. For example,

if we have a “steps per epoch” equal to 5 with a batch size of 10 per epoch, the epoch will

terminate after 5 batches due to the steps per epoch.

To reduce the issue of imbalance in the dataset for incomplete maintenance, we identified that

the method of class weighting and oversampling were significantly close in terms of scores.

Oversampling has a little higher accuracy compared to class weights.

 Threshold Interpretation

An additional method to increase the performance of the logistic regression as our baseline

model is the implementation of a threshold interpretation. In the above section, it is already

said that for a sigmoid function one usually uses a threshold of 0.5, to classify everything below

the threshold as 0 or false and everything above as 1 or true. However, due to the imbalance

of the dataset our threshold is shifted. Plotting the F2 classification performance of our model

with regard to the threshold ranging from 0 to 1, we see, that the peak of the threshold does

not lie at 0.5. It is shifted towards a smaller value. In our example in Illustration 12 the optimal

threshold lies at 0.2. Considering this insight, we were able to improve logistic regression as a

baseline model.

(4)

(5)

16

Illustration 12: Threshold of logistic regression over F2 classification performance.

With this pipeline, we successfully built our baseline for comparison and could then focus on

the more advanced algorithmic approaches.

3.2.2 Neural Networks
The Neural Network builds upon the baseline of the logistic regression including the

implemented methods of the bias, the shared weights, oversampling and the threshold

interpretation.

For the best neural network structure, we designed the network with an optimal depth of 13

layers. The network includes L2 regularization in the first layer and dropout implemented in

every uneven hidden layer of the network. We chose the number of neurons per layer, such

that we gradually decrease the parameter number the closer we reach the output layer. We

identified that big steps between the parameter numbers due to the number of neurons of two

following layers, has a negative effect on the model performance. The optimal model shape is

shown in the appendix.

After we find the optimal model structure, we perform random hyperparameter tuning to

increase the performance of the network. Here we focus on parameters such as the learning

rate, the batch size, strength and penalty of regularization and sensitivity of early stopping.

Furthermore, we identify number of thresholds for auc influences the performance of the

algorithm. This parameter (number of thresholds for auc) helps in approximating the true auc

more accurately by controlling the degree of discretization with large number of data samples.

We see that tuning this number increases the quality of the approximation and therefore our

overall model performance in all three use cases.

In the final step of tuning the neural network, we have implemented the SHAP library [4] for

feature interpretation of our predictions. This tool enables us to backtrack what importance

which feature has to compute a certain prediction. Considering this insight, we double-check

the relevance of each feature with our insights we have from the CLH expert interviews. It

appears that some features are irrelevant. We identified that our model achieved a higher

performance on all three use cases after we remove the irrelevant features from the training

set and therefore put further research in the implementation of the SHAP library for feature

interpretation.

17

For the interpretation of the features, SHAP lists all important features which led to the

prediction of that class label. However, the features don’t point to the specific root cause of the

problem, namely, incomplete maintenance. Hence, we crafted synthetic features for our model

called as cross features or feature crosses. In Cross features, two or more features can be

combined to provide predictive abilities beyond the range of normal features. It can increase

the expressivity of the model and is an efficient strategy to learning highly complex models.

We create cross feature 𝑥3 by multiplying 𝑥1 and 𝑥2, 𝑥3 = 𝑥1𝑥2 and treat this new feature like

any other feature. Thus, 𝑥3 encodes non-linear information and the model trains to learn the

weights of this new synthetic feature by: 𝑦 = 𝑏 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

After creating several cross features based on our domain knowledge, the length of the input

vector was doubled and hence a new neural network model needs to be introduced. The new

neural network model was trained with close to 2.8 million parameters. This increases the

precision and accuracy of the neural network model compared with our initial neural network

approach we explained in the above section. It also led to a better insight into core issues for

incomplete maintenance and deassignments using SHAP interpretability plots. The results of

the new model are in section 4.1. The results of the SHAP interpretability plots are in section

0. Further explanations about SHAP can be found in section 4.2.

3.2.3 Decision Trees
Decision Tree models are widely used in machine learning as they can be used to solve

regression as well as classification tasks. Furthermore, their intuitive structure (see Illustration

13) with decision nodes step by step leading to the leaves is useful as they can be interpreted

as opposed to other approaches in machine learning, e.g. neural networks. Hence, this

approach is one of the selected approaches used to predict the three different use cases. In

general, we used sklearn as a framework for the decision tree model as it is one of the most

commonly used frameworks and offers various possibilities to adapt and thus improve the

decision tree model.

