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Final report of project:

Project: Deep xVA - speeding-up derivative

pricing

Authors Tim Emmert, Tobias Lausser, Xiaolan Liu, Leonie Wagner

Mentor(s) Yannick Limmer (M.Sc.)

Project Lead Dr. Ricardo Acevedo Cabra (MDSI)

Supervisor Prof. Dr. Massimo Fornasier (MDSI)

Aug 2022



1

Abstract

This project focuses on implementing and evaluating novel machine learning approaches
to speed up the computation of (incremental) xVAs, in particular focusing on CVA, DVA
and FVA.

Valuation Adjustments (xVAs) are adjustments made to the value of a derivative port-
folio obtained from risk-neutral pricing, that account for costs and benefits that are not
captured by pricing under the risk neutral measure. There are many xVAs considering
di↵erent e↵ects that might influence the price of the portfolio, with the most important
ones being Credit Valuation Adjustment (accounting for counterparty credit risk), Debit
Valuation Adjustment (accounting for the own credit risk of the entity holding the port-
folio) and Funding Valuation Adjustment (accounting for the funding costs arising in
context with the portfolio).

Doing those adjustments is essential to every player in the over-the-counter derivatives
market to be able to properly reflect the value and risks of the derivatives held. This is
necessary for accounting purposes and portfolio and risk management under regulatory
requirements.

At the moment, compute-expensive nested Monte Carlo simulations are used to calculate
xVAs. Due to those high requirements on the computation time, they can often not
be computed intraday, and banks have to fall back to inaccurate approximate solutions.
This project proposes a machine learning-based approach to speed up the computation of
xVAs, namely Credit Valuation Adjustment, Debit Valuation Adjustment and Funding
Valuation Adjustment, for European basket and Bermudan options.

It was found, that a technique called di↵erential machine learning can be used to more
accurately compute xVAs, outperforming standard neural network and kNN-based ap-
proaches, i.e., provided the same amount of training instances, di↵erential machine learn-
ing outperforms the other data-driven approaches by up to 60%. The use of di↵erential
machine learning also enables accurate xVA computations in a fraction of the time needed
using Monte Carlo simulations. More precisely, in the scenarios evaluated here, di↵eren-
tial machine learning performs inference 57 times faster than a Monte Carlo simulation
of comparable performance.
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1 Introduction

“In my view, derivatives are financial weapons of mass destruction, carrying dangers that,
while now latent, are potentially lethal”, is a quote by Warren Bu↵ett, CEO of Berkshire
Hathaway and highly recognized investor. Unfortunately, he has been proven right as the
financial markets crashed in 2008/09, resulting in the most severe financial crises since
the “Great Depression” in 1929. In posterior, it has been determined that derivatives
played a substantial role in causing this crisis, as it is for instance elaborated in [3].
As a reaction, authorities implemented numerous new regulations on the derivatives mar-
ket, which forced banks to adjust their pricing and risk modelling accordingly to prevent
another crash. These valuation adjustments (xVA) inter alia include credit valuation ad-
justments (CVA), debit valuation adjustment (DVA), and funding valuation adjustments
(FVA); and constitute a major challenge for the a�liated institutions. This is particularly
due to the fact that it requires tedious computations of high computational complexity
involving every single derivative position of the institution, what therefore amounts to
tremendously intense computational e↵ort.
The objective of this project is to reduce the computational complexity of a xVA compu-
tation by incorporating advancements in the field of deep learning. Currently, accurate
xVA computations rely on compute-heavy Monte Carlo simulations, which cannot be per-
formed on a daily basis and, thus, require corporations to rely solely on extremely rough
estimations. Since this is an obvious source of additional risk, a speed-up would result in
a significant advantage for market participants when it comes to valuation of portfolios
and risk management. Hopefully, improvements in this matter will cause even critics –
such as Warren Bu↵ett – to re-evaluate their opinion on the derivative market.
In this project, the use of a technique called di↵erential machine learning enables accurate
xVA computations in a fraction of the time needed using Monte Carlo simulations. More
precisely, in the scenarios evaluated here, di↵erential machine learning performs inference
57 times faster than a Monte Carlo simulation of comparable accuracy computing xVAs.
The remainder of this report is structured as follows. First, we will provide basic defini-
tions and motivate xVAs and computational methodologies; and we will discuss possible
bottlenecks of the prevailing approaches. This is accompanied by an introduction to the
relevant financial products, and we derive properties of their expected exposures. Sec-
ond, we outline the machine learning tools involved, as for instance neural networks and
di↵erential machine learning. Moreover, we explain the concept of Bayesian optimization
that is used for hyperparameter optimization. To this end, we discuss the implementa-
tion in detail, with a focus on the data generation methods, the model building process
and training of the model. Eventually, we provide numeric results for our approach and
benchmark it with conventional techniques.

2 Financial background

2.1 Valuation Adjustments

Derivatives can be traded between two market participants in two di↵erent ways: Either
via an intermediary, a so-called exchange, that provides credit security, liquidity and
e�cient price discovery, or directly between each other. The latter trades are called
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over-the-counter (OTC), they are typically less standardized and in contrast to exchange
traded derivatives the parties in a trade are not necessarily required to post so-called
collateral for counterparty credit risk mitigation. Counterparty credit risk of a trade is
the risk that the counterparty can’t fulfil all payment obligations that come along with
the financial contract. Exchanges deal with that risk by usually requiring both parties
of a derivative trade to post securities in so-called margin accounts with the exchange,
which can be used to settle the outstanding obligations in case of a default.
Such mechanisms are not standard in OTC trades, even though the market got quite
heavily regulated as a reaction to the financial crisis 2008/09. The counterparty credit
risk is therefore taken directly by each party with respect to the other party in the
trade and since many players don’t have a strong credit quality, nor are they able to
post collateral to reduce the counterparty risk, this risk is an unavoidable consequence of
OTC markets. Notably, few players dominate the OTC market: generally these are large
and highly interconnected, and are generally viewed as being ”too big to fail”. [6] To
understand why this is a big risk for the overall financial system one simply has to look
at the sheer size of the OTC market: The outstanding nominals in the market in 2013
were $693 trillion while exchange traded derivatives were at $70 trillion. [13]

OTC markets were considered to be catalysts within the financial crisis in 2008/09 which
is why authorities were focussed on regulating those markets as a reaction to that. Even
though financial institutions were already aware of counterparty credit risk before the
crisis and few investment banks already had a very basic form of CVA implemented from
2007/08 on [9] those new regulations and experiences forced the market participants to
react to them and can be understood as the starting point of xVA considerations.
In particular, two major changes are relevant for understanding xVA [8]:
Firstly, during the crisis, concerns about banks’ creditworthiness led to an almost complete
breakdown of the interbank funding market. After the crisis interbank lending rates were
more volatile and traded at increased spreads reflecting the corrected market view on
bank credit risk, increasing the funding costs for banks activities.
Secondly, the crisis showed that many financial institutions, even the ones ”too big to fail”,
used to expose themselves to excessive risks they weren’t capitalized for. To prevent this,
the new regularization introduced a central clearing mandate (similar to the procedures
on exchanges), additional capital requirements and bilateral posting of collateral aiming
to counterparty risk mitigation and control.

