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Introduction
● HPC systems enables difficult problems

○ Astrophysics simulations 
○ Modeling spread of diseases
○ Calculating the zeros of the Riemann Zeta

● Can accommodate up to millions of cores and 
terabytes of memory distributed over nodes

● Resources utilized by dividing the tasks into 
small computational components to run in 
parallel

Execution of parallel applications
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How much energy do HPC systems spend?
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LRZ energy consumption between 2000 - 2017



● Tianhe-2A requires over 18 Megawatt power to 
operate with full capacity

● 1 hour operating energy equals to travel around 
the world 3 times with a modern electric car

● Difficult for the operation budgets

● Wasteful energy use is concern for environment
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Severity of Energy Consumption

Tianhe-2A,China
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● Better hardware, infrastructure and 
code tuning can increase efficiency

● Runtime control algorithms can have 
significant impact on efficiency as well

● Regions are application fractions that 
exhibit similar behaviour

● Modifying the CPU frequency can result 
in better energy efficiency depending 
on region
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What can we do about it? 

Normalized energy trace 1.1 GHz
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Normalized energy trace 1.1 & 1.5 GHz

● Traditionally frequency selection is 
based on heuristics

● Machine learning can be used to predict 
the optimal frequency in the next 
timestamp using the information from 
the previous timestamps

● Optimal frequency minimizes energy 
with performance constraint

Comparing frequencies



● Open source community driven runtime solution to address energy problem

● Simple use case: Reads hardware counters and acts with control algorithms

● Generates trace files containing hardware counter readings

● Advanced use case: Dynamically coordinate multiple compute resources by 
setting dynamic power limits per node basis

● Up to 30% improvement energy consumption on real applications 
with default control algorithms 
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Global Extensible Open Power Manager
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● GEOPMbench is an artificial HPC 
benchmark that can simulate 
different behaviour using 
configurations

● Implemented a GEOPM control 
algorithm to mimic dynamic 
frequency change behavior on 
runtime 
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Data Generation
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● 300 random configuration for 1 node 

● 20 random configuration for different 
node

● Each configuration is ran 3 times

Example configuration file



● Performance on artificial data should be validated on real HPC application

● GADGET is a cosmological N-body simulation

● Ran with the control algorithm with GEOPMbench application
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Data Generation
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Energy trace fragment from GADGET run



● GEOPM has only support for non-programmable hardware counters which 
limits the amount of data that we can collect

● Programmable counters such as cache misses, branch misses also carries 
important insights for optimizing the energy efficiency
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More Features for Traces
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● DCDB is a tool for collecting and monitoring events counter, driver information 
and processes information.

● We need other counters,

○ events source: branch-misses, cache-misses

○ device drivers: temperature

○ process information, especially memory usage

● DCDB is configured to save the hardware counters on the nodes that 
GEOPMbench is run
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Data Center DataBase
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Granularity in Sampling Rate 
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● Alignment in time series is 
needed

● Same granularity between 2 
data sources 

● Converting from monotonic 
to absolute time, might lead 
to inaccuracies due to delay 
in GEOPMbench call 



● Removing excess preceding points, approximately 1.7 seconds

● Shift the time series to match the starting point of each series
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Aligning Time Series 
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● The excessive point count can vary from trace to trace

● Elimination parameter needs to be adjusted dynamically per sample

15

Good Alignment Result 
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Bad Alignment Result 
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● Avoid any gap in timestamp 



● One DCDB point were mapped to many GEOPM points
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Supersampling, low sampling rate 
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Supersampling with 1s sampling rate
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Supersampling vs Interpolation

Supersampling and Interpolation with 100ms sampling rate
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● Challenges:
○ 8 minutes required per sample in DCDB data collection

● 70 features in total from GEOPM and DCDB

● Our data key points are:
○ Frequency
○ Region id
○ Package energy
○ Package power
○ Instruction retired

19

Data Collection Summary
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● Detect and classify the current state 
of the application into characteristic 
regions

● Choose an optimal frequency policy 
tailor-made for that region

● In an actual application, the region is 
'continuous' and difficult to classify, 
leading to poor generalization or 
limited applicability
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Classification model         Regression model 
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● ‘Forecast' the value of hardware 
metrics as a function of history values 
in time series data

● Choose the optimal frequency based 
on the dependence of forecasted 
values on frequency

● More promising



● Good generalization to actual application. This can be tested using validation 
and testing accuracy, residual plots

● The predicted hardware metrics should be correlated with the frequency to 
make optimal frequency decisions
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Model Objectives
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Power

Time
Energy is the area under power-time curve

● What is the optimal frequency decision policy?

