Developing an image-based document search system

Final Presentation

Authors: Anika Apel, Piotr Chodyko, Kyle Hiroyasu, Festina Ismali, Hyein Koo Project Leader: Dr. Ricardo Acevedo Cabra Scientific Lead: Dr. Robert Pesch, Julia Kronburger (M.Sc.), Dr. Andre Ebert TUM Co-Mentor: PhD candidate Olga Graf

Introduction

Image-based Document Search

Query image

Search for related documents

Return the most relevant documents

Project Goals

End-to-end

Modular

Scalable

End-to-End ML System Development Data Machine **Data Verification** Collection Resource Management Configuration Serving ML Code Monitoring **Analysis Tools** infrastructure **Feature Extraction Process Management** Tools

Image-Text Retrieval in Production

Process Management Tools

- Version control
- Model management

Feature extraction

- Backend

Serving Infrastructure

- Search system
- Web application

Machine resource management & Configuration tools

- Cloud infrastructure
- Iteratively add and modify deployments

End-to-End Application

Service Architecture

Service Architecture

Image-to-Text Retrieval Models

Model	Code Available	Performance	Reproducible	Fast Inference
VSE++ [2]	\checkmark	\checkmark	\checkmark	\checkmark
VSRN [3]	\checkmark	\checkmark	0	0
OSCAR [4]	\checkmark	\checkmark \checkmark \checkmark	X	X

VSRN [3]

Model Evaluation

Dataset

Datasets	Size (images)	Train	Validation	Test
Flickr30k [5]	31,783	29,783	1,000	1,000
COCO [6]	123,287	113,287	5,000	5,000
Total	155,070	143,070	6,000	6,000

1	Boys kicking soccer ball in the grass under a tree.
2	Two boys are kicking a ball to each other in the park.
3	Two boys have made a goal out of two jackets in order to play soccer.
4	Two boys kick around a ball in a meadow.
5	Two kids play soccer in a field.

Percentage of queries for which at least one relevant document is among the top K results

0,

- 1 Two kids play soccer in a field.
- 2 A boy holds a red bucket up to a pony.
- 3 Two boys are kicking a ball to each other in the park.

1	A dog is running in a field.
2	A boy holds a red bucket up to a pony.
3	A young girl on a swing.

Average percentage of relevant documents among top K results

1	Boys kicking soccer ball in the grass under a tree.
2	Two boys are kicking a ball to each other in the park.
3	A young girl on a swing.

Model Results

Model	R@1	R@3	R@5	P@1	P@3	P@5
VSE++	0.343	0.542	0.634	0.343	0.388	0.244
VSRN w/ pre-computed features [7]	0.461	0.667	0.759	0.461	0.392	0.339
VSRN w/ Detectron2	0.315	0.516	0.607	0.315	0.275	0.241

Service Architecture

Service Architecture

Embedding Generator

Service Architecture

Search Engine

Elasticsearch Results

Retrieval time from Elasticsearch

Service Architecture

Backend

Backend

Service Architecture

Deployment

Service Architecture

Demo

image-text-retrieval.inovex.de

Discussion

Uncertainty Quantification

Interaction learning [11]

Thanks for your attention! Questions?

References

[1] Sculley, David, et al. "Hidden technical debt in machine learning systems." Advances in neural information processing systems 28 (2015): 2503-2511.

[2] Faghri, Fartash, et al. "Vse++: Improving visual-semantic embeddings with hard negatives." arXiv preprint arXiv:1707.05612 (2017).

[3] Li, Kunpeng, et al. "Visual semantic reasoning for image-text matching." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.

[4] Li, Xiujun, et al. "Oscar: Object-semantics aligned pre-training for vision-language tasks." European Conference on Computer Vision. Springer, Cham, 2020.

[5] Peter Young et al. "From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions". In: Transactions of the Association for Computational Linguistics 2 (2014), pp.67-78.

[6] Xinlei Chen et al. "Microsoft COCO Captions: Data Collection and Evaluation Server". In: CoRR abs/1504.00325 (2015).

[7] Peter Anderson et al. "Bottom-up and top-down attention for image captioning and visual question answering". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, pp. 6077–6086.

[8] Taha, Ahmed, Yi-Ting Chen, Xitong Yang, Teruhisa Misu, und Larry Davis. "Exploring Uncertainty in Conditional Multi-Modal Retrieval Systems". arXiv:1901.07702 [cs], (2019).

[9] Hama, Kenta, Takashi Matsubara, Kuniaki Uehara, und Jianfei Cai. "Exploring Uncertainty Measures for Image-Caption Embedding-and-Retrieval Task". arXiv:1904.08504 [cs, stat], (2019).

[10] Warburg, Frederik, Martin Jørgensen, Javier Civera, und Søren Hauberg. "Bayesian Triplet Loss: Uncertainty Quantification in Image Retrieval". arXiv:2011.12663 [cs], (2020).

[11] Jianan Chen et al. "Review of Recent Deep Learning Based Methods for Image-Text Retrieval". In: 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE. 2020, pp. 167-172 Appendix

GCP Monthly Costs (January)

Service	SKU	Subtotal
Compute Engine	E2 Instance Core running in Frankfurt	€ 153.36
Compute Engine	E2 Instance Ram running in Frankfurt	€ 82.20
Compute Engine	Storage PD Capacity in Frankfurt	€ 26.47
Compute Engine	Network Load Balancing	€ 17.82
Compute Engine	Misc. Networking Services	€ 14.58
Cloud Storage	Download Worldwide Destinations	€ 18.88
Cloud Storage	Standard Storage Frankfurt	€ 0.71
Cloud Storage	Regional Standard Class B Operations	€ 0.09
	Total	€ 314.11

Uncertainty Quantification - Approaches for Retrieval

Monte-Carlo Dropout [8]

Deep Bayesian Neural Networks [9] Stochastic embeddings [10]

Uncertainty Quantification - MC Dropout [7]

Key Idea: cast triplet loss as a regression loss and estimate epistemic uncertainty with **MC Dropout**

Uncertainty Quantification - BNN [8]

Key Idea: Consider embedding-and-retrieval task as regression/classification task and apply bayesian neural networks

- Use neural networks with stochastic components after each weight layer (enabled during inference and training)

- Stochastic components:
 - Stochastic batch normalization
 - Dropout

Uncertainty Quantification - Stochastic Embeddings [9]

Key Idea: Stochastic embeddings instead of deterministic ones

Figure: Architecture for Image Encoder with Stochastic Embeddings [9]

Pairwise learning [11]

Attributes learning [11]

Interaction learning: OSCAR [4]