The impact this had was significant, forced market participants to incorporate those
changes in pricing [6] and required their trading desks to manage their credit and funding
exposures more actively [9]. In particular, xVAs attempt to reflect the associated costs
that have become more significant through changes adequately [8], e.g. CVA directly
aims at increased counterparty risk capital requirements [6]. Those adjustments are then
added or distracted from the value of the portfolio obtained from risk-neutral pricing.
There exist many xVA considerations, most of them are heavily linked to each other, but
not all of them are common to the same extent in the industry. In Figure 1 we illustrate
some of them but in the project and the following we focus on the three most common
xVAs, namely CVA, DVA and FVA.
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Figure 1: Illustration of the most common xVAs. A negative sign indicates that the
adjustment is considered a cost and decreases the value of a portfolio, a positive sign
indicates a benefit. [6]

2.1.1 Credit Valuation Adjustment

Credit Valuation Adjustment (CVA) is the most widely known Valuation Adjustment, it
is a key topic for market participants because of the volatility of credit spreads and the
associated accounting and capital requirements by Basel III. It is therefore material for
every significant OTC derivative user and shouldn’t be ignored [6].
Economically, it represents a compensation for the counterparty credit risk taken by a
party in the trade and can therefore be interpreted as the market price of counterparty
risk. It is by definition the di↵erence between the risk-free portfolio value (assuming
all future payments are made) and the true portfolio value that takes into account the
possibility of a counterparty’s default, i.e. strictly speaking it is a cost diminishing the
value of a portfolio in comparison to the risk-free portfolio value.

Since it quantifies credit risk it inherits that risk’s challenges: It varies substantially with
the counterparty and the transaction and in contrast to the risk faced in loans the amount
at risk is usually at uncertainty and both parties carry the risk. This bilateral nature is
it that makes quantification of counterparty risk particularly di�cult. [6]
Additionally, when considering the amount at risk, one has to take into account the
di↵erent methods of credit risk mitigation. These are usually clarified in a so-called Credit
Support Annex (CSA) agreement between the two parties, and in particular consist of
netting and collateralization. For the sake of simplicity and because this can be very
individual, it is not taken into account in the further considerations.

A quite simplifying (assuming independence of the probability of default and the exposure
and looking at the CVA isolated from other xVAs) but well known formula for CVA is
given by [13]
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CV A = (1�Rcpty)
NX

k=1

EPE(tk)PDcpty(tk�1, tk) (1)

where EPE(t) is the so-called expected positive exposure of the portfolio at time point
t, PDcpty(t, t + s) is the marginal of the default probability of the counterparty between
times t and t+ s and Rcpty the so-called recovery rate of the counterparty. All terms will
be explained in more detail below.
In this example one can already see the general structure of computation of most of the
xVA’s: There is one term that captures the magnitude of the mark-to-market of the
considered product over time, in this case the expected positive exposure, and some other
terms assigning some cost to the mark-to-market value of the portfolio, here recovery rate
and the probability of default.
The expected exposure simulation is the computationally expensive part of the valuation
and since we want to focus on its computation later we will describe it detailed in section
2.2.

The cost components in the CVA computation directly depend on the counterpart the
trade is done with. Rcpty is the rate of recovery and describes which percentage of the
owed amount is expected to be covered in case of default of the counterparty. The term
(1�R) can therefore be interpreted as the loss given default, i.e. the percentage amount
of the owed amount to be lost if the counterparty defaults. These amounts obviously
depend on seniority of the claim, which is usually pari passu with senior unsecured debt
such as credit default swap (CDS) contracts. [6] In practice, it is often taken as constant
with R = 0.4, which is also adapted by the implementations in this project. [13]

The evaluation of the probability of default term requires an estimation of the marginal
default probability within the time interval [ti�1, ti]. The benefit of the default entering
indirectly via the probability of default only is that within the sampling framework it
is not necessary to simulate (rare) default events, which ultimately saves computational
time. [6]
To compute the probability of default, one usually uses risk neutral default probabilities
(which are derived from market data like CDS) instead of real-world default probabilities
(derived from historical default data); this is underlined also by accounting standards
and Basel III. [6] Several market observables could be used to define the probability of
default, calculate from and calibrate to, but the CDS market is the most obvious clean and
directly available quote. Nevertheless, it is often problematic because of illiquid or non-
existent CDS markets. In that case, a hybrid solution of blending historic and risk-neutral
probabilities is used.

Assuming the CDS spread is observable in the market, the computation in the project is
as follows: [7]
Making the market standard model assumption that the credit event is the first event of a
Poisson counting process ⌧ which occurs at some time t with probability P(⌧ < t+dt|⌧ �
t) = �(t)dt with � a deterministic function called the hazard rate, then the probability to
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Figure 2: The implemented generic default probability over time. [4]

default in the interval [t, T ] can be computed as

PD(t, T ) = 1� exp(�
Z T

t

�(s)ds) (2)

This means we only need to determine �(s). That can be done by assuming it to be
constant between time points where the CDS is quoted, observing the credit spread of the
CDS of the regarding entity for that time interval and then sequentially for di↵erent time
points solving for the hazard rate that equates both legs of the CDS. This methodology
is called bootstrapping.
Having found �(t) we can then compute

PD(ti�1, ti) = exp(�
Z T

ti�1

�(s)ds)� exp(�
Z T

ti

�(s)ds) (3)

Since we are not focusing on optimizing the bootstrapping method in the course of our
project and since no market data was given we simply assume a constant hazard rate of
�(t) ⌘ 0.02. Given some counterparty market data, we could implement the probability
of default either as described above if a liquid CDS for the entity would be quoted for
enough maturity points such that the term structure of the credit spreads is observable.
Else we could use some di↵erent source of credit spread information such as other direct
observables or single name proxies.

2.1.2 Debit Valuation Adjustment

”[DVA is] a counter-intuitive but powerful accounting e↵ect that means banks book a
paper profit when their own credit quality declines”. This is how the efinancialnews
criticized usage of the Debit Valuation Adjustment, on October 26th 2011, in the article
”Papering over the great Wall St Massacre”. This gives an idea of how controversial the
DVA is in the industry. [6]

To understand this better, we first have a look at how the DVA is actually defined. It
is basically CVA from the counterparty’s perspective: So far, when considering CVA, we
made the assumption that the party doing the computation cannot default at all. This is
now taken into account by computing the DVA. The idea is that if the party doing the
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calculations defaults, it may make a ”gain” due to not entirely paid obligations in case it
owes money to its counterparty when taking the mark-to-market at the time of default.
So it is strictly speaking a benefit increasing the value of a portfolio by taking into account
the possibility of an own default.

There are a lot of pro’s and contra’s to such considerations when valuating an own portfo-
lio. The situation is clear from an accounting point of view as they actually require taking
into account the own default when valuating the own liabilities and therefore also require
the DVA to be taken into account. This is why it is necessary for market participants to
have an e�cient machinery to compute the DVA.

It is in a simplifying setting defined as

DV A = (1�Rown)
NX

k=1

ENE(tk)PDown(tk�1, tk) (4)

where the ENE is the so-called expected negative exposure, which can be understood
as the expected positive exposure from the counterparty’s point of view. Just as the
expected exposure, its simulation is explained in detail down below. The other notation
and computation is just as in the CVA case above, with the subtle di↵erence that here the
recovery rate and probability of default of the party doing the computations is considered.

