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Abstract

Cell counting and estimating the cell covered area of in vitro cell culture are common
tasks in cell biology and hold significant importance in life science research. These tasks
are performed manually most often. Recent advancements in detecting the positions of
cell nuclei [8] have shown that the deep convolutional neural networks have the potential
to automate these tasks. Here, we address both cell counting and covered area detection
for lens-free images. We use an annotated dataset for the cell counting task. However,
we only have raw bright-field and lens-free images taken at the same instance for the
cell covered area estimation. Using the bright-field images we generate annotations by
applying standard image processing techniques and consider them as the ground truth
for lens-free images to train neural networks. The best model achieves an F1 score of
0.84. We approach the task of cell counting by localizing individual cells rather than
estimating merely the object count. We train a neural to learn a distance transform with
local maxima corresponding to cell centers. The final model achieves an F1 score of 0.97
and a relative counting error of 2.13%. We compare multiple neural network architectures
and show that the LinkNet outperforms the U-Net on both tasks.
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1 Introduction

1.1 Problem Definition and Goals of the Project

Observing the growth and behavior of cells is an important part of many experiments
in life sciences. Ranging from medical diagnosis to the development of new medication
for curing cancer, highly skilled professionals spend hours of their precious time looking
through a microscope to complete tedious tasks such as cell counting as illustrated in
Figure 1. The availability of reliable automated tools for monitoring the growth and
behavior of cells is essential for speeding up such repetitive tasks, increasing the effi-
ciency of workflows and giving researchers time to focus on more challenging problems.

Figure 1: Manual cell
counting with a hemocy-
tometer1

This work aims to develop such tools for a very specific kind
of imaging device: the lens-free microscope (LFM) (e.g. [4]
or [8]). Instead of having optical components, these micro-
scopes utilize a complementary metal-oxide-semiconductor
(CMOS) sensor to record interference patterns of cells when
illuminated with a light source. While cell monitoring tools
are readily available for more common types of microscopes,
there has been little work done in the field of LFM. The ad-
vantages of LFM are the relatively small price and size com-
pared to optical devices. This also allows monitoring cells in
their preferred environment.
The downside, however, is the inferior quality of the images.
Despite this, the ability to produce correct results is crucial for the acceptance of LFM
and thus is the main goal of our work. More specifically, we want to implement robust
LFM image-based algorithms for two common tasks: cell counting and estimating the cell
covered area.

Cell counting Counting cells is an essential step in many experiments in microbiology
and medicine. For example, a researcher needs to know the concentration of cells in a
predefined volume of liquid in order to determine the amount of a chemical agent she has
to apply to the cells for an experiment. Most commonly, cells are counted by using a
Neubauer counting chamber (also called hemocytometer) - essentially a glass plate with
engraved perpendicular lines that form a grid. Usually, a researcher uses the grid to count
the cells through a microscope as illustrated in Figure 1.
We strive to provide automated cell counting for lens-free counting chambers. Figure
3 highlights the general scope of the task. Our algorithm has to be able to learn the
shape of cells in order to reliably detect cells even in the presence of noise in the form of
contamination with e.g. tissue fibers and interference patterns. Another challenge is the
separation of distinct cells in crowded portions of images.

Cell-covered area Estimating cell covered area is important to monitor cell growth,
for instance it acts as an observable for the effects of different drug dosages. The cell

1Source: https://www.biocompare.com/Editorial%2DArticles/189708%2DAutomated%2DCell%

2DCounting%2DSelecting%2Dthe%2DAppropriate%2DSystem

https://www.biocompare.com/Editorial%2DArticles/189708%2DAutomated%2DCell%2DCounting%2DSelecting%2Dthe%2DAppropriate%2DSystem
https://www.biocompare.com/Editorial%2DArticles/189708%2DAutomated%2DCell%2DCounting%2DSelecting%2Dthe%2DAppropriate%2DSystem
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types considered for this task come in different shapes (pointed, elongated and so on) and
sizes. They are also known to be mobile in nature. So, detecting and segmenting indi-
vidual cells will be more difficult compared to segmenting clusters of cells. In addition,
it is essential to have accurate information about the cell growth behaviour in vitro cell
culture for harvesting and to avoid over growth. Hence evaluating the cell covered region
is significant and beneficial. The goal of the project is to determine the actual cell covered
region in lens-free microscopic images.

This report is structured as follows: After this introduction to the project and its goals, we
briefly review the literature related to our work. We then go on to introduce and describe
the data sets used to train and evaluate our algorithms. After that, we describe both the
methods used to solve the tasks but also the metrics to evaluate their performance. Then
we show the results of our experiments and compare various approaches. Concluding this
report, we interpret the results and put them into context.

