Predictive Process Management for Aircraft MRO Final Presentation – TUM DILAB

29.07.2020

lufthansa.com

The planning and scheduling of work orders at Lufthansa CityLine GmbH (CLH) is done in the planning department and highly complex Problem Statement (1/3)

Paula works in the **Planning Department** of CLH. She plans all maintenance tasks for the CLH fleet.

Therefore, Paula needs to consider a lot of things:

- ✓ **Due date** of the maintenance tasks
- Availability of infrastructure, tooling and aircraft
- ✓ Lead time of **materials** for their on-time arrival
- Availability and qualification of the line workers

Although a desired process flow is defined, the reality differs considerably from it

Problem Statement (2/3)

Paula has to deal with different challenges during her workday

Problem Statement (3/3)

Work could not be conducted completely or not at all.

- \rightarrow Aircraft might be grounded
- → Short term replacement needs to be found
- \rightarrow Delays & cancellations occur
- \rightarrow Causes Deassignments

Deassignments

.....

She needs to find a new slot to perform this maintenance task.

- → Reworking previously assigned work orders
- → Waste of time that could have been spent working on more urgent matters
- \rightarrow General process inefficiency

Design and implementation of a system for predictive process management to increase efficiency in the aircraft MRO process at CLH Project Plan

Project Goal

We develop a predictive process management tool to predict and proactively steer critical cases in the aircraft MRO processes of Lufthansa CityLine until July 2020 by implementing and evaluating three different prediction models.

Agenda

1 Problem Statement

2 Implementation & Setup

- Academic Approach
- Data Exploration, Feature Engineering and Data Preparation
- ML Models
 - Logistic Regression
 - Neural Networks
 - Decision Tree
 - Relational Graph Convolutional Networks (R-GCN)

3 Results and Impact

- Comparison of Model Results
- Business Impact
- Explainability

4 Summary and Next Steps

Based on a literature review of we selected three approaches to predict process flows at CLH

Comparison and Selection of Academic Approaches

		Feature engineering necessary?	Capturing hierarchical information?	Capturing sequential information?	Long training time?	Explain- ability?	Framework support?
	Decision Trees	Yes	No	No	Yes	Yes	Yes
Feature Engineering	NN/Logistic Regression	Yes	No No		No	Yes (but tricky)	Yes
	K-nearest Neighbors	Yes	No	No	No	Yes	Yes
Relational Grap Network	h Convolutional s (R-GCN)	No	Yes (with limits)	No	Yes	No	Yes
Relational Recurrent Neural Networks (R2NN)		No	Yes	Yes	Yes	No	No (but modular)

(Dis)advantages

Final Presentation - TUM Data Innovation Lab - Predictive Process Management 30.07.2020 Page 6

Selected approaches

Approaches

In this project phase we worked on several work packages with different dependencies on each other Work Packages and Dependencies in Process Prediction

Project Management and Documentation

Final Presentation - TUM Data Innovation Lab - Predictive Process Management 30.07.2020 Page 7 Prediction approach

i i concentrappi e

Work package

Dependency

Understanding the domain, process & data, we handcrafted the feature vector based on the data being available at the time of the assignment 1 Feature Engineering

Input Refinement

- Planners face the same decision every time they re-assign a work order
- Information considered in the assignment step changes over time / the process' lifecycle
- → splitting the work order at every assignment & use the activity's timestamp as a cut-off criterion

Increase of available data by ≈ 33%

We transformed each workorder assignment from the database to graphs as an input for the Relational Graph Convolutional Network (R-GCN) Data Preprocessing: Dataset for R-GCN

30.07.2020 Page 9

We created 2 different datasets that are tailored towards our models while still ensuring comparability across the datasets 1/2 Feature Engineering and Data Preprocessing: Dataset statistics

	Feature Engineering	R-GCN dataset		
Datatype	Handcrafted features	Raw data as graphs		
Scope	70 DB columns	133 DB columns		
Size	4 MB	582 MB		
# Cases	133,664			

Split	# Cases	% Incomplete Maintenance	% De- assignments	% WO Success
Train (80%)	106,931	4.0%	32.2%	63.8%
Validation (10%)	13,366	4.3%	31.8%	63.9%
Test (10%)	13,367	3.8%	32.5%	63.7%
\sum Whole dataset	133,664	4.0%	32.2%	63.8%

- ensure comparability
- very imbalanced dataset

Models

- 1) Logistic Regression
- 2) Neural Networks
- 3) Decision Tree
- 4) Relational Graph Convolutional Networks (R-GCN)

use cases

use cases

Preprocessing Techniques	Explanation - Bias				
	Use Case - Incomplete Maintenance				
1. Bias	Dataset:				
2. Class Weighting	3.96 % of class 1 96.04 % of class 0				
3. Oversampling	Weight for class 0: 0.52 Weight for class 1: 12.61				
4. Threshold Interpretation					

use cases

Preprocessing Techniques	Explanation - Bias				
 Bias Class Weighting 	INCOMPLETE MAINTENANCE USECASE				
3. Oversampling	20% 20%				
4. Threshold Interpretation	IMBALANCED DATASET (106,931 CASES) (213,862 CASES) Postive Labels Negative Labels				

use cases

1 Logistic Regression – The model

With **Preprocessing Techniques** & **Hyperparamter Tuning → solid** and **robust** Logistic Regression **baseline model**

The Neural Network – a deeper and more advanced network build on the experience of Logistic Regression 2 Neural Network

The Neural Network – a deeper and more advanced network build on the experience of Logistic Regression