Looking at the CVA and DVA in two separate computations is again a usual but oversim-
plifying thing to do: When computing the CVA we are incorrectly not conditioning on
the own survival until the counterparty’s default, there is no consideration of default cor-
relation and netting and close out assumptions are still ignored while being more crucial
since the party doing the computations is not risk-free anymore (it could default itself on
the default of the counterparty).

2.1.3 Funding Valuation Adjustment

Funding valuation adjustment (FVA) is quantifying the funding costs or benefits of uncol-
lateralised derivatives compared to the risk-free rate. It represents the costs and benefits
of hedging an uncollateralised trade with a collateralised one in the interbank market.
Before the financial crisis, the funding costs were close to the risk-free rate. Thus, the
funding cost were not considered by financial institutions. [6] However, after the financial
crisis the funding becomes increasingly costly, and the interest paid on collateral no longer
o↵sets the increased cost. The evaluation and controlling of funding costs has therefore
become a critical part of the risk management strategy of financial institutions.

FVA can be expressed as the di↵erence between the funding cost and funding benefit.
The formula for FVA can be divided into two parts: the funding cost adjustment (FCA),
arising when the derivatives business requires funding, and the funding benefit adjustment
(FBA), arising when the derivatives business generates funding[14]. The formula is as
follows:

FV A =
NX

i=1

EPE (tk)FSB (tk)�tk�1,tk �
NX

i=1

ENE (tk)FSL (tk)�tk�1,tk (5)
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Figure 3: Illustration of the computation of the expected positive exposure at a certain
time point t given the distribution of the value of the portfolio at that time point. Note
that only the gray area is considered. [6]

where �tk�1,tk is the time step for accruing. EPE and ENE are the expected positive
exposures and expected negative exposure respectively. FSB(t) is the funding spread of
borrowing money at time point t, FSL(t) is funding spread when lending money at time
point t. All terms will be explained in more detail below.

Determination of funding spread is quite subjective as in the credit curve case.[6] In
practice, it is prevalent to construct the funding spread over a reference curve, which is
funding forward - reference curve. For simplicity, we assumed in the course of the project
that the spreads are constant over time.

2.2 Expected exposures & their simulation via nested Monte
Carlo simulations

As already mentioned, the project focused on the simulation of exposures in the speed-up
process, since they are considered the bottleneck of the xVA computations we focused on.
As we will see, computing the expected exposure (this is in the following used as a generic
term for expected positive and negative exposure) is far more sophisticated than pricing
the underlying product. [6]
The expected positive exposure of a portfolio is given by

EPE(t) = E[max(V (t), 0)] (6)

where V (t) is the value of the portfolio at time point t 2 R. Note that this portfolio value
is a random variable. The illustration 3 shows the schematic computation of the EPE
given the distribution of the random variable.

The reason why this is the quantity under risk to be considered when computing the CVA
is that assuming the party doing the computation owes money to a defaulted counterparty
after netting and close out transactions, then they are still obliged to settle that debt.
This default doesn’t change anything about the cash flows connected to the portfolio
since after the settlement with the defaulted counterparty one can simply set up the same
portfolio with another counterparty, resulting in the same mark-to-market as before. On
the other hand, if there is a positive exposure at the time of default of the counterparty,
one is left with a claim on the remaining amount. It is not reasonable to assume that this
claim will be completely settled, but only to some extent.



2 FINANCIAL BACKGROUND 11

Hence, the party doing the computation will only lose money if they are owed money at
counterparty’s default and therefore the expected positive exposure is considered for CVA
calculations.

The expected negative exposure is given by

ENE(t) = E[max(�V (t), 0)] (7)

where the notation is the same as above. This reflects, similar as above, the fact that the
counterparty will only lose money if they are owed something at the time of the default
of the party doing the computations. Therefore, the expected negative exposure is the
quantity to be considered for DVA computations.

Since in an actual case of default there will always be the chance of dispute over amounts
and in general the netting and collateral computations are individually set in the CSA
agreement, we will neglect those subtleties and will only focus on the mark-to-market
value of the portfolio under consideration.

The crucial question is now how to simulate the expected exposure to be able to use it for
the xVA computations afterwards. Since we tried to work with a very general simulation
framework to later allow for extensions of our results (to portfolio level, netting and
collateralisation or path-dependence) we used a Monte Carlo approach to do this. This
is also the industry standard across all counterparties and products.

The methodology can be split up into 4 steps: [6]

1. Define all relevant risk factors and their corresponding models.

Both should be realistic and parsimonious since we need many Monte Carlo simu-
lations for the training data generation later, and we want to reuse the model to
some extent. Simplicity also allows involving co-dependencies (within risk-factors
but in extensions later also for netting in portfolio e↵ects). In our case we have as
risk factors generally the prices of the underlyings which are modeled as geometric
Brownian motions. Note that the simulation has to be done in the risk-neutral
framework (i.e. the parameters are market-implied and justified by hedging and
arbitrage considerations) since we are aiming at a pricing application in the xVA
computation.

2. Generate scenarios along the time grid of the simulation, i.e. produce joint realiza-
tions of the di↵erent risk factors.

Therefore, first choose a grid of time points for the simulations which is reasonably
large to capture the main details of the exposure, but that isn’t too large from a
computational point of view. It should be spanning from the current time point
to the last payment date within the simulated portfolio. It is important to make
sure to include critical points (e.g. where for example payo↵s happen) into the
grid to avoid missing hotspots or huge discontinuities. Note that grids can be non
time-homogeneous.

A crucial question that arises is if the simulation should happen pathwise or in a
direct way, as illustrated in Figure 4. We use both approaches at di↵erent points in
the project, as explained later.
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Figure 4: Path-wise simulation where we always simulate from one time point to the next
one vs. direct simulation where we jump from the current time point to the ones we want
to simulate. [6]

3. Revaluation of the portfolio on the time grid.

Given a certain realization of the risk factors at a given point on the time grid,
one has to evaluate the portfolio in this market scenario. If no closed valuation
formula is given, this has to be done by a (nested inside the scenario generation)
Monte Carlo simulation. This in combination with the scenario generation is clearly
a bottleneck of the xVA computation. As an illustration of this fact, look at the
case where we want to simulate for a single counterparty a portfolio consisting of
20 transactions at 100 simulation time steps with 10,000 scenarios. This already
results in 20 million evaluations of financial products!

4. Aggregation of the simulation results.

In order to compute the CVA we have to aggregate the evaluations on netting set
levels (i.e. over the di↵erent products priced at the di↵erent time point in multiple
simulation), apply then the given risk mitigations (e.g. possibly pathwise collaterals)
and are then able to report the distribution of the portfolio exposure by averaging
over all simulations for a certain point in time. Applying the formulas above allows
us then to compute the expected positive and negative exposure.

2.3 Financial products & their expected exposure

In order to simplify all considerations we always assume that the risk-free rate is constantly
0 and hence discounting can be neglected.