1.2 Related Work

Automatic cell detection in traditional light microscopy has received considerable research
attention, focusing on cell segmentation (Ronneberger, Fischer, and Brox [9], Buggenthin
et al. [2]) or cell detection and counting (Xie, Noble, and Zisserman [11], Khan, Gould, and
Salzmann [7], Kainz et al. [6]). Ronneberger, Fischer, and Brox [9] proposed the U-Net as
the convolutional neural network for bio-medical image segmentation and won the ISBI
cell tracking challenge in 2015. The U-Net is still the neural network architecture most
bio-medical researchers choose for image segmentation. For cell counting, or in general
object counting, different approaches exist. Counting by detection localizes individual
objects in an image which makes counting trivial afterward. Most methods apply non-
maximum suppression to extract local peaks corresponding to individual cells. However,
this procedure can become difficult for overlapping cells if segmentation masks are used.
Therefore, Kainz et al. [6] and Xie, Noble, and Zisserman [11] propose to learn Euclidean
distances instead.. Other methods avoid solving the hard detection problem and only
estimate the objects count. Similar, Khan, Gould, and Salzmann [7] estimate an image
density whose integral over any image region gives the count of objects within that region.
However, only a few pieces of literature on cell detection for LFM images exist. Rempfler
et al. [8] show that fully convolutional neural networks can achieve high performance in
cell detection even for LFM.

2 Data

For the two sub-task of counting cells and estimating the cell-covered area, we work on two
separate image datasets. The following section gives a detailed view into the composition
of these sets and how we process them. Before that, we also give a brief description of
the cell types2 appearing in the data to give a meaning to the cryptic identifiers. Cells of
type 3T3 are isolated from house mice and are mainly used for transfection studies with
DNA viruses. Type A549 are lung carcinoma cells obtained from humans and are used

2Descriptions are taken from the Leibnitz Institute DSMZ database (https://www.dsmz.de/)

https://www.dsmz.de/
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for cancer research in mice. Line HuH7 are cells taken from human liver carcinoma3 and
are used for cancer research. Cell type HeLA are human cervix cancer cells and are also
used for cancer research.

2.1 Neubauer Counting Chamber

For the cell counting task, we have access to 138 annotated images for training, evaluation
and testing, of which 52 are cell line 3T3, 68 are A549 and 19 are HuH7. The images
were obtained from a lens-free Neubauer counting chamber, the cell centers were anno-
tated manually by qualified personnel. Due to the preparation of the cell suspension for
the counting chamber, one can not really observe differences between the cell lines in a
counting chamber. The mean cell counts for the different cell lines are 261.90 for 3T3,
367.36 for A549 and 244.00 for HuH7. All images are of size 1600×1200 and thus are too
large to be processed in one run by standard network architectures applied in computer
vision such as Resnet [5]. To overcome the issue of having a relatively small number of
large images available for training, we employ two separate preprocessing routines during
training and test time: For training, we sample random patches of size 224 × 224 from
the large images. This allows us to leverage the available images into a massive number
of distinct (albeit possibly highly correlated) training samples. The details regarding the
random patch-sampling can be found later in this section.
During test-time, we switch to a scheme that cuts the image into 48 neighboring tiles of
size 224 × 224 that are then put into a single batch for the cell detector’s forward pass.
After that, the image is reconstructed into its original spatial shape. This allows to utilize
the GPU’s parallel computing capabilities even on single images, resulting in very fast
cell counting.
We split the data randomly into a training set of size 97 to train the cell detection neural
networks, an evaluation set of 14 images for detecting over-fitting during training and
to determine the optimal threshold for local maximum detection as described later. The
remaining images are used as a test set.

2.2 Cell Covered Area

Bright-field and lens-free microscopic images are available for this task. These images are
sequence of time lapse captures, wherein images are taken at a given time in parallel using
both the microscopes. These images belong to 4 cell types namely 3T3, A549, HeLa and
HuH7 among which the images from the first three cell types are time lapse. There are
totally 2 sequences each of HeLa and 3T3 cell types and 1 sequence of A549 cell type in
the dataset. The number of images available are 295 of which 136 of HeLa, 112 of 3T3, 31
of A549 and 16 of HuH7. The images are approximately 2000× 2500, so random patches
of 224× 224 are extracted from each image which amounts to ∼23000 total patches.
Typically, the size of the cells in lens-free images are larger than those in the bright-
field microscopic images and differ in shapes as shown in Figure 2. Thus, the correlation
between the two microscopic types is not uniform as the shape and size regime of the
cells in the bright-field microscopy differ among different cell types whereas the images
from lens-free are elliptical in shape and larger in size compared to the actual cells in

3see http://huh7.com/

http://huh7.com/
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all the cases. As a result, segmenting lens-free images using standard image processing
techniques for detecting cell covered area will be erroneous. It is therefore necessary to
consider the area covered by cells in bright-field images to build a model that finds the
correlation between the bright-field and lens-free images for all the cell types. To find the
generalized correspondence between the two microscopes, we first generate annotations
from the bright-field images using image processing techniques. Then, use these anno-
tations as the ground truth to build a model with the input being lens-free microscopic
images. Important observation is that, there are some discrepancies in the cells presence
and location in the images due to continuous movement of the cells, calibration and hu-
man errors. Additionally, short intervals in capturing the images on the two microscopes
add to this problem.