Illustration 13: Exemplary decision tree – the data set is split at each node until it reaches the

lowest level and is translated to a classification

The input for the decision tree model is the dataset that resulted from the feature engineering

stream. Hence, it contains 176 features and 133,664 observations (106,931 for training, 13,366

for validation, 13,367 for testing) in total. The input and the output (variables describing the

three use cases) are separated into two data frames before preprocessing the data by using a

label encoder. To do so, we use the label encoder included in sklearn to transform non-

numerical labels to numerical labels and thus facilitate the decision tree model. Besides that,

we fill the NA values with a numerical input to prepare the data for the decision tree model.

18

When implementing a simple decision tree as a common baseline for all the decision tree

models using sklearn we find that the model shows perfect results (F2-Score of ~1.00) on the

training data set and a rather weak performance on the validation dataset (F2-score of ~0.17).

This indicates that the model is able to learn to predict the outcome to some extent from the

input data but currently heavily overfits. In the following, we describe different approaches that

we used to improve the model performance and to prevent overfitting: hyperparameter

optimization, random forest, and feature selection. These approaches are exemplarily

described using “Incomplete Maintenance” as the target variable as the process for the other

two target variables was identical.

 Hyperparameter optimization:

The framework sklearn allows the adaption of different parameters of a decision tree model.

In the following, we focused on the most important ones: the criterion for splitting and the

selected split, the maximal depth of the decision tree and the number of minimal nodes per

leave. In general, we adapted the hyperparameters step by step, starting with one and then

applying the best setting to the model we used to determine the next parameter.

The criterion for splitting in sklearn can be set to “entropy” or “gini”. Based on this setting, the

model uses different calculations to evaluate the different splitting options. Hence, this

parameter can highly impact model performance. When comparing the two options, we find

that using “entropy” yields slightly better results.

Secondly, also the splitter can be set to “best” or “random”. If this option is set to “best”, sklearn

uses the most relevant feature to split the tree on a certain node. Else, the attribute to split on

is selected randomly. However, we either find no difference between the two models differing

only regarding the splitter or only a slight tendency towards “best”. Therefore, we decided to

keep the option “best” which is also the default option for this parameter in sklearn.

The maximal depth of a tree is one of the most influential variables on a decision tree as it

determines among other parameters how granular the model is, more precisely, how many

nodes it uses. Theoretically, the tree can have more than hundreds of nodes. Yet, a higher

depth of the tree might also result in overfitting as the tree tries for each level to grasp the

information of the training data set as good as possible. Hence, it is reasonable to set a

maximum depth for the tree. In order to still ensure the interpretability of the final model, we

ran the model with a depth ranging from 3 to 30. The high interval size regarding the F2-score

of >0.2 for the models with varying maximal depth illustrates the importance of this parameter

for the decision tree model. The best results are achieved when aiming for a maximal depth of

about 14.

Lastly, we optimize the parameter that determines the minimum number of observations per

leave. In doing so, we aim at preventing overfitting as by default this parameter is set to 1 –

meaning that there can be leaves that only exist to classify one case. If there are some leaves

that have such a low number of observations, this can easily lead to overfitting as the final

decision tree model then resembles the structure of the training data too well. We run different

models for a minimum number of observations on intervals ranging from 1 to 2,000. We find

that the best performing model regarding the F2 score only has a minimum of 5 observations

per leave. Besides that, we find that the F2 score highly drops if the number of minimum

observations per leave exceeds.

All in all, optimizing these parameters increases the performance of the decision tree model

on the validation dataset by ~0.07.