2.3.1 European call options

A (European) call option gives a buyer the right to buy the underlying asset by a certain
date, called maturity, for a certain price, called strike price. It can only be exercised at
maturity and is traded on exchanges or OTC.
The payo↵ of a call option at maturity is given by

C(T ) = max{S(T )�K; 0} (8)

where T is the maturity, S(t) is the price of the underlying at the time point t 2 R and
K is the strike price.
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Following the principle of risk-neutral valuation, the value of a call option at the time
point 0  t  T is given by

VC(t) = EQ [C(T ) | Ft] (9)

where Q is an equivalent martingale measure with respect to the physical measure P
and (Ft)t�0 is the filtration in the model. In particular, the value of a call option is by
monotonicity of the conditional expectation always non-negative. This formulation will
be used later to price the call options by Monte Carlo simulation.
Finally, computing the expected positive exposure for a call option gives

EPE(t) = EQ[max{VC(t); 0}] = EQ[EQ[C(T )|Ft]] = EQ[C(T )] = VC(0) (10)

where the second equality holds because the value of a call option is always non-negative,
and the third by the tower property of conditional expectations. In particular, the ex-
pected positive exposure of a call option is constant and equal to its spot price.

2.3.2 Basket options

A (European) basket option is an option whose payo↵ at maturity depends can depend on
the value of more than one asset. The payo↵ of the considered basket option is given by:

D(T ) = max{min
i2[d]

{Si(T )}�K; 0} (11)

Here K is again a predetermined strike price and (Si(T ))t�0 is the price of asset i = 1, ..., d
at maturity T . Note that the prices of the underlyings (Si)i2[d] are usually stochastically
dependent.
By exactly the same arguments as above and using again the same notation the value of
a basket option at time t  T is given by VD(t) = EQ[D(T )|Ft] which is non-negative,
which further implies as before that the expected positive exposure of a basket option is
constant and equal to its initial value.

2.3.3 Bermudan options

Bermudan call options follow the same concept as their European counterpart with the
only di↵erence that they cannot only be exercised at maturity but instead have a finite
set of time points 0  t1  ...  tn = T where exercise is possible. However, note that
exercise is only possible once.
The hypothetical payo↵ at time point ti is then given by

C(ti) = max{S(ti)�K; 0} (12)

Pricing a Bermudan call option is particularly more di�cult than pricing a European call
option, where it is a priori clear that a potential exercise can only happen at maturity.
Analytically, one would consider a procedure known as backwards induction. The starting
point is that the value VC(tn) at exercise time tn = T is equal to the payo↵ C(tn) if
the option wasn’t exercised before already. Looking at an arbitrary exercise time ti�1

the question arises if exercising the option at this point in time (this is called an early
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exercise) would make sense if the option wasn’t exercised yet. An intuitive answer to this
is, ”yes, if the payo↵ of an early exercise exceeds the expectation for the value of the
option at the next time point given all information up to the current time point”. This
consideration leads to the value of the option at exercise time tn�1 given by

VC(ti�1) = max{C(ti�1);EQ[VC(ti)|Fti�1 ]} (13)

where Fti�1 is the sigma algebra in the filtration that formalizes the idea of the information
collected up until time point ti�1. Doing this backwards in time one can find the value of
the option at all potential payo↵ dates inductively.
This methodology can be utilized to construct a Monte Carlo approach for pricing and
later computing the expected positive exposure of a Bermudan call option. W.l.o.g. we
set C(t) ⌘ 0 if t /2 {t1, ..., tN} to simplify the notation. In particular, the recursive formula
above holds then for every t  T and the price of a Bermudan call option at time point
t 2 [ti, ti+1) can then be computed as

VC(t) = max{C(t);EQ[VC(ti+1)|Ft]} (14)

= max{C(t);EQ[max{C(ti+1);EQ[VC(ti+2)|Fti+1 ]}|Ft]} (15)

= max{C(t);max{EQ[C(ti+1)|Ft];EQ[VC(ti+2)|Ft]}} (16)

= max
s2{ti:ti�t}[{t}

{EQ[C(s)|Ft]} (17)

where the third equality follows by the tower property. Phrased di↵erently, the value of
the Bermudian call option is the maximum of the expected payo↵s at all payo↵ dates
from the presence to maturity, given all information up to the presence.
The value of a Bermudian call option is obviously non-negative, since all future payo↵s
are non-negative.

2.3.4 Forwards

A forward contract is an agreement to sell or buy an underlying asset at a certain time
in the future, again called maturity, for a certain price, called the forward price. One
party takes the so-called long position in the trade, which corresponds to agreeing to buy
the asset at maturity, while the other party then takes the short position and agrees to
sell the underlying. Forward contracts are in contrast to future contracts, usually OTC
traded and less standardized.
In the course of the project we always assumed to take the long position which corresponds
to a payo↵ of the derivative given by

F (T ) = S(T )�K(0, T ) (18)

where S(T ) is the price of the underlying at maturity T and K is the forward price of the
forward contract with maturity T initiated at time point 0. This forward price is usually
set in a way such that the initial value of a forward at time point 0 is equal to 0. In
the case of a 0 risk-free rate, the forward price is simply given by the spot price of the
underlying at the starting point of the contract, i.e. K(0, T ) = S(0).
The payo↵ structure leads to the fact that it is possible to have a non-zero expected
positive exposure as well as a non-zero expected negative exposure when trading forwards.
In that way, forwards extend the set of di↵erent financial contracts.
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2.3.5 Interest Rate Swaps

An interest rate swap is a contract between two parties to exchange one stream of interest
payments for another over a specified period of time. Swaps are derivative contracts and
are traded over the counter.

Interest swaps are the exchange of a fixed interest rate payments for floating rate payments
and the swap price is given by the di↵erence between the expected floating leg and fixed
leg cash flows[11]:

s (t,Xt) =
NX

k=n+1

�kE
QT

k
t [L (Tk�1, Tk)]P (t, Tk)�R�tk+1, tkP (t, Tk) (19)

Here T1, .., TN denote the settlement dates of the swap, L is the floating rate, R is fixed
rate. �k = Tk+1�Tk, P (t, Tk) is the discount rate for both fixed leg and floating leg. We
can get the discount curve from Option-Adjusted Spread (OSA) and the float rate from
Secured Overnight Financing Rate (SOFR).
A usual assumption is that the interest rate follow the Vasicek Model. In the Vasicek
Model, the short rate follows the stochastic di↵erential equation

dr (t) = k (✓ � r (t)) dt+ �dW (t) (20)

where k and � are considered piecewise constant, and W is a Brownian motion under the
risk-neutral measure.
The expected exposure can be calculated as described in section 2.2. A usual plot of
simulations of the exposure over time for a payer swap can be seen in the graphic below.

Figure 5: expected exposure of Interest rate swap

3 Technical background

3.1 General Approach

The goal of the methodologies explained in the following is to use Neural Networks to
accurately being able to approximate the result of xVA computations. For that, Monte
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Figure 6: Single perceptron with three
input nodes

Figure 7: Network with one input (3
neurons), two hidden (4 and 3 neurons)
and one output layer

Carlo simulations are used to compute noisy estimates of expected exposures over time
given volatilities and spot prices of financial products. Machine learning models are then
trained in order to be able to estimate those exposures accurately. Then, the performance
of the model is evaluated on test data comprised of results of Monte Carlo simulations
averaging over many paths, yielding compute-intensive but accurate benchmarking results
for the models.
Note, that the machine learning models output exposure estimates. This was chosen as an
intermediate step to provide further explainability to the approach. In order to compute
xVAs, these exposures still need to be fed into easy-to-compute formulas introduced in
subsection 2.1.