A549 bright-field and lens-free image HuH7 bright-field and lens-free image

3T3 bright-field and lens-free image HeLa bright-field and lens-free image

Figure 2: All cell types in the dataset with bright-field and lens-free microscopic images
to explain the difference in the size and shape of the cells.

2.3 Data Preprocessing and Augmentation

Image preprocessing for cell counting We convert the raw images to grayscale and
perform a background correction and Gaussian blurring. Since the lighting under the
lens-less microscopy is red, the red channel is pretty overexposed, the blue channel is
hardly signaled, and the green channel is the most contrasted. Therefore the grayscale
conversion reduces the number of channels while keeping the relevant information, i.e.
the lightness and contrast of pixels. Before feeding the data to the neural network, we
normalize all images to zero mean and unit variance, so that the background has values
near zero.

Image preprocessing for cell-covered area The cell images from both the micro-
scopes are grayscale and noisy. The lens-free images that are fed into the neural network
are denoised using adaptive histogram equalization technique. This gets rid of the obvious
interference patterns around the cell region and enables a smooth gradient in the regions
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where there is absence of cells. The bright field images are denoised using fast non-local
denoising technique. A shift is observed between the bright-field and lens-free images for
some of the cell types. To fix this issue, homo-graphic transformations are applied to
realign the corresponding images.

Data augmentation We apply random cropping, flipping, and rotation to augment
our dataset. Because the detection of cells is invariant to shifts and other linear trans-
formations, we can easily enhance our limited amount of annotated data available. But
unlike Ronneberger, Fischer, and Brox [9], we do not use any elastic deformations of the
training samples, to keep the circular shape of cells under the lens-less microscope. During
training for both lensfree cell counting and cell covered area detection, we extract random
crops of size 224 x 224 from the large images and flip or rotate by a random multiple
of 90◦ to randomize the position of cells. For the evaluation or prediction process, the
input pipeline applies zero padding to the input images such that the width and height
are multiples of 224 and splits the image in non-overlapping patches of shape 224 x 224.

3 Methods

3.1 Lens-free Cell Counting

To locate and count individual cells under the lens-free microscope from the Neubauer
Counting-Chamber, we use a two-stage approach. First, we train a fully convolutional neu-
ral network to produce a probability map given an image. We then apply non-maximum
suppression to extract all local maxima, which should correspond to the cell centers. To
evaluate the model performance, we do not use the counting error as a standalone metric,
but also precision and recall of cell center predictions. For the training of the probability
map, we consider two different approaches. The first one treats the task as a binary
segmentation problem, while the second one uses a proximity map based on a Euclidean
distance transform of the cell centers.

3.1.1 Ground Truth Generation

Let A ∈ Rm×n be a microscopy image containing cells and C = {ci}i∈I the set of annotated
cell coordinates. Following [10], let DC be the corresponding Euclidean distance transform
with DC(x) being the distance from location x ∈ R2 to the nearest cell center in C. In
the binary segmentation approach, a model has to predict whether a pixel belongs to a
cell or the background. We generate the corresponding ground truth matrix by assigning
each location x that is within a given distance d to a cell center to class 1 and vice versa:

p(x) =

{
1 if DC(x) ≤ d,

0 otherwise.
(1)

We choose d = 8, which is smaller than the average radius of a cell under the lens-less
microscopy, to reduce the overlap of close cells. To exploit the additional context of the
distance to the nearest cell and produce unique local extrema corresponding to detected
cell centers, the Euclidean distance transform seems like a reasonable choice. However, this
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Input image Neural Network Score Map Local Maxima Cell locations

STAGE 1 STAGE 2

Figure 3: Illustration of the two-stage cell-location process. The work flow starts at
the left with the preprocessed lens-free microscopy image and ends at the right with the
predicted cell centers. The neural network estimates a Euclidean distance transform from
section 3.1.1.

would lead to high and varying scores for different regions in the background. Therefore,
[6] and [10] propose a transformed Euclidean distance map that is flat in the background
and has distinctive peaks at all cell centers:

d(x) =

{
exp(α(1− DC(x)

dmax
))− 1 if DC(x) ≤ dmax,

0 otherwise
, (2)

where α and dmax control the shape of the exponential function. As with the binary mask
we generate the ground truth matrix by applying d over each location in A. Kainz et al
choose α = 5, dmax = 16 for the ICPR and α = 3, dmax = 39 for the BM dataset, which
contain microscopy images. In the following, we will work with two specifications for our
dataset, namely α = 5, dmax = 16 and α = 4, dmax = 24.