19

 Random forest

A common approach to prevent overfitting in machine learning is to run a so-called random

forest model instead of a single decision tree. A random forest model is usually more robust to

overfitting as it does not only run a singular decision tree model but instead a large number of

decision trees. When the model has to classify a case, the predictions of all these different

decision trees for the respective case are calculated and compared. The final prediction is the

class that was predicted by the majority of the decision trees in the random forest model.

When fitting the random forest model without hyperparameter optimization to the training data

and then predict the validation data, we find that the results as compared to the single decision

tree are only slightly better (~ +0.02 F2-score). Hence, the random forest model is not better

with regards to the performance as compared to a hyperparameter optimized decision tree.

 Feature selection

Feature selection is a powerful approach to boost the performance of decision tree models as

it allows the exclusion of unimportant features. This can especially improve the performance if

the dataset contains many different variables that might not be really linked to the target

variable in reality and, therefore, induce randomness or confusing random correlations in the

decision tree model. To select the features, we first determined the feature importance with

sklearn as well as by implementing the decision tree model again on another framework

(catboost) as this framework offers additional functions to determine feature importance.

In sklearn as well as in catboost we selected the most important for the decision tree and then

excluded with additional information on the process and the interpretation of the variables the

features that are unimportant (importance <1) and then decided to run the model with the top

features starting at 5 at gradually increasing.

However, in sklearn nor running a simple decision tree model neither running a decision tree

model with hyperparameter optimization showed clearly better results than the model that took

all features into account. In catboost, the results even worsened a bit (~ -0.05 F2-score).

Therefore, we decided to also approach the feature selection from a process view and exclude

features that are not important from a process view or cannot be changed (as these features

limit the options for process steering). Doing so also did not result in any major changes, which

might hint at the complexity of the data in the model. Yet, we discuss the results and

implications of the feature importances not here - but in chapter 4.

 Summary

We conducted all these optimizations for the three different use cases to receive a solid

performance of the decision tree models. However, the issue of the overfitting of the decision

tree model could not be solved completely.

20

3.2.4 Relational Graph Convolutional Networks (R-GCNs)

Illustration 14: Agglomeration procedure of the R-GCN. Information from neighboring nodes

is pulled and weighted by the learnable matrices 𝑊𝑟
(𝑙)

. Using multiple layers increases the

receptive field of each node.

Equation 6: Layer-wise update rule of the R-GCN

The Relational Graph Convolutional Network (R-GCN) is an extension of regular Graph

Convolutional Networks (GCNs) for relational data. Processing is done by passing messages

between connected nodes as depicted in Illustration 14. In detail, a node 𝑖 agglomerates

information from all neighboring nodes 𝒩𝑖
𝑟 by considering the neighboring node’s relation type

𝑟. In our case, the relation type corresponds to the table of the linked row, e.g., whether it is a

part request or a past activity etc. The information from each neighboring node ℎ𝑗
(𝑙)

 is pulled,

multiplied with a relation-specific matrix 𝑊𝑟
(𝑙)

 and accumulated in a normalized sum to create

a representation ℎ𝑖
(𝑙+1)

 that contains information from all neighboring nodes. This procedure

essentially mimics how Feature Engineering works but differs in that the agglomerations do

not have to be specified manually but instead are learned by the network in terms of the weight

matrices 𝑊𝑟
(𝑙)

. Furthermore, to ensure that a node does not “forget” its own information self-

loops are added via 𝑊0
(𝑙)

. In the end, a nonlinearity 𝜎 is applied and the procedure is repeated

in a layer-wise fashion to enable aggregating information from non-adjacent nodes. In our

case, a 2-layer network usually is sufficient as the input graphs are small and contain at most

2 hops between any pair of nodes.

To feed the data from the database into the network, additional preprocessing is necessary.

Table rows contain more than one relevant datapoint and to combine these into a single vector

representation per node we simply concatenate all data points of a relation. For categorical

values, we additionally use embeddings. The resulting vectors vary in size and since R-GCNs

require the data representations ℎ𝑗
(𝑙)

 to be of equal length, we apply an additional linear

transformation per relation to project the concatenated vectors into a common input space,

(6)

21

which comprises the inputs ℎ𝑗
(1)

 for the first layer. In total, the R-GCN then has roughly 285k

parameters.