3.2 Neural Networks

Neural Networks have attracted considerable attention in the last years. Additionally, it
is a rapidly expanding field, with new applications found every day. In this chapter, the
underlying fundamentals and functioning will be explained.
Neural Networks, also called Artificial Neural Networks (ANN), are a type of machine
learning algorithm that is inspired by the human brain. Neural networks are made up of
nodes, which can be seen as neurons. These nodes are connected to each other, and they
have weights associated with them.
Artificial neurons: The simplest type of artificial neurons is a perceptron which takes
several binary inputs X̄ = x1, x2, ..., as an input and produces a single binary output y
(see fig. 6. The weights of the perceptron W̄ = w1, w2, ..., define the output of the neuron:
If the weighted sum

P
j wjxj is less than a threshold value, the output is 0 and 1, if the

weighted sum is greater than the threshold value.
By gradually changing the weights of the neurons, the network is able to produce the
desired output. To observe learning, small changes in the input shall result in small
changes in the output. Using binary outputs like in the perceptron, it is not possible to
observe a small change in the output as it is either 0 or 1. To overcome this problem,
sigmoid neurons are used. Instead of using a threshold function, a sigmoid function is
used to compute the output: �(x) ⌘ 1

1+e�x .
In advanced neural networks, there are other activation functions such as tanH (tanh(x)),
ReLU (max(0, x)) or Leaky ReLU (max(0.1x, x)).
Architecture: Together, those neurons form layers. As seen in fig. 7, a Neural Network
is made of the input layer, the hidden layers and the output layer. The output layer size
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is the number of classes. The graph is fully connected, meaning that the previous layer’s
nodes are connected to all the next layer’s nodes. In feedforward networks, the output
from one layer is used as input to the next layer, resulting in no loops. In recurrent neural
networks, feedback loops are possible. [10] Training: For training a dataset of input and
correct output data is need. It works by feeding the input data set X̄ into the network to
create a prediction ŷ. The goal is to minimize the error between the prediction and the
corresponding desired output E(X̄) = (y � ŷ). In each epoch, the weights are updated
according to

W̄  W̄ + ↵E(X̄)X̄, (21)

where ↵ is the learning rate. This is called gradient-descent update. To save compu-
tational time, the update is often done on randomly chosen training points and is then
called stochastic gradient-descent. To quantify how close the network comes to the desired
output, a loss functions needs to be defined. The choice of loss function depends on the
application:

• Least-squares regression with continuous output requires a simple squared loss of
the form L = (y � ŷ)2

• If the observed value is in the range -1, 1 and the prediction is a numerical value,
logistic regression is used: L = log(1 + exp(�y · ŷ))

Backpropagation: In a single-layer network, the training is simple as the error/loss
function can be computed as a direct function of the weights, which enables to compute
easy gradient computation. In multi-layer networks, the loss functions is a complicated
function of the weights of also earlier layers. However, this gradient can be computed via
backpropagation. Using dynamic programming, the backpropagation is divided into the
forward and backward phase:

1. In the forward phase, the training input is fed into the neural network. The par-
ticular outputs, including the final output, are computed across the layers with the
current set of weights. The final predicted output is compared to desired outputs
of the training data. The derivative of the loss function with respect to the output
is computed.

2. In the backward phase, the gradient of the loss function w.r.t. the di↵erent weights
in all layers is computed. Using the chain rule, gradients are computed from the
output node to the input nodes and used to update the weights, see [1].

3.3 Di↵erential Machine Learning

Di↵erential Machine Learning (DML) is an extension of Vanilla Machine Learning. Models
are not only trained on input and output values, but also on di↵erentials of the outputs
with regard to the inputs. This leads to the benefit, that the model can learn with
knowing the shape of the target function given by the di↵erentials instead of just knowing
punctual examples. Especially on small datasets in large dimensions, this will improve
the performance of learning.
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3.3.1 Adjoint Di↵erentiation

The dataset needed for DML is an augmented version of the dataset for ML: In addition
to the input x(i) and the output y(i), the di↵erential @y(i)

@x(i) is used. Those di↵erentials
can be computed via finite di↵erence methods or adjoint di↵erentiation (AD) e�ciently.
Finite di↵erence is slow and computational costly in comparison to AD. For AD, the
derivatives are taken analytically pathwise by application of the chain rule. The method
is computationally e�cient as the derivative is computed together with the output value
itself, so that the path does not need to be re-generated afterwards.
Every function y = f(~x) can be displayed as computation graphs which is a sequence of
operations (few basic mathematical operations such as matrix-product, activation func-
tion). By knowing the di↵erential of all operations w.r.t. the inputs

ȳ =
@c

@~y
(22)

and using the chain rule, the total di↵erential (the adjoint equation A) can be computed
with

@c

@~x
=

@~y

@~x

@c

@~y
! A : x̄ = 'xȳ, (23)

where @~y/@~x is the Jacobian matrix. While feedforwarding the graph compute outputs
from inputs from left to right, adjoint di↵erentiation di↵erentials to inputs from di↵er-
entials to outputs and flows right to left. Putting more operations together, all di↵er-
entials are computed in on traversal of the graph, resulting in backpropagation. Using
automatic adjoint di↵erentiation (AAD), the whole process can be automatized. The
compiler records the order of execution of the ops, called tape, resulting in a graph in
the correct execution order. Backpropagation adjoint equations right to left result in
all pathwise di↵erentials. Repeating that for more simulations and averaging converges
to true model risks. Modern packages as Tensorflow consist of an implementation of
AAD/backpropagation.

3.3.2 Twin network

Given the input, output, and di↵erentials w.r.t. the inputs, DML can be implemented.
The model consists of two parts, the feedforward and backpropagation part. The feedfor-
ward part is defined by the equations:

input: z0 = x

neurons of layer l: zl = gl�1 (zl�1)wl + bl , l = 1, . . . , L

output: y = zL

(24)

wl and bl are the weights and biases of layer l. The activation function of the layer is
denoted by gl�1. In figure 8, a feedforward layer with L = 3 can be seen.
In the backpropagation part, we compute the di↵erentials of the predicted value y = zL
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Figure 1: feedforward neural network with backpropagation

x. The combined computation evaluates a feedforward network of twice the initial depth. Like feedforward
induction, backpropagation computes a sequence of matrix by vector products. The twin network, therefore,
predicts prices and risk sensitivities for twice the computation complexity of value prediction alone, irrespective
of the number of risks. Hence, a trained twin net approximates prices and risk sensitivities, wrt potentially many
states, in a particularly e�cient manner. Note from (2) that the units of the second half are activated with the
di�erentials g�

l of the original activations gl. If we are going to backpropagate through the twin network, we need
continuous activation throughout. Hence, the initial activation must be C1, ruling out, e.g. ReLU.

Figure 2: twin network

7

Figure 8: Twin network [5]

w.r.t. the inputs x = z0. Hence, equations 24 are di↵erentiated in reverse order:

z̄L =
@y

@y
= ȳ = 1

z̄l�1 =
@y

@zl�1
=

�
z̄lw

T
l

�
� g0l�1 (zl�1) , l = L, . . . , 1

x̄ =
@y

@x
= z̄0

(25)

Comparing the feedforward and backpropagation network, weights are shared and the
neurons z̄l are the adjoints of the corresponding neurons zl in the feedforward layer.
Combining the feedforward and the backpropagation part leads to the DML twin network
in figure 8. In the first part the prediction is computed and in the second part its di↵er-
entials w.r.t. inputs. Both parts are connected by shared weights zl. In the middle the
networks are connected by combining equations 24 and 25.