3.1.2 Locating Cells

We approach the task of locating cells in two stages rather than training a single model
to find cell centers in an end-to-end fashion. Training the neural network cell detector
on whole maps rather than just lists of (x, y)-pairs makes it easier for the model to filter
for cell features as the expected shape of the cells is implicitly given by the ground truth
map. We illustrate the two-stage procedure in Figure 3.

Stage 1 In a first step, a fully convolutional neural network takes an input image and
produces either a probability map (with the binary segmentation objective) or a Euclidean
distance map (see 3.1.1 for details). In the segmentation case, a high value corresponds
to the cell detector’s confidence in finding a cell at this position. After training with the
Euclidean distance map, the value corresponds to the position’s predicted distance to the
nearest cell center - the higher the value, the closer the center.

Stage 2 The second stage takes the map produces by the cell detector as input. Local
maxima of this map indicate positions where the cell detector network has the highest
confidence in finding a cell center there within a local neighborhood. Therefore the local
maxima of a well-trained detector should correspond to the true cell centers. We single out
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local maxima by dilating the map with a maximum filter. To ensure that local maxima
are at least d pixel apart, the filter has to be of size (2d+ 1)× (2d+ 1). After dilation, all
positions but the local maxima will have changed in value. So by comparing the original
with the dilated map, we obtain the predicted cell center positions as a list of (x, y)-pairs.
When looking at the map in the center of Figure 3, one notices that the cells are quite far
apart. While the values in this space should be equal to zero, the cell detector will assign
some small positive value. By just naively looking for local maxima, one would obtain
lots of spurious cell center detections due to this noise. We solve this by considering only
maxima above some threshold, which is determined experimentally as will be discussed
in 4.1. For convenience, we use the implementation peak local max() in the Python
package scikit-image4.

3.1.3 Metrics used for Model Evaluation

When thinking of a way to evaluate cell counting, it is tempting to purely consider a
metric such as the mean squared (MSE) or absolute (MAE) counting error. While they
certainly are the most important metrics, in the end, MSE and MAE do not allow to check
whether the cell detector actually locates cells. Imagine there are n cells in an image.
A good cell detector locates all of them, while a random detector may just also yield n
cell centers - from a counting perspective, this means that both are equally suited for the
task. A strong cell detector allows robust cell counting. A correct cell count, on the other
hand, does not imply that the cells were actually detected. To build confidence and trust
in our method, it is thus imperative to first evaluate the performance in locating cells.
We outline an alternative approach for the model evaluation in the following paragraph.

Precision, recall and F1 Calculating precision and recall for the predicted maps in a
familiar pixel-wise fashion is not suitable for the cell counting problem for two reasons:
First of all, the annotations tend to miss the cell centers by a few pixels, resulting in
inaccurate ground truth masks. Precision and recall would then be biased - the scores
would be less than perfect even if the predicted mask is exactly covering the cell. Sec-
ondly, precision and recall are only well-defined for the (in our case, binary) classification
problem. Training the model with distance maps does not allow to view the task as such.
Thus, a task-specific redefinition of precision and recall is required.

max d

FN

TP

FP

FP

Figure 4: Definition of true positives (TP, green cross), false positives (FP, red crosses)
and false negatives (FN, red circle) in the neighborhood of an annotated cell (green circle)
for the cell counting task.

4https://scikit-image.org/
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Figure 4 visualizes our definition of what is considered a detected cell. A detection within d
pixels of an annotated cell center is marked as true positive (TP). In case the cell detector
produces additional center predictions for the same cell, those spurious detections are
considered false positives (FP). Similarly, a detection outside of any neighborhood of
an annotated cell is also considered a false positive. Annotated cells with no matching
prediction are counted as false negatives (FN). With these definitions, one can compute
precision, recall, and F1-score as usual.

3.2 Cell Covered Area

We approach this problem in two steps. First, generate the annotations from bright-field
microscopic images as the ground truth annotations are not available. Second, use state-
of-the-art models U-Net and LinkNet to segment the lens-free images using the generated
annotations from step 1 as the ground truth as described in Section 2.2.