As such, the R-GCN is able to learn which aggregations from neighboring nodes are useful via

the matrices 𝑊𝑟
(𝑙)

 and can account for the heterogeneity of datapoints from different tables,

which renders it well-suited for the task at hand.

4 Results
In this section, we present the results for all three use cases and additionally outline the use in

practice of these cases. This includes an estimation of the value of this use case for the

business - whenever possible.

4.1 Model comparison and business impact
We compare our models with respect to F1- and F2-Score as well as the Area under the

Precision-Recall Curve (AUC) on the test partition. For all 3 metrics, higher numbers indicate

better performance. The F2-Score is a variant of the F1-Score that weights FPs less, which

makes sense in the case of predicting Incomplete Maintenance or Deassignments where the

positive class represents undesired events and raising a flag too many times is preferred over

missing an instance. In contrast, the AUC measures how well a model addresses the trade-off

between Precision and Recall, which only applies to models that predict probabilities (Logistic

Regression, Neural Networks, R-GCN) and thus can be calibrated by choosing a threshold. It

might be that model A has a higher AUC but a lower F2-Score than model B, if model B only

performs well considering a specific weighting of Precision and Recall, while the predictions of

model A are more often correct for different calibrations.

4.1.1 Incomplete Maintenance

Model F1 F2 AUC TP TN FP FN

Logistic Regression 19.25 34.22 14.58 270 11166 1688 243

Neural Network 28.71 41.73 31.53 307 11535 1319 206

Decision Tree 12.08 9.07 - 39 12796 58 474

R-GCN 37.24 46.45 39.67 340 11586 1268 173

 + comb. train/valid 43.56 49.53 45.71 303 12150 704 210

Table 3: Results of the models for predicting Incomplete Maintenance. AUC reflects the area

under the Precision-Recall curve. For models that predict probabilities, the confusion matrix is

obtained by choosing a decision threshold that optimizes the F2-Score, where the positive

class corresponds to Incomplete Maintenance.

Incomplete Maintenance is hard to predict as relationships that cause it are intricate and subtle,

sometimes maybe even random (cf. section 2.2.3). Additionally, we do not have detailed data

about part ordering and shipping, which was often mentioned by the experts to be related to

Incomplete Maintenance. Furthermore, the use case poses an extremely imbalanced

classification problem with only 4% positive cases. While dataset imbalance is challenging in

general, in our case it also leads to a situation where the models have to detect general

22

patterns for Incomplete Maintenance from only ~4200 positive examples, which is a marginally

small example base to learn from. Having a bigger dataset would certainly simplify the task.

The aforementioned challenges are reflected by the comparably low performances of all

models on this use case, as seen in Table 3. Decision Trees struggle to predict Incomplete

Maintenance and perform even worse than the Logistic Regression baseline. The R-GCN

performs best on all 3 metrics, with a small, yet significant margin to Neural Networks. This

indicates that the manually crafted features for Logistic Regression, Decision Trees and Neural

Networks are indeed useful, but only the Neural Network is powerful enough to utilize them for

the task. However, the aggregations learned by the R-GCN seem to be more viable to predict

Incomplete Maintenance than the manually crafted features. Furthermore, it can be seen that

the models would perform better with a bigger dataset. For example, the R-GCN can improve

by a few points on all metrics, when it is trained on the combined data from the train and

validation partition. Given the overall low performance scores however, none of the

approaches are good enough to apply their predictions as they are. Even the R-GCN cannot

perform better than detecting 60% of all Incomplete Maintenance Cases with a precision of

30%. Should the model be used in practice, an expert would have to double-check predicted

cases to filter out false positives.

