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Image-based Document Search
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Image-Text Retrieval in Production

Process Management Tools
- Version control
- Model management

Feature extraction
- Backend

Serving Infrastructure
- Search system
- Web application

Machine resource management & Configuration tools
- Cloud infrastructure
- lteratively add and modify deployments



End-to-End Application
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Image-to-Text Retrieval Models

Model Code Available | Performance = Reproducible | Fast Inference
VSE++ 2] v/ v/ v/ v/
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VSE++ [2]
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Model Evaluation

Datasets

Metrics

Results
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Dataset

Datasets Size (images) Train Validation Test
Flickr30k [5] 31,783 29,783 1,000 1,000
COCO [6] 123,287 113,287 5,000 5,000
Total 155,070 143,070 6,000 6,000

Boys kicking soccer ball in the grass under a tree.

Two boys are kicking a ball to each other in the park.

Two boys have made a goal out of two jackets in

order to play soccer.

Two boys kick around a ball in a meadow.

Two kids play soccer in a field.
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Recall@K

Percentage of queries for which at least one relevant document is among the top K results

Two kids play soccer in a field.

A boy holds a red bucket up to a pony.

Two boys are kicking a ball to each other in the park.

A dog is running in a field.

A boy holds a red bucket up to a pony.

A young girl on a swing.
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Precision@K

Average percentage of relevant documents among top K results

1 | Boys kicking soccer ball in the grass under a tree.

2 | Two boys are kicking a ball to each other in the park.

3 | Ayoung girl on a swing.
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Model Results

Model R@1
VSE++ 0.343
VSRN w/ pre-computed features [7] 0.461

VSRN w/ Detectron?2 0.315

R@3
0.542
0.667

0.516

R@5
0.634
0.759

0.607

P@1
0.343
0.461

0.315

P@3
0.388
0.392

0.275

P@5
0.244
0.339

0.241
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Search Engine

A Boston terrier is
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@ elastic
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Elasticsearch Results

Retrieval time from Elasticsearch
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Backend
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Backend
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Demo

Upload Image Textual Results
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Uncertainty Quantification
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Interaction learning [11]
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Thanks for your attention!
Questions?
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GCP Monthly Costs (January)

Service SKU Subtotal

Compute Engine E2 Instance Core running in Frankfurt € 153.36
Compute Engine E2 Instance Ram running in Frankfurt € 82.20
Compute Engine Storage PD Capacity in Frankfurt € 26.47
Compute Engine Network Load Balancing €1/7.82
Compute Engine Misc. Networking Services € 14.58
Cloud Storage Download Worldwide Destinations € 18.88
Cloud Storage Standard Storage Frankfurt €0.71
Cloud Storage Regional Standard Class B Operations € 0.09

Total

€314.11
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Uncertainty Quantification -Approaches for Retrieval
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Uncertainty Quantification - MC Dropout [/]

Key |ldea: cast triplet loss as a regression loss and estimate epistemic uncertainty with MC Dropout
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Figure taken from https://www.inovex.de/blog/uncertainty-quantification-deep-learning/
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Uncertainty Quantification - BNN [8]

Key Idea: Consider embedding-and-retrieval task as regression/classification task and apply bayesian

neural networks

- Use neural networks with stochastic components after each weight layer
(enabled during inference and training)

- Stochastic components:

- Stochastic batch normalization
- Dropout
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Uncertainty Quantification - Stochastic Embeddings [9]

Key |dea: Stochastic embeddings instead of deterministic ones

Figure: Architecture for Image Encoder with Stochastic Embeddings [9]
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Pairwise learning [11]
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Attributes learning [11]
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Interaction learning: OSCAR [4]
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