3.2.1 Ground truth annotation generation

There are several tools available for segmenting bright-field microscopic images. The
tool from the paper [2] is used with a few parameters modified suitable for our problem.
Masks for the denoised bright-field images are obtained using the tool. The result is the
segmented masks for cells that aren’t split as our focus is to identify clusters of cells rather
than individual cells. Obtained masks are processed further as the contrast patterns in
the bright-field images were not captured. These patterns appear to be cells that are not
accounted in the first step of annotation generation. This can be observed in the Figure 5
from the first two images.

Denoised bright-field Mask from the tool First stage mask Final mask

Figure 5: Illustration of ground truth annotation generation from a bright-field image.
The image is segmented using a tool and cell clusters are obtained by series of processing
steps.

To obtain the first stage mask, the mask from the tool is dilated with (2,2) elliptical
kernel and external contours are identified and filled. To capture the contrast patterns,
we worked on filling the non cell region (that is holes) by taking advantage of the smooth
pixel value observed in the hole region in denoised bright-field image. Potential holes
are chosen from the peak histogram pixel value of the bright-field image corresponding
to the hole region in the first stage mask. In the chosen hole region, only the connected
components with area greater than 500 pixels are considered to be actual holes. Thus,
we reduce the hole region from the first stage mask by this process. Figure 6 depicts the
overlay of the final mask on the bright-field image.



3 METHODS 11

Figure 6: Overlay of final mask on the denoised bright-field image

3.2.2 Predictions from the Model output

The predictions from the fully convolutional neural network models are probabilistic maps
as shown in 7. As a step towards final evaluation of the model results, these predictions
need to be converted to binary masks. To achieve this, a Gaussian blur followed by
smoothing is first applied to the predictions from the models. A threshold of 0.5 is then
applied to the maximum pixel value found in the image. A pixel value higher than 0.5 of
this maximum is considered as a cell as shown in Figure 7.

Prediction from model Processed prediction

Figure 7: First picture is the probabilistic prediction map obtained from the model and
the second is obtained after applying post processing and threshold.

3.2.3 Metrics for Model Evaluation

It is tricky to decide on the metric for cell covered area detection as there are discrepancies
observed in the bright-field and lens-free images as mentioned in Section 2.2. There are
some instances where the cells appearing in bright-field are not seen in lens-free and vice
versa, and thus we cannot rely only on Precision or Recall scores. So, we consider F1 score
which takes into consideration both Precision and Recall and also Mean Squared Error
(MSE) that is computed on the area coverage in the ground truth annotations and that in
the predictions. Considering MSE alone for evaluation would be inaccurate as well, since
some cells might be incorrectly segmented at some parts of the image (False positives)
and this would be compensated by portions of the image where the model failed to detect
cells (False Negatives). Thus, F1 score in combination with Mean Squared Error that
conveys the variation in the overall area coverage is used as a measure for performance of
cell covered area detection task.
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4 Results

4.1 Lens-free Cell Counting

We evaluate the performance on the different ground truths we generated in section 3.1.1
using different loss functions. The Euclidean proximity map significantly improves the
performance compared to the binary segmentation mask as a ground truth choice. The
LinkNet achieves the best results while being the fastest method as well. The prediction
of the LinkNet and local maxima extraction takes 0.13 seconds on an NVIDIA Quadro
P5000 for a microscopy image with 1600x1200 pixels, which is 4x faster than using the U-
Net architecture. We use our definition of precision and recall from section 3.1.3, and the
mean percentage counting error, i.e. the average relative error, as metrics for comparison.
We choose the relative counting error over the absolute counting error to equally weight
sparse and crowded microscopy images and increase the interpretability of results.

4.1.1 Experimental Setup

We train three different neural network architectures using the standard cross entropy,
balanced cross entropy, and the dice loss (see Appendix A.1 for definitions): A fully con-
volutional network with ResNet-50 truncated at the 23rd layer as backend (see Appendix
A.2), the U-Net [9] with 28x28 pixels in the lowest resolution, and the LinkNet [3] with
14x14 pixels in the lowest resolution. We choose the percentage of pixels with value zero
as β for each ground truth type. For training, we use 96 images of our dataset and split
the remaining images resulting in 14 evaluation and 28 test images. We train all models
for 7000 steps (parameter updates) with a batch size of 32 using the Adam optimizer.
While we use a learning rate of 1e−4 for ResNet and LinkNet, we train the U-Net with a
learning rate of 1e−5, because higher learning rates result in unstable training for U-Net.
Nevertheless, each model converged before the 7000 steps. After the training is complete,
we apply non-maximum suppression with thresholds κ = 0.1, 0.11, ..., 0.9 to find the opti-
mal threshold choice. We use our definition of precision and recall from section 3.1.3 with
a maximum distance of 9 pixels for the evaluation of the models.