All in all, predicting incomplete maintenance, has a very high impact on the business (e.g.

compared to deassignments) as predicting and thus possibly preventing incomplete

maintenance has mainly three direct benefits: reducing the number of deassignments, delays

as well as cancellations of flights. To calculate the final business impact of incomplete

maintenance cases, we take all of these three levers into account. The number of

deassignments reduced is a reduction of process costs and is detailed below in Use Case 2

(Deassignments). As opposed to this, the benefits of the reduction of delays and cancellations

are a reduction of costs generated by the process results. We calculate these reductions by

estimating the number of delay minutes and cancellations caused by technical issues resulting

from the MRO process in 2019. We then transferred the MRO process’s share of total delays

and cancellations as well as the average costs caused per cancellation and delay/minute to

an estimated reduction that could be realized by preventing some of these events as a result

of the prediction model.

However, we did not only consider the benefits of the predictions into account. To calculate

the full business impact, we included a cost perspective as well – e.g. by the extra work that is

required to actually turn the information of the prediction into action and to prevent incomplete

maintenance. Here, we assumed that this requires 50% of the time that a planner needs to

schedule a whole new work order. Based on these considerations, we calculated the overall

impact of all four fields of the confusion matrix: TP, TN, FP and FN. Especially, the FNs have

a high impact on the overall return of this use case as they cause extra work – that is actually

not necessary. All in all, our calculations show that with the current performance, this use case

is able to save process costs as compared to today.

Furthermore, a positive impact of this use case is the cost reduction on the long term. This

reduction could, for instance, be realized by a reduction of the spare fleet size as there are

less delays and cancellations and, therefore, fewer spare airplanes are required.

23

4.1.2 Deassignments

Model F1 F2 AUC TP TN FP FN

Logistic Regression 55 59 56.73 4160 1953 7068 186

Neural Network 59.07 75.84 73.47 4065 3669 5352 281

Decision Tree 55.69 55.21 - 2386 7185 1836 1960

R-GCN 70.65 78.39 81.00 3904 5407 3614 442

Table 4: Results of the models for predicting Deassignments. The confusion matrix is obtained

by choosing a decision threshold that optimizes the F2-Score, where the positive class

corresponds to Deassignments.

For the use case of deassignments all models perform better then on the previous use case

of incomplete maintenance, as the dataset for deassignments is less imbalanced.

Furthermore, the numbers show, when comparing the three models with regard to the baseline

model of logistic regression, that the neural network (NN) and the R-GCN strongly increase

their performance whereas the decision tree even stays below the performance baseline of

logistic regression with regard to the F2 and AUC score. The decision tree cannot represent

the complexity of the task and therefore performs almost as good as the baseline model of

logistic regression, which is also a simple model and does not have the power to represent

high data complexity with its model structure. On the other side, the neural network as well as

the R-GCN outperform the baseline model for this use case, because both deep models have

a high number of learnable parameters, which are able to represent the interconnections and

relations within the data. The R-GCN outperforms the NN, because it has the advantage to

use data as a graph and is therefore not relying on handcrafted features. However, the

performance of the NN highly depends on the handcrafted features it uses for training.

Spending more time on the feature preparation for the NN could increase its performance.

The business impact of the use case of deassignments is the time a planner needs to

reschedule a case. The time is varying due to the complexity and the reason for the

deassignment of a particular case. To calculate the concrete business impact for a

deassignment we, therefore, used 50% of the mean of minutes a planner needs to assign a

new case as an approximation. To calculate the actual costs of assigning a case we used the

costs per manhour and the number of work orders assigned in the planning department as well

as a factor for time the planners spend on activities other than planning (e.g. meetings,

strategic planning, communication). Due to an AI based monitoring approach as it is introduced

with this project, there is potential to lower the workload for each planner because the

appearance of deassignments can be forecasted and thus these events can be prevented, for

instance, by carefully reviewing the case again. This leads to a steadier and reduced workload

for each planner and saves costs in the long run.

24

4.1.3 Work Order Success

Model F1 F0.5 AUC TP TN FP FN

Logistic Regression 78.9 73.31 81.82 7692 1562 3297 816

Neural Network 77.61 82.23 89.14 6038 3845 1014 2470

Decision Tree 83.52 83.49 - 7110 3451 1408 1398

R-GCN 85.94 84.91 91.72 6544 3896 963 1964

Table 5: Results of the models for predicting Work Order Success. The confusion matrix is

obtained by choosing a decision threshold that optimizes the F0.5-Score, where the positive

class corresponds to a success.