3.3.3 Training

As our inputs, outputs and di↵erentials are multidimensional, training data is stacked
into matrices, where n is the dimension of the feature space and m the number of neurons
in the particular layer, respectively the training examples:

X =

2

64
x(1)

...
x(m)

3

75 2 Rm⇥n Y =

2

64
y(1)
...

y(m)

3

75 2 Rm X̄ =

2

64
x̄(1)

...
x̄(m)

3

75 2 Rm⇥n, (26)

Feedforward computation (left part) results in Zl and back-propagating (right part) in Z̄l:

Zl =

2

64
z(1)l
...

z(m)
l

3

75 2 Rm⇥nl and Z̄l =

2

64
z̄(1)l
...

z̄(m)
l

3

75 2 Rm⇥nl (27)
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In the first part the mean squared error (MSE) between the output Y and the predicted
output shall be minimized:

C
⇣
{wl, bl}l=1,...,L

⌘
= MSE =

1

m
(ZL � Y )T (ZL � Y ) (28)

In the second part, the network is trained with pathwise di↵erentials X̄ instead of the
output Y and thus the error ¯MSE shall be minimized:

C
⇣
{wl, bl}l=1,...,L

⌘
= MSE =

1

m
tr
h�
Z̄0 � X̄

�T �
Z̄0 � X̄

�i
(29)

In total training, both errors are combined, where � is a hyperparameter:

C = MSE + �MSE (30)

3.3.4 Benefits

Di↵erential Machine Learning has several benefits compared to Vanilla Machine Learning:

1. Larger dataset size: With additionally considering the di↵erentials in the training
set, the size has increased significantly. AAD produces a much larger dataset (nm
additional di↵erentials) without a lot of computational extra costs.

2. Learn the shape of the pricing function: By learning from the gradients,
instead of just punctual examples, the shape of the function can be learning resulting
in a more robust learning.

3. Production of correct Greeks :Learning the shape of the pricing function re-
sults in a correct construction of the Greeks, which is important for many financial
applications.

4. Bias-free regularization: Equation 30 is similar to classic regularization, which
penalizes large weights and thus avoids overfitting. In comparison to classic regular-
ization, there is no bias introduced here as just learning with the di↵erentials would
also converge to the true approximation. Thus, di↵erential regularization is more
similar to data augmentation, as there is more data available, reducing the variance
without adding bias. [5]

3.4 Hyperparameter tuning with Bayesian Optimization

Hyperparameter search for neural networks is a non-trivial task. In order to obtain
suitable hyperparameters that allow the neural network to generalize well, techniques
such as grid search employing a brute-force approach to finding suitable hyperparameters
may be used. However, hyperparameter search can also be formulated as an optimization
problem that tries to find the optimum of an expensive-to-evaluate, multi-optimum cost
function, i.e., optimizing the validation error of the neural network with respect to its
hyperparameters.

An optimization technique called bayesian optimization is well suited for optimizing ex-
pensive black box functions with many local optima like neural network training. This
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Figure 9: A GP models an unknown objective function, providing an estimated mean and
a covariance at every point x in the optimization space. On the left side, a Gaussian pro-
cess after seven objective function evaluations is displayed. The right-hand side displays
the same Gaussian process after sampling the objective function at x = 4 and updating
the GP. The GP on the left side is updated using the Bayes rule given an objective func-
tion sample to obtain the GP displayed on the right side. With more objective function
evaluations, the Gaussian process is able to model the objective function more accurately.
In the figure, this can be observed as the certainty of the GP around the newly evaluated
point increases.

approach is used to find well-suited hyperparameters for all neural networks trained in
this project. This section is strongly based on [2], [12] and [15] in structure and content.

In Bayesian optimization, Gaussian processes (GP) are used to model the black-box objec-
tive function via a mean and covariance, e↵ectively using previous evaluations of the neural
network training process to quantify uncertainty and expectation of the performance of
the neural network for all hyperparameters. An example of such a GP is visualized in 9.
Given a Gaussian process modeling an objective function, an acquisition function can be
defined. Acquisition functions are used to score each point in the optimization space. This
score provides a heuristic of where to evaluate the objective function next. It provides a
trade-o↵ between exploring the objective function and finding optimal values.

It is then possible to use the acquisition function to determine where to evaluate the ob-
jective function next, i.e., determine with which hyperparameters to re-train and validate
the neural network. After evaluating the objective function, the GP is updated with the
newly obtained data point, making it more accurate. This is done multiple times, leading
to finding better hyperparameters over multiple iterations.

4 Methods

4.1 Data Generation

Simulating geometric Brownian motions e�ciently is the backbone of the expected expo-
sure simulation as described in section 2.2 and therefore vital for generating large amounts
of training data and being able to benchmark the models that have been created. For
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each kind of the financial contract from section 2.3. this generally splits up into two parts
(even though it slightly di↵ers depending on the contract): the scenario generation of
the risk factors and the (nested) Monte Carlo simulations for pricing the contracts in the
regarding scenario.

4.1.1 E�cient Simulation of Geometric Brownian Motions for scenario gen-
eration

In the following, np denotes the number of paths that are simulated, indexed by i, nt

denotes the number of time steps of the simulation time grid, indexed by j and nu denotes
the number of underlying stocks, each indexed by k.

The simulation of a single path of the Brownian motion over time is done in the following
way: The vector S(i)(tj) 2 Rnu containing the nu stock values at time point t = tj is
simulated using a discrete version of the multidimensional geometric Brownian motion

S(i)
k (tj) =

jY

j0=1

r(i)j0k (31)

for k 2 [nu], where r
(i)
jk 2 R contains the evolution of the k-th element of the multidimen-

sional geometric brownian motion in the time range �tj = tj � tj�1. Furthermore,

R̂(i) :=


S(i)(0)
R(i)

�
2 R(nt+1)⇥nu (32)

where S(i)(0) 2 Rnu is the vector of the initial spot prices of the underlyings and the
matrix

R(i) =

2

64
r(i)11 ... r(i)1nu
... ...

...

r(i)(nt�1)1 ... r(i)(nt�1)nu

3

75 2 R(nt)⇥nu (33)

is computed e�ciently through

R(i) = exp(�0.5 ·�t · diag(�(i) · (�(i))T ) + (
p
�t �W (i)) · Chol(⌃(i))) (34)

where � denotes the Hadamard product, W (i) 2 R(nt�1)⇥nu is a matrix of iid standard
normally distributed random numbers.
The covariance matrix of the stocks ⌃(i) = (�(i) · (�(i))T ) � C(i) captures the volatilities
�(i) 2 Rnu of the individual underlying stocks as well as their correlations C(i) 2 Rnu⇥nu .
Finally, ”Chol” denotes that the Cholesky decomposition of the covariance matrix is
computed.

The matrix �t capturing the simulation time grid is given by

�t =

2

64
�t1 ... �t1
...

...
�tnt ... �tnt

3

75 2 R(nt)⇥nu (35)
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is built using the sizes �tj = tj � tj�1 of the individual time steps where t0 = 0 denotes
the starting time of the simulation.