4.1.2 Evaluation

F1 score Binary segmentation α = 4, dmax = 24 α = 5, dmax = 16

CE BCE DL CE BCE DL CE BCE DL

ResNet 0.8914 0.8854 0.7960 0.9644 0.9647 0.9632 0.9637 0.9635 0.9670
U-Net 0.9402 0.9068 0.9601 0.9511 0.9592 0.9609 0.9229 0.9620 0.9644
LinkNet 0.8921 0.8901 0.8168 0.9687 0.9694 0.9695 0.9677 0.9690 0.9677

Table 1: F1 scores for ResNet, U-Net and LinkNet trained on binary segmentation and
Euclidean proximity maps with the three loss choices, cross entropy (ce), balanced cross
entropy (bce) and dice loss (dl) as defined in Appendix A.1. We calculate the optimal
threshold on the evaluation dataset and present the F1 score on the test images.
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In Table 1 we analyze the F1 scores of the different neural network architectures using
the different ground truths from Section 3.1.1. Further, we compare different loss choices:
cross entropy, balanced cross entropy and dice loss. Using the euclidean ground truth
maps shows a significant improvement over the binary segmentation mask. The U-Net
and ResNet achieve their best F1 scores (0.9644 and 0.9670) trained with dice loss on the
euclidean distance map with specifications α = 5, dmax = 16. For the LinkNet architecture
the euclidean distance map with α = 4, dmax = 24 worked best. While the LinkNet
outperforms the other models on almost all specifications, it is far more crucial to choose
an appropriate ground truth mask and loss function than the most complex model.

Figure 8: We compute the precision-recall curve by varying the threshold κ. For each
architecture we use the best ground truth and loss specification, i.e. dice loss with α =
5, dmax = 16 for ResNet and U-Net and α = 4, dmax = 24 for the LinkNet architecture.
The right plot is s zoomed-in version of the left one.

For further analysis of the best specifications for U-net, ResNet, and LinkNet, we compare
the precision-recall curves. In Figure 8, we compute precision and recall by varying the
threshold κ. Higher thresholds result in higher precision and lower recall and vice versa.
This allows to fine-tune for better precision or recall performance. The right plot is a
zoomed-in version of the left one and shows that usually, the LinkNet achieves higher
precision with the same recall than the other two models. Only if, very high recall scores
are required the ResNet outperforms the LinkNet. As mentioned in section 3.1.3, we
propose to use a combination of F1 score and counting error for the task of cell counting.
In Table 2, we compute the mean percentage counting error corresponding to Table 1.
Again, the LinkNet is the winner with a percentage counting error of 2.13%. The counting
error is usually lower than the proposed error by precision and recall because false positives
and false negatives can cancel out each other.
In Figure 9 we analyze the predicted score maps of the LinkNet trained with dice loss
on binary segmentation and Euclidean proximity maps with α = 4, dmax = 24 and
α = 5, dmax = 16. The produced probability maps for binary segmentation exhibit
multiple local maxima with large distances to the cell center. For the two overlapping
cells in the second row we see one local maximum in the middle of the cells and therefore
only one cell detection. The predicted proximity have a local unimodal structure and
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%-error Binary segmentation α = 4, dmax = 24 α = 5, dmax = 16

CE BCE DL CE BCE DL CE BCE DL

ResNet 9.92% 12.51% 44.28% 2.68% 2.92% 2.37% 2.44% 2.24% 2.34%
U-Net 2.75% 8.12% 2.54% 3.14% 3.10% 2.75% 9.37% 3.04% 2.86%
LinkNet 16.06% 17.76% 38.57% 2.12% 2.43% 2.13% 2.53% 2.35% 2.63%

Table 2: Mean percentage counting error for ResNet, U-Net and LinkNet trained on
binary segmentation and Euclidean proximity maps with the three loss choices, cross
entropy (ce), balanced cross entropy (bce) and dice loss (dl) as defined in Appendix A.1.

Figure 9: Comparison of estimated score maps for binary segmentation and Euclidean
proximity maps. (a) Small patches of raw images from the lens-free microscopy. Green
dots indicate annotated cell center. (b) Probability maps predicted by model trained on
binary segmentation with local maxima (black markers). (c) The ground truth proximity
map with specifications α = 4, dmax = 24 and (d) being the predicted score map. (e)
The ground truth proximity map for α = 5, dmax = 16 with predictions (f).

therefore unique local maxima that match the cell centers much better, for the second
row even better than the annotated coordinates.

4.2 Cell Covered Area

In this section, we evaluate the annotations generated using the proposed method, why
we use fully convolutional neural networks and not deterministic image processing based
segmentation approaches and the performance of neural networks for cell covered area
detection.
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4.2.1 Validation of generated annotations

To validate how good the generated annotations are, we chose one image from HuH7,
HeLa and 3T3 each, in a way that the cells are neither sparsely covered nor densely
covered, so that it represents the dataset well. We then manually segmented the chosen
images and compared it with the generated annotations. The example of HuH7 cell image
segmentation is illustrated in Figure 10.