In predicting work order success, the performance of all three approaches namely, neural

network (NN), decision tress and R-GCN is found to be similar comparing the F0.5 score and

area under the curve. The decision tree has performed better than the baseline model of

logistic regression in this case. All models show very high scores, because the class of “work

order success” is overrepresented in the data. However, this use case is of least importance

to CLH because it does not help in identifying the bottlenecks in the process and has no

significance for process optimization. Though this model has higher accuracy, one should be

skeptical to implement it in a real-world scenario because predicting false work order success

(FP) can cause potential disruption in planning process. This can possibly lead to more

incomplete maintenance cases because the count of false positives samples is higher than the

count of actual incomplete maintenance cases.

Predicting whether a work order will be finished successfully, has a smaller business impact

as compared to the other two use cases. As it is easier to steer cases if one knows how big

the impact of the issue that might occur is (e.g. will a de-assignment or incomplete

maintenance occur), it is better to use case 1 and 2 to actively steer the cases instead of the

prediction of work order success. Nevertheless, this metric is important as it can be used to

track the overall improvement resulting from deploying the prediction model.

4.1.4 Summary
R-GCN performs comparatively better in all three business cases, closely followed by the

neural network (NN). In this analysis, the decision tree could not surpass the accuracy of

logistic regression for the two most impactful business cases of incomplete maintenance and

deassignments. Decision trees show better performance when the targeted class is balanced

or over-represented in the dataset. The improvement of neural network directly depends on

the domain knowledge of the data to create helpful features to predict a certain class.

Incomplete maintenance has the highest impact on the business, but it is very hard to predict,

as it is a highly under-represented dataset. Further, due to the complex non-linear relationship

of the data there is no clear boundary, which separates the incomplete maintenance class from

other classes. However, R-GCN and the neural network can be used for feature interpretation

to identify features that affect incomplete maintenance. The predictions for deassignments can

reduce rework for the planners in assigning the work order again to a different work package.

The predictions of work order success offer no business value to CLH.

25

4.2 Interpretation and Discussion of Results
To further improve our models and to get an understanding for the models’ predictions we

implemented several explainability methods. These can help to identify how important each

feature is for the prediction which in turn allows to improve the models by dropping spurious

features or to draw conclusions about the underlying process. For example, features that are

important for predicting Incomplete Maintenance may hint at frictions in aircraft maintenance

and are thus good starting points for CLH to improve the process.

We experimented with several explainability methods and in the end decided to use Integrated

Gradients [5] for explaining single predictions and SHAP [4] for explaining what features the

model deems important in general. Both methods assign a weight to every input feature which

constitutes the explanation. SHAP has a strong theoretical foundation and calculates feature

importances by decomposing the model’s prediction 𝑓(𝑥) into a linear combination of the

features:

𝑓(𝑥) = 𝜙0 + ∑ 𝜙𝑖𝑥𝑖

𝑖

where 𝑥𝑖 is the 𝑖-th feature of input 𝑥 and 𝜙𝑖 its importance for the prediction. These 𝜙𝑖 can be

obtained by leveraging results from Cooperative Game Theory. In this interpretation, the 𝑥𝑖 are

players that all contribute to a common goal and we wish to find a fair allocation of the common

profit 𝑓(𝑥) among them. This fair allocation is computed by measuring each player’s usefulness

in any combination with other players, i.e., how much the player’s presence increases the

common profit in a particular coalition. Averaging the player’s contribution over all coalitions

then constitutes their Shapley Value 𝜙𝑖 which is the fairest possible allocation. SHAP interprets

these allocations as feature importances and thus provides a truthful explanation of the model’s

decision. The biggest disadvantage is the computational cost of calculating a feature’s

usefulness for all possible coalitions, which can pose a challenge if the model is very complex

and the number of features is high. As this is the case for R-GCNs, we employ a different

explainability method, Integrated Gradients, which provides the same output as SHAP, but

does so in a slightly less theoretically grounded and less accurate way.