The tensor S 2 Rnp⇥nt⇥nu which contains the evolution of nu underlying stocks over nt

time steps for a total of np simulated paths with di↵erent volatilities and spot prices can
then be computed e�ciently without loops on a GPU. This can be identified to follow the
pathwise simulation procedure mentioned in section 2.2.

Note that in order to generate a training set of size, np one would use this procedure to
generate one scenario per time step for each of the samples in the training set.

4.1.2 Geometric Brownian Motion Hyper Rectangle for E�cient Nested Monte
Carlo Simulations

Using the simulation routine of the geometric Brownian motion we just described, we are
now in the situation that we have for each training sample a 2 dimensional matrix of
realizations of prices of the underlying. The first dimension describes the realizations for
di↵erent time steps, and the second dimension for the di↵erent underlyings.
The price of a derivative clearly depends on the scenario we are in and the realization of
the risk factors we are looking at respectively. In principle, one could now apply a closed
form solution to derive the value of the derivative depending on the realized price of the
underlyings at each time step (if such a closed form solution exists) to come up with the
exposure of the derivative in the respective scenario. Since we want to have a general
approach to be able to extend the methodology later to more complex situations, we aim
to do the pricing with a nested Monte Carlo simulation.
To do this e�ciently, the concept of geometric Brownian motion cubes is introduced. It
generally follows the idea of direct simulation described in section 2.2.

In order to compute the value of a derivative at a certain time step using a Monte Carlo
approach, the underlyings are simulated nn times until maturity, the derivative’s payo↵
is evaluated and the average over those nn simulations is used as an estimate for the
value of the derivative (since we are assuming the interest rate is 0 there is no need for
discounting).
In the particular case we are in we want to simulate for each point on the time grid
nn realizations of each underlying until maturity using the same procedure as described
before with the only di↵erence that the time di↵erences are substituted by

�t0 =

2

6664

T � t0 ... T � t0
... ...

...
T � t(nt�1) ... T � t(nt�1)

0 ... 0

3

7775
. (36)

In that way we directly simulate the evolution of the underlyings from a certain time
point to maturity without looking at the intermediate steps.
Multiplying those resulting nn⇥nt⇥nu realizations now suitably with the corresponding
realizations of the spot prices from the scenario generation, we get nn⇥nt⇥nu realizations
for the prices of the underlyings at maturity corresponding to the realized scenarios at the
di↵erent time steps. Computing then the payo↵ of the derivative we want to price over
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the nu axis for each time step and for each simulated path, we get an array of nn di↵erent
derivative payo↵s for all nt di↵erent time steps. Averaging afterwards over the nn payo↵s
leaves us with an estimate for the derivative’s price at each time point, depending on the
scenario we generated for this time point in the previous step. Taking then at each time
step the maximum of these estimates and 0 leaves us with an estimate for the expected
positive exposure of the derivative at the regarding time point. Taking the maximum of
the negative of the initial estimate we found and 0 we get an estimate of the expected
negative exposure.
We can execute this procedure in parallel for each training data sample to achieve gener-
ation of the training data on a GPU without the use of loops.
There are di↵erent subtleties to mention for the di↵erent derivatives we were looking at.
First, for an European call option we only need to simulate one underlying at a time,
hence nu = 1. The same holds for forward contracts.

The most notable di↵erence is there for the simulation of the expected exposure of Bermu-
dan call options, since their value does not only depend on the simulated payo↵ at matu-
rity but at several exercise dates. On the other hand, they also only depend on a single
underlying asset, which simplifies the evaluation.
As seen in section 2.3. the value of such an option at a certain time point t can be found
by simulating the expected payo↵ for all future exercise dates, i.e. the ones that are
between the current time point and maturity. To reuse the geometric Brownian motion
cube we constructed before, we include an additional dimension containing simulations
from the current time point to all upcoming exercise dates. Therefore, we are again in a 3
dimensional setting for each training sample: one dimension over nt describing the point
on the time grid we are currently at, one over nn describing the path we are sampling and
one over nd describing the payo↵ date we are simulating to. Note that the last dimension
has fewer entries the further we are on the simulation time grid for the scenario generation
because there are less future exercise dates coming up. Having simulated the price of the
underlying over those 3 dimensions, the payo↵ at each simulated point is computed, and
the average is built regarding the second dimension. In that way, we get for every point
in the time grid the expected payo↵ for all future payo↵ dates. Taking now the maximum
along the nd axis, we find the value of the derivative at each time point t by virtue of
the result from section 2.3. Since those values are all positive, this already serves as an
estimate for the expected positive exposure of one training sample of the Bermudan option
over time. Parallelization of the di↵erent training samples is again possible as before.

4.2 Building the model

The Di↵erential Machine Learning model introduced in chapter 3.3 was adapted to fit our
problem. A visualization of the model can be seen in figure 10. The input layer consists
of two neurons matching the input dimension of two (volatility and initial spot price).
The model consists of n hidden feed-forward and n hidden backpropagation layers. Each
hidden layer has m neurons, and feedforward and backpropagation layer share weights. n
and m are hyperparameters are tuned during the validation phase. The feed-forward neu-
rons have softplus as an activation function, while the backpropagation have sigmoid.The

model computes the expected exposure for 10 time steps, therefore the output in the
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Figure 10: Visualization of the used Di↵erential Machine Learning network with n = 6
hidden layers and a hidden layer size of m = 30

middle of the network is of the shape [10,1]. So the following backpropagation layers
also need one dimension more, as there is a di↵erential at every time step, resulting in a
di↵erential output at the end in the shape of [10,2].

4.3 Training the model

4.3.1 Training procedure

First, the input and output are standardized by subtracting the mean and dividing by
the standard deviation. To normalize the di↵erentials dx/dy, they are divided by the
standard deviation of y and multiplied with the standard deviation of x.
Before training the neural network, the data is split into a training set (66%) and a
validation set (34%). The model is trained with the training set and hyperparameters are
tuned with the validation set. The model was trained in 100 epochs using the NADAM
optimizer (found to be optimal in the hyperparameter optimization). Learning rate and
batch size are also hyperparameters (see next subsection).

4.3.2 Hyperparameter tuning

Using Bayesian optimization, explained in chapter 3.4, hyperparameters are tuned on the
validation set. For every training set, di↵erent hyperparameters were found. Table 1 in
the appendix shows some exemplary resulting hyperparameters found in the optimization.

4.4 Evaluating the model

After training the neural networks with the best hyperparameters obtained in Bayesian
optimization, their performance is evaluated on a test set.

This test set consists of 400 instances of the financial product the model is built for and
contains the input volatilities and spot prices as inputs as well as accurate exposures
as outputs. The exposures have been generated using e�cient Monte Carlo simulations
outlined in 4.1.1. In order to be useful for benchmarking, the Monte Carlo simulations
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Figure 11: Basket option with one underlying

for the same starting values are run multiple times and the average over the results are
computed, reducing the variance of the exposure values and making them suitable for
benchmarking the machine learning model.
To evaluate the machine learning models, the exposure given the test set inputs is com-
puted. CVA is then computed using those exposure values, it is denoted as CV Apred. The
CVA computed from the test set exposures are denoted as CV Atest.
The key measure to benchmark the performance of a xVA computation method used in
the following results section is then computed as the mean squared error (MSE) over the
relative di↵erence of the predicted and test CVAs as

Relative Error = MSE(
CV Apred � CV Atest

CV Atest
). (37)

5 Results and Discussion

In order to evaluate the performance of the vanilla neural network (ML) approach and
the di↵erential machine learning (DML) approach, they are benchmarked on di↵erent
data sets representing di↵erent numbers of training instances, di↵erent data generation
ranges and di↵erent types of financial products. The results are then compared to the
performance of a simple k-nearest-neighbor-based (kNN) inference approach. Simple ap-
proximations through kNNs are motivated by practice in the industry, where intraday
the CVA is approximated based on interpolation of CVA values in a grid of parameters
(possibly populated by front-o�ce systems) and then recalculated overnight by doing the
expensive Monte Carlo simulations.