Figure 10: Manually segmented and Generated Annotations of HuH7 bright-field image.

The accuracy of generated annotations in comparison with manual segmentation is 0.934,
recall and precision are 0.786 and 0.856 respectively. The area covered estimations are
0.188 and 0.173 for manual and generated annotations respectively. The low recall score is
due to the generous segmentation of the cells manually as humans are not good at visually
identifying the boundaries precisely to the pixel scale. Validation on other chosen images
are observed to be inline with the illustrated one.

4.2.2 Evaluation of non neural net based approach

Before diving into neural network based models, we evaluate the deterministic image
processing based segmentation approach. We formalized a simple segmentation method
tuned well on HeLa and used the same method on other cell types as well. It is illustrated
in the Figure 11 which shows area coverage plots for HeLa and A549. We made two
observations - first, the segmentation approach couldn’t be tuned well enough to iden-
tify the original cell clusters as the lens-free images have larger cell size compared to the
bright-field images and there is no fixed correspondence between them. So, this method
overestimates the cell coverage always as seen in the plots. It matches the original anno-
tation in high cell density regime as the entire image is covered with cells. Second, the
simple segmentation performs very badly on other cell types as the method is fine tuned
for HeLa. Significant drift is seen between the original annotation and the masks from
simple segmentation in the right plot. It can also be observed that the F1 scores are not
consistent across different cell types. For example, F1 score for HeLa is around 0.81 and
that of A549 is 0.62. Therefore, it is a challenge to generalize the simple segmentation
approach for obtaining best results irrespective of the cell types. In general, most of the
segmentation done using image processing techniques requires specific parameter setup
for different types of images. This led us to consider neural network based models to learn
the correspondence between lens-free and bright-field images.
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Figure 11: Area coverage graphs for annotations and simple segmentation for HeLa and
A549 along with their F1 scores.

4.2.3 Experimental Setup

Fully convolutional network architectures U-Net [9] and LinkNet [3] are trained with three
losses namely, binary cross-entropy, dice loss and a combination of binary cross-entropy
and dice losses (Appendix A.1). All the six models are trained for 10000 steps with
a batch size of 32 using the Adam optimizer. The dataset is randomly split to train,
evaluation and test set each with 205, 45 and 45 images respectively. Patches of 224×224
are extracted from each image and is used for training the model. Same train, evaluation
and test set is used for evaluating all the models. The learning rates used for U-Net is
that of 1e-5 and for LinkNet with a higher rate of 1e-3. We choose a higher learning
rate for LinkNet as the loss did not converge with lower rates even with 50 epochs. With
the above setup, all the models converged. After training each model, the predictions
on the test set which are probabilistic maps are obtained. The obtained predictions are
processed as mentioned in Section 3.2.2 to get binary prediction masks. We use F1 score
with MSE based on area coverage to evaluate the models and decide on the best one.

4.2.4 Evaluation

Models BCE BCE + DICE DICE

F1 MSE F1 MSE F1 MSE

LinkNet 0.8247 0.001434 0.8363 0.001566 0.8270 0.001594
U-Net 0.7042 0.051104 0.6988 0.054393 0.8129 0.001222

Table 3: F1 Score and MSE computed on testset for two models: LinkNet and U-Net for
each of the three losses namely Binary Cross Entropy (bce), combination of Binary Cross
Entropy and Dice loss (bce+dl) and Dice Loss (dl) as defined in Appendix A.1.

In Table 3, we measure the F1 scores and MSE for different model-loss combinations on
the testset. We observe that the LinkNet with bce+dl loss and U-Net with dice loss
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perform the best with F1 scores 0.8363 and 0.8129, and MSE 0.001566 and 0.001222
respectively. Between the best models in two different architectures, we choose LinkNet
over U-Net based on the F1 score although the MSE for U-Net is lesser than LinkNet as
F1 score shows the accuracy of the models as argued in the Section 3.2.3. We observe
that U-Net with bce and bce+dl losses perform poorly with F1 scores close to 0.70 as
opposed to 0.84 in the LinkNet best model. This is explained by the fact that U-Net
predictions are quite conservative and have very low confidence in terms of the prediction
probabilities. Figure 12 shows the F1 scores obtained on LinkNet and U-Net.

Figure 12: F1 score plot on testset for LinkNet and U-Net models.

Since we have time lapse microscopic images for each cell type except HuH7, we compare
the area coverage estimations between the ground truth annotations and the predictions
from the best model established, i.e. LinkNet with bce+dl loss.