In the following, we analyze the explanations of a single R-GCN prediction. Making the model’s

decision for a single case more transparent helps the user to build trust in the system. For

them, it can be a powerful tool to ultimately decide whether to accept a prediction and to figure

out which levers to pull in order to steer against an incomplete maintenance. Furthermore, we

analyze the predictions of the Neural Network on the whole dataset to get an impression of

how the model operates globally which can hint at general inefficiencies in the maintenance

process.

(7)

26

4.2.1 Explanation of single predictions

Illustration 15: The 20 data points that the R-GCN drew most attention to when correctly

predicting Incomplete Maintenance for a particular case.

Despite the black-box nature of the R-GCN which we initially thought would make it inherently

uninterpretable, we were able to extract feature importances for the model. Illustration 15

shows what inputs the R-GCN put attention to for a successful Incomplete Maintenance

prediction. In this case, the model heavily used the knowledge that this case ran into

incomplete maintenance several times already which makes it more likely that it will happen

again. Apart from this statistical insight, the R-GCN also found that the particular airport at

which the maintenance should be performed is important, as well as other datapoints such as

the type of work order or specific requested parts. In particular, we could identify data leakage

with this analysis, as data point 20 in Illustration 15 appeared in almost all explanations and

would always decrease the model’s confidence in predicting Incomplete Maintenance. After

consulting the technical documentation of the database, we found that this particular data point

is only set after the work order has been completed. This is problematic in two ways: First, it

gives away that the case will be successful. Second, it does not generalize as this data point

would not be set in a live prediction setting but often had a value during training. By excluding

this data point, we could thus improve the generalization capabilities of the R-GCN.

All in all, explaining single predictions of the R-GCN provides valuable insights. However, as

the R-GCN operates on graphs, certain information such as whether the model detects

patterns in the way how nodes are connected cannot be captured with this explainability

method. Furthermore, as the input graphs vary in size, it is impossible to explain the model’s

decision in the general case. Therefore, we performed further analysis on the Neural Network

which in terms of explainability profits from the features being hand-crafted and of fixed length.

27

4.2.2 Feature importance for incomplete maintenance and deassignments
The charts in the subsection explain which features are on average relevant for the use cases

of incomplete maintenance and deassignments. For this evaluation, we use the neural network

model with cross features. In order to protect the confidentiality of the results, we have

anonymized the features in this section. A detailed description about the functionality of cross

features is in section 3.2.2.

 Deassignments

Illustration 16: Overview of relevant feature on average for the detection of deassignments.

For the use case of deassignments we can see from Illustration 16 that there are quite a few

relevant features that cause a deassignment. This analysis was performed on 1000 cases. It

was found that the deassignments happen very often in the context with a particular station.

28

 Incomplete Maintenance

Illustration 17: Overview of relevant feature on average for the detection of incomplete

maintenance.

From Illustration 17, we derive that there are several reasons why a particular work order is

detected as incomplete maintenance. This analysis was performed on 575 cases. Initially, we

noticed that one station was of higher relevance for incomplete maintenance. Rerunning the

interpretation again with cross features, we found that the major factor affecting that particular

station was the time allotted to perform the maintenance task.

29

5 Conclusion
All in all, we reached the overall goal which we defined based on the insights in the process

as well as the business understanding and developed a predictive process management model

to predict critical cases in the aircraft MRO processes. We achieved this by implementing four

different approaches for ML models based on previous research on predictive process

management: Logistic Regression, a Neural Network approach, a Decision Tree model and a

Relational Graph Convolutional Network. To find and steer the critical cases in the MRO

process we focused on three major use cases.

First, we predicted incomplete maintenance which posed major difficulties due to the highly

imbalanced distribution of the variable. Hence, even the best performing model (R-GCN)

shows a rather average performance (46.45 F2-score). Nevertheless, the model achieves the

highest business impact as compared to the current process as it reduces replanning as well

as delays and cancellations. The second use case is to predict a deassignment of a work order

– more precisely a replanning. Here, the R-GCN as the best model shows good results (77.88

F2-score) and also allows for a cost reduction. Lastly, a prediction of the use case “work order

success” can allow as a metric indicating the improvement of the process – meaning more

work orders are completed without any deassignment or incomplete maintenance. For this use

case, the best results were achieved (91.60 F2-score, R-GCN).