● Instructions retired give a measure of progress

● E(f) =  Instructions(f)  ;   foptimum = argmaxf E(f)
Power(f)



● Application trace (data) is 
multivariate time series

● Partial correlation of time series 
with it’s own lagged values show 
which lags are significant

● 2-4 lags enough to decide the 
present value
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Partial autocorrelation
Package Power DRAM Power

Thread cycles Instructions

Partial autocorrelation plots for key metrics



● Outlier removal: removed points which don’t lie within 3 standard deviations 
from mean

● Time Normalization: to address sampling time variability for accumulating 
counters

● Time interpolation: uniformly spaced time series needed for feature 
generation. Linear interpolation is used
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Data preparation
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Source: 
https://datascopeanalytics.com/blog/
unevenly-spaced-time-series
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One-lag Model
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Comparison: One-lag Models

Data Innovation Lab LRZ - Intel

Error Error Error

Actual output Actual output Actual output

Ridge Linear Regression Support vector Regression (RBF) Random forest Regression

Mean relative 
error 

0.181 0.074 0.024



● Correlation of frequency and power is low (2.4 per 
0.1 GHz)

● Frequency lags ahead by about 50-100 ms (1-2 
samples). One lag model can’t compensate for this 
lag

● More reasonable frequency correlation within a 
‘region’. Multiple lag model can capture local region 
behavior

● Predicting power alone not enough for optimal 
frequency decision. Predict instructions retired also
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Issues with one-lag models
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Frequency - power lag
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Multiple-lag Model

metrics arraymetrics array

I.I.D. statistical features from sequence data
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Statistical features
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Sl. no. Feature Remarks

1 Exponentially weighted mean ‘recent’ values more important.

2 Exponentially weighted gradient depict trends

3 Standard Deviation variability

4 Skewness 3rd moment

5 Kurtosis 4th moment

6,7,8 Quantile - 0.25, 0.5, and 0.75 Spread of intervals

9 Sum of differences sudden changes

10 Sample Entropy measure of complexity
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Results - GEOPM

Predicted Vs Actual (package power) Predicted Vs Actual (inst_retired)

Mean Relative Error: 0.135
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Correlation with Frequency
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● Instruction retired: Highest impact

● Frequency: Slight correlation

● Energy dram: No contribution 
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Results - GEOPM + DCDB

Predicted Vs Actual (package power) Predicted Vs Actual (inst_retired)

Mean Relative Error: 0.135
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Results - Test Node
● Model Validation with time series data of same run on another node
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Power traces on different nodes

Mean Relative Error: 0.132

Predicted Vs Actual (package power) Predicted Vs Actual (inst_retired)
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Results - Gadget 

Mean Relative Error: 0.261
Data Innovation Lab LRZ - Intel

Predicted Vs Actual (package power) Predicted Vs Actual (inst_retired)



● Our Random Forest model generalizes well to real applications

● Multiple-lag model performs better than one lag model

● Predicted metrics don’t depend ‘enough’ on frequency to make good decisions

● Implementing a GEOPM agent to get energy saving by current model

● Recurrent Neural Networks may perform better
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Discussion and Future Works
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● Data collection

○ GEOPM

○ DCDB

● Data Analysis and Preparation

○ Region-specific behaviour

○ Statistical features

○ Aligning software and hardware 
data
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Summary
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● Machine Learning Implementation

○ Linear and Nonlinear Model

○ Performance Metrics as Targets

● Model Validation 

○ Gadget Data

○ Different Node



Thank you for your attention
Special thanks to GEOPM team

Questions?
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Features from GEOPMbench
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Hardware metrics Description

Package energy Total energy of all sockets(CPU) of the node

DRAM energy Total energy of all DRAM of the node

Package power Total power of all sockets(CPU) of the node

DRAM energy Total power of all DRAM of the node

Frequency Average frequency of all cores.

Thread cycles Average clock cycles executed by the cores since the beginning of the 
execution

reference cycles Average clock reference cycles since the beginning of the execution

Instructions retired  Total number of instructions executed by all sockets(CPU) on the node
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Features from GEOPMbench
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Application related metrics Description

Region ID 64-bit integer ID of the region that all ranks are 
running.

region progress minimum per-rank reported progress through the 
current region (0 or 1)

region runtime maximum per-rank last recorded runtime for the 
current region

power limit, policy power cap, policy 
step count, policy max epoch runtime, 
policy power slack, policy power limit

GEOPM policy related metrics



● More reasonable frequency correlation ‘within’ region.
 

● A multiple lag model can capture ‘region’ behaviors.
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Region based regression

pkg power/0.5GHz freq dram power/0.5GHz freq

Sleep Region 2.7 -0.04

Dgemm Region 16.2 1.25

Stream Region 9.6 1.8

Validation acc. 80 % 95 %

Data Innovation Lab LRZ - Intel



41

One lag with Power output

Dataset / Model Mean Relative Error

Fixed Frequency / Linear Regression 0.174

Fixed Frequency / Random Forest 0.023

Varying Frequency / Linear Regression 0.181

Varying Frequency / SVM 0.074

Varying Frequency / Random Forest 0.024
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