Figure 13: Representative plots of area coverage on time lapse sequences

Figure 13 shows representative plots as both the time lapse sequences from HeLa, one of
the two sequences from 3T3 and the sequence from A549 pretty much resemble the plot
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with title ’HeLa pos0’ and the only sequence where we observed significant variance is
with one other sequence of 3T3 as shown in the plot with title ’3T3 pos0’. The significant
shift is due to the inclusion of extra portions as cells while generating annotations as we
observe lot of small spots which are not seen in lens-free images. Thus, the area predicted
is lesser than the ground truth for this particular sequence.

Training with raw lens-free images As mentioned earlier, the above experiments are
performed by training the network with denoised lens-free images. To measure the value
of denoising the input as it takes considerable amount of time, we trained the best model
with raw lens-free images as input. The F1 score and area coverage plots on testset using
LinkNet with bce+dl loss, with denoised and raw lens-free images as input is as shown
in Figure 14. The F1 scores for the models trained with denoised and raw images are
0.8363 and 0.8232 respectively and the MSE for area coverage are 0.001566 and 0.001708.
Although, these scores are close, it can be observed that a model trained with denoised
images with reduced interference patterns perform slightly better than the model that is
trained with raw images. It should also be noted that denoising an image is an additional
step in the data processing pipeline and in turn be an overhead.

Figure 14: F1 scores and area coverage on testset using LinkNet models trained with
denoised and raw lensfree images

5 Conclusion

We have described in detail the several approaches taken to solve the two tasks at hand in
the previous sections namely Cell Counting and Cell-covered area detection. Cell count-
ing from lens-free images involved localizing individual cells. For accomplishing this, we
proposed a distance transform for the ground truth and two stage process to locate the
cells where we train the model in the first stage and use the local maxima to detect the cell
centers in the second stage. We experimented with the mentioned deep neural network
architectures and established that the robust model is LinkNet with dice loss. This model
achieved an F1 score of 0.97 and a relative counting error of 2.13% which is as good as
manual counting.
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Detecting cell-covered area from lens-free images comprised of generating annotations
from bright-field images and determining a suitable model that learns the correspondence
between bright-field and lens-free images with high accuracy. We establish from the
experiments that LinkNet with bce+dice loss performs the best with an F1 score of
0.836. We suggest some improvements in these methods that could lead to better results.
Firstly, refine the annotations to minimize irregularities in the segmentation. This includes
accurate distinction between a cell and background with noise. Secondly, reduce the
discrepancies between the reference bright-field and lens-free images that occur in the
time lapse sequences in the dataset as discussed in Section 2.2. Lastly, further research
can be done on Long Short Term Memory (LSTM) with the U-Net [1] or LinkNet as the
dataset contains temporal microscopic images.
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A Appendix

A.1 Losses

Let P ∈ Rm×n be the ground truth matrix and Q ∈ Rm×n the predicted score map, we
then define cross entropy of P and Q as:

CE(P,Q) = −
m∑
i

n∑
j

(pij log qij + (1− pij) log (1− qij)).

To handle class imbalance we define the balanced cross entropy via:

BCE(P,Q) = −
m∑
i

n∑
j

(βpij log qij + (1− β)(1− pij) log (1− qij)),

where β ∈ ]0, 1[ defines the balance between foreground and background. We further
define the dice loss as:

DL(P,Q) = − 2〈P,Q〉
‖P‖2F + ‖Q‖2F

= −
∑m

i

∑n
j pijqij∑m

i

∑n
j p

2
ij +

∑m
i

∑n
j q

2
ij

,

where ‖·‖F defines the Frobenius norm.
We define the combination of BCE and DICE as:

BCE DICE(P,Q) = BCE(P,Q) +DL(P,Q).

A.2 Network Architectures

ResNet-based Fully-convolutional Architecture

The architecture uses a ResNet-50 as feature extractor and is closely related to the network
proposed in [8] (see Figure 15). First, the image is convolved with 64 filters of dimension
7×7 and a stride of 2. Followed by a strided max-pooling operation and 7 residual blocks
to produce an output of 28×28×512 as the high level features of an image. To up-sample
back to the spatial dimension of the original image patch, a transposed convolution of
filter size 8 × 8 and stride 8 is applied. ReLU is used as activation function after all
convolutions except for the transposed convolution, where a sigmoid activation is applied.

224 × 224

112 × 112
56 × 56

28 × 28

224 × 224

Patch
224 × 224 × 3

Map
224 × 224 × 1

Conv
(7 × 7)

MaxPool
(3 × 3)

3× ResNet

4× ResNet

ConvT
(8 × 8)

Figure 15: Fully-convolutional cell detector architecture with ResNet backbone.
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