5.1 Comparison between DML, ML and kNN

Our final results show two key findings:

(A) Growing amount of training instances lead to an increasingly better performance of
DML over kNN.

(B) Small volatility range leads to better results for DML, ML and kNN.

Regarding insight (A), figure 11 shows the relative error of DML, ML and kNN. It can be
seen that DML is up to 60% more accurate than kNN and up to 56% better than vanilla
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Neural Networks. Relative error of other financial options can be seen in the appendix,
but they show the same behavior.
With respect to the key insight (B), smaller volatility ranges lead to better results for all
three pricing methods, so this is not particular to DML. It is found that this behavior is
mitigated by providing a larger number of training samples. As discussed in the previous
paragraphs, neural network-based approaches perform particularly well when a larger
number of training instances are provided, resulting in another advantage of DML. Results
of the influence of volatility ranges on the performance in detail can be found in the
appendix.
To summarize, di↵erential machine learning possesses multiple advantages over vanilla
neural networks and the kNN-based approach, justifying the higher implementation e↵ort.

5.2 Impact on execution time

Monte Carlo simulations can compute exposure estimates up to arbitrary precision, de-
pending on the time allocated for simulation. As seen in the previous sections, the per-
formance of machine learning based approaches depends on the amount of data provided
for training. After training, however, estimating exposure up to a high precision only
requires one compute-inexpensive forward pass of the neural network.
To directly compare the valuation time of Monte Carlo based approaches to inference us-
ing neural networks, expected exposures for 400 basket options with five underlyings are
computed using a Monte Carlo-based approach as described in subsection 4.1.1. A di↵er-
ential machine learning model is trained on 1000 training instances and then evaluated
to achieve an average relative CVA error of 0.7% in 0.4s on the test data. When evalu-
ating the execution time of a Monte-Carlo-simulation to achieve the same relative CVA
error, 22.7s are needed. Monte-Carlo simulation and di↵erential machine learning model
both were implemented in tensorflow and executed on the same hardware to guarantee
comparability.
Di↵erential machine learning models achieving similar results are therefore around 57
times faster than Monte Carlo simulations in this setting. This makes machine learning
based approaches explored in this project more suited for intraday valuation than Monte
Carlo simulations, and constitutes the second key insight of this project.

6 Conclusion

Over the course of the project, a framework for running e�cient Monte Carlo simula-
tions for the computation of exposure values was implemented that allows computing the
derivative of the outputs of the simulations with respect to the inputs. Di↵erent machine
learning-based strategies to build parametric models for accurately and e�ciently com-
puting the exposures were implemented and evaluated against each other. It was found
that a technique called di↵erential machine learning can be used to significantly improve
model performance and decrease the need for expensive data generation. Data-driven ap-
proaches lead to a significant execution-time improvements over Monte Carlo simulations,
which can compute high-precision option valuation with large computational e↵ort.
Future research may evaluate the performance of the aforementioned xVA computation
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techniques using deep learning on more complex financial products with more underly-
ings and compute di↵erent xVAs, for example margin valuation adjustments (MVA) or
credit valuation adjustments (KVA). Furthermore, the proximity to reality of the xVA
computations may be increased by considering risk mitigation measures like netting and
collateral.



References

[1] Charu C. Aggarwal. Neural Networks and Deep Learning. Cham: Springer Inter-
national Publishing, 2018. isbn: 978-3-319-94462-3. doi: 10.1007/978-3-319-
94463-0.

[2] E. Brochu, V. M. Cora, and N. de Freitas. “A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and Hier-
archical Reinforcement Learning”. In: (Dec. 2010).

[3] James Crotty. “Structural causes of the global financial crisis: a critical assessment
of the â˜new financial architectureâTM”. In: Cambridge journal of economics 33.4
(2009), pp. 563–580.

[4] Matthias Groncki. CVA Calculation with QuantLib and Python. 2015.

[5] Brian Huge and Antoine Savine. Di↵erential Machine Learning. url: http : / /
arxiv.org/pdf/2005.02347v4.

[6] Jon Gregory. The xVA Challenge. Wiley, 2015.

[7] Le Nezet, Bertrand. Credit Curve Bootstrapping. R library, 2020.

[8] Yura Mahindroo, Barron, Ewan, and Michael Codling. xVA explained: Valuation
adjustments and their impact on the banking sector. 2015.

[9] Steven Marshall. A Brief History Of XVA. LinkedIn, 2019.

[10] Michael A. Nielsen. Neural networks and deep learning. Vol. 25. Determination press
San Francisco, CA, USA, 2015.

[11] Pascal Pierrot. How to use Machine Learning for e�cient xVA calculations: The
case of Credit Valuation Adjustment (CVA).

[12] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[13] Matthias Scherer and Sebastian Walter. “CVA für Kontrahenten-Ausfallrisiken: Be-
wertungsadjustierungen”. In: Risiko Manager 2015.15.-16. 2015 ().

[14] Stuart Nield. FVA - time to go asymmetric? 2018. url: https://ihsmarkit.com/
research-analysis/fva-time-to-go-asymmetric.html.

[15] Tim Emmert. “Parameter Identification and Design of Experiments for Truck Trailer
Combinations using Bayesian Optimization”. Bachelor thesis. Erlangen-Nürnberg:
Friedrich-Alexander-Universität, 2021-06-01.

29

https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
http://arxiv.org/pdf/2005.02347v4
http://arxiv.org/pdf/2005.02347v4
https://ihsmarkit.com/research-analysis/fva-time-to-go-asymmetric.html
https://ihsmarkit.com/research-analysis/fva-time-to-go-asymmetric.html


Appendix

Exemplary Hyperparameter Values

Table 1: Exemplary values found in the hyperparameter optimization for Di↵erential
Machine Basket option with 1 and 5 underlyings and parameter range

Hyperparameter
Values for DML
with 1 underlying

Values for DML
with 5 underlyings

Range

Optimiser NADAM ADAM ADAM or NADAM
Number of layers n 5 6 (1, 10)
Layer size m 25 27 (10, 30)
Batch size 448 9 (8, 512)
Learning rate 0.056 0.055 (0.00001, 0.1)

Relative error of DML, ML and kNN on di↵erent financial prod-
ucts

Figure 12: Basket option with three underlyings

Figure 13: Basket option with five underlyings
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.png

Figure 14: Bermudan option

Volatility range
Relative DML
error

Relative ML
error

Relative kNN
error

Small 0.0102 0.0120 0.0163
Medium 0.0247 0.0307 0.0301
Large 0.6655 1.0123 0.8042
Average 0.2335 0.3517 0.2835

Table 4: Relative errors of DML, ML and kNN for di↵erent volatility ranges
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