To allow for deeper insights on what impacts critical cases and to suggest variables that allow

an active steering of the process, we also conducted an analysis of feature importances. Here,

we find that some features such as a particular station to conduct the work order at are very

important for predicting the outcome variables.

In the future, the models could be further improved by adding additional data (more precisely:
more work orders to learn from as well as more information on part shippings and the ordering
process) or by data augmentation i.e. creating artificially more cases to reduce the imbalance
in the datasets. The R-GCN as the best performing model could be advanced by integrating
textual information such as descriptions of the work steps to enrich it with more information on
the particular work order. Furthermore, the feature importances could be evaluated in-depth
with process experts to gain more insights in relevant features and features that could be
included.

With regards to the business perspective that combines the initial process discovery stage with
the final models, we can conclude that the project results are highly relevant. Firstly, the results
prove that it is feasible to predict certain outcomes in the MRO process and thus to actively
steer and thereby prevent outcomes that are not desirable from a business perspective.
Secondly, the calculations of the business cases and the overall positive value of the three use
cases – despite of the currently wrongly classified cases – hints at the high potential impact
the implementation and further improvement of the models could have for Lufthansa CityLine.

30

6 Bibliography

[1] W. van der Alst, A. Adriansyah, A. K. Alves de Medeiros, F. Arcieri, T. Baier, T. Blickle, J.

C. Bose, P. van den Brand, R. Brandtjen, J. Buijs, A. Burattin, J. Carmona, M. Castellanos,

J. Claes, J. Cook, N. Costantini, F. Curbera, E. Damiani, M. de Leoni, P. Delias, B. F. van

Dongen, M. Dumas, S. Dustdar, D. Fahland and D. R. Ferreira, "Process Mining

Manifesto," in International Conference on Business Process Management, Clermont-

Ferrand, France, 2011.

[2] A. Santoro, R. Faulkner, D. Raposo, J. Rae, M. Chrzanowski, T. Weber and T. Lillicrap,

"Relational recurrent neural networks," in Advances in neural information processing

systems, 2018.

[3] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov and M. Welling, "Modeling

relational data with graph convolutional networks.," in European Semantic Web

Conference, Cham, 2018.

[4] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions.," in

Advances in neural information processing systems, 2017.

[5] M. Sundararajan, A. Taly and Q. Yan, "Axiomatic attribution for deep networks.," in

International Conference on Machine Learning, 2017.

I

7 Appendix

7.1 Neural Network with cross feature interpretation

II

7.2 Neural Network without cross feature interpretation – the standard

approach

III

7.3 Dataset Analysis with statistical Independence Tests

	1 Introduction
	1.1 Problem Definition and Goals of the Project
	1.2 State-of-the art approaches and algorithms in Process Prediction

	2 Data Analysis
	2.1 Data Sources
	2.2 Preprocessing and Feature Engineering
	2.2.1 Feature Engineering
	2.2.2 Preprocessing for R-GCN
	2.2.3 Exploratory Analysis of the Dataset

	3 Models
	3.1 Metrics Used to Compare Algorithms
	3.2 Selected algorithms and Methodology
	3.2.1 Logistic Regression
	3.2.2 Neural Networks
	3.2.3 Decision Trees
	3.2.4 Relational Graph Convolutional Networks (R-GCNs)

	4 Results
	4.1 Model comparison and business impact
	4.1.1 Incomplete Maintenance
	4.1.2 Deassignments
	4.1.3 Work Order Success
	4.1.4 Summary

	4.2 Interpretation and Discussion of Results
	4.2.1 Explanation of single predictions
	4.2.2 Feature importance for incomplete maintenance and deassignments

	5 Conclusion
	6 Bibliography
	7 Appendix
	7.1 Neural Network with cross feature interpretation
	7.2 Neural Network without cross feature interpretation – the standard approach
	7.3 Dataset Analysis with statistical Independence Tests