- 2 Neural Network Cross Features
 - Formed by multiplying two or more features
 - □ Enables a model to learn separate weights for each combination of features
 - Provides better insight for the core issues of incomplete maintenance in interpretability plots

The decision tree model shows slightly better results after some adaptations and optimizations but still overfits Decision Tree

Approach

Description:

- Classifier divides the observations at every node stepby-step
- At the bottom: respective the sub data set is assigned a class (e.g. incomplete maintenance)

Models and Refinement Approaches

Problem: overfitting of decision tree

Possible Solutions: (frameworks: sklearn and catboost)

- Hyperparameter optimization:
 - Depth
 - Split criterion and split method
 - Min. number of observations per leaf
- Random Forest
- Gradient Boosting
- Feature selection (incl. Interpretation)

Result: Overfitting could not be resolved

- possibly the data is too complex and imbalanced

The R-GCN is a powerful model but comes with some inherent challenges

Part Request

pr_1

- material type

Part Request

pr_2

material type
quantity

- quantity

Final Presentation - TUM Data Innovation Lab - Predictive Process Management 30.07.2020 Page 20

Agenda

1 Problem Statement

2 Implementation & Setup

- Academic Approach
- Data Exploration, Feature Engineering and Data Preparation
- ML Models
 - Logistic Regression
 - Neural Networks
 - Decision Tree
 - Relational Graph Convolutional Networks (R-GCN)

3 Results and Impact

- Comparison of Model Results
- Business Impact
- Explainability

4 Summary and Next Steps

We decided to compare our models on metrics that can handle imbalanced data

Evaluation Metrics

F1 score: equal importance of FPs and FNs . Metrics that can handle imbalanced data F2 score: minimize FNs **F0.5 score:** minimize FPs • Conditions Interpretation • **Decision of CLH:** F2 score for Incomplete Maintenance, Deassignments Highly imbalanced F0.5 score for WO success dataset Area Under Curve (AUC): summarizes how well the • model addresses this precision-recall tradeoff The higher, the better Actual Values 0 Values Desired to be high TRUE NEGATIVES FALSE NEGATIVES 0 Desired to be low Pred. FALSE POSITIVES TRUE POSITIVES

Metrics

So far, the R-GCN shows the best performance among the different approaches

Overview: Performance of all Selected Approaches in all Use Cases

	Incomplete Mair		Maintenance	Deassig	Deassignments WO Succe			
		F2-score	AUC	F2-score	AUC	F0.5- score	AUC	Above average Average Below average
Approaches	Logistic Regression	34.22	14.58	59.00	56.73	73.31	81.82	
	Neural Network	41.73	31.53	75.84	73.47	82.23	89.14	
	Decision Tree	19.07	-	55.21	-	83.49	-	
	Relational Graph Convol- utional Network (R-GCN)	46.45	39.67	78.39	81.00	84.91	91.72	
	R-GCN + comb. train/valid	49.53	45.71	-	-	-	-	

Performance/Metrics

The higher the better

Final Presentation - TUM Data Innovation Lab - Predictive Process Management 30.07.2020 Page 23 Two of the use cases have a direct positive impact on the business while the third one can be used for steering Business Case Calculations – Impact of Use Cases (1/2)

To calculate the overall impact of a ML model, we have to take the business value of all four fields of the confusion matrix into account Business Case Calculations – Impact of Use Cases (2/2)

Final Presentation - TUM Data Innovation Lab - Predictive Process Management 30.07.2020 Page 25

Lufthansa CityLine

We used explainability techniques to analyze the predictions of our models and gain further insight Explainability (1/4)

We can either explain single predictions or the models' general behavior

Explainability (2/4)

Explanation of a single prediction:

Explanation of the **model**:

- Does the system have a **bias**?
- What general tendencies can we infer from the data?

We could improve the R-GCN by analyzing the explanations for single predictions

Explainability for the R-GCN (3/4)

We achieved great insights using cross features with Neural Network to identify which factors caused incomplete maintenance and deassignments Explainability for the Neural Network (4/4)

Analysis for 575 incomplete maintenance cases and 1000 deassignment cases

Agenda

1 Problem Statement

2 Implementation & Setup

- Academic Approach
- Data Exploration, Feature Engineering and Data Preparation
- ML Models
 - Logistic Regression
 - Neural Networks
 - Decision Tree
 - Relational Graph Convolutional Networks (R-GCN)

3 Results and Impact

- Comparison of Model Results
- Business Impact
- Explainability

4 Summary and Next Steps

Paula gained detailed insights into the root cause of her daily challenges

Management Summary

Problem: Incomplete maintenance and deassignments as challenges in the MRO process for planners at CLH's planning department

Approach and Solution:

- Implementation of **three different ML models** to predict three use cases (incomplete maintenance, deassignments, work order success)
- Challenging because of high complexity and imbalance of the data
- R-GCN as best model
- Positive business impact for UC1 and UC2, neutral impact of UC3
- Interpretation hints at **different important variables** e.g. required parts

- Reduced workload for Paula
- Knows how to reduce issues
- Can focus on planning new work orders

What does that mean for CLH at what are the possible next steps?

Next steps and tasks

Business Impact and Next Steps

Business Impact

Feasible to predict MRO process outcomes

Overall positive value of three use cases,
 high potential impact

Improving the ML model

- Adding additional data
- Data augmentation
- Improving R-GCN by integrating textual information e.g. descriptions of the work steps
- Evaluation of the feature importances with experts

Implementation in MRO Process

- Presentation of results at CLH internally (end of August)
- Evaluation of necessary adaptation in CLH workflow with regards to implementing the models

Thank you very much for your attention

Operated by

Lufthansa CityLine

Luftha

Weil am Rhein

