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End-to-End ML System Development
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Image-Text Retrieval in Production

Process Management Tools
- Version control
- Model management

Feature extraction
- Backend

Serving Infrastructure
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Machine resource management & Configuration tools
- Cloud infrastructure
- Iteratively add and modify deployments
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Image-to-Text Retrieval Models
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Model Code Available Performance Reproducible Fast Inference

VSE++ [2]

VSRN [3]

OSCAR [4]



VSE++ [2]
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VSRN [3]
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Model Evaluation
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Dataset
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1 Boys kicking soccer ball in the grass under a tree.

2 Two boys are kicking a ball to each other in the park.

3 Two boys have made a goal out of two jackets in 
order to play soccer.

4 Two boys kick around a ball in a meadow.

5 Two kids play soccer in a field.

Datasets Size (images) Train Validation Test

Flickr30k [5]    31,783   29,783 1,000 1,000

COCO [6] 123,287 113,287 5,000 5,000

Total 155,070 143,070 6,000 6,000



Recall@K
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1 Two kids play soccer in a field.

2 A boy holds a red bucket up to a pony.

3 Two boys are kicking a ball to each other in the park.

1,

1 A dog is running in a field.

2 A boy holds a red bucket up to a pony.

3 A young girl on a swing.

0,

  Percentage of queries for which at least one relevant document is among the top K results



Precision@K
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1 Boys kicking soccer ball in the grass under a tree.

2 Two boys are kicking a ball to each other in the park.

3 A young girl on a swing.

  Average percentage of relevant documents among top K results



Model Results

Model R@1 R@3 R@5 P@1 P@3 P@5

VSE++ 0.343 0.542 0.634 0.343 0.388 0.244

VSRN w/ pre-computed features [7] 0.461 0.667 0.759 0.461 0.392 0.339

VSRN w/ Detectron2 0.315 0.516 0.607 0.315 0.275 0.241
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Embedding Generator
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Search Engine

A Boston terrier is 
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Elasticsearch Results
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Backend

A Boston terrier is 
running in the grass .
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Backend

A Boston terrier is 
running in the grass .
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Google Cloud
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Deployment
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Google Cloud
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Demo

image-text-retrieval.inovex.de
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https://image-text-retrieval.inovex.de
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Uncertainty Quantification
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Uncertainty quantification in retrieval: 

measure uncertainty of embedding in latent space

Retrieval QualityReliability More informative user 
experience



Interaction learning [11]

A Boston terrier is 
running in the grass .
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Thanks for your attention!
Questions?
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GCP Monthly Costs (January)
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Service SKU Subtotal
Compute Engine E2 Instance Core running in Frankfurt € 153.36
Compute Engine E2 Instance Ram running in Frankfurt € 82.20
Compute Engine Storage PD Capacity in Frankfurt € 26.47
Compute Engine Network Load Balancing € 17.82
Compute Engine Misc. Networking Services € 14.58
Cloud Storage Download Worldwide Destinations € 18.88
Cloud Storage Standard Storage Frankfurt € 0.71
Cloud Storage Regional Standard Class B Operations € 0.09

Total € 314.11



Uncertainty Quantification -Approaches for Retrieval
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Monte-Carlo Dropout 
[8]

Deep Bayesian 
Neural Networks [9]

Stochastic 
embeddings [10]



Uncertainty Quantification - MC Dropout [7]
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Key Idea: cast triplet loss as a regression loss and estimate epistemic uncertainty with MC Dropout

Figure taken from https://www.inovex.de/blog/uncertainty-quantification-deep-learning/



Uncertainty Quantification - BNN [8]

- Use neural networks with stochastic components after each weight layer 
(enabled during inference and training)

- Stochastic components: 
- Stochastic batch normalization
- Dropout
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Key Idea: Consider embedding-and-retrieval task as regression/classification task and apply bayesian                   
neural networks



Uncertainty Quantification - Stochastic Embeddings [9]
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Figure: Architecture for Image Encoder with Stochastic Embeddings [9]

Key Idea: Stochastic embeddings instead of deterministic ones 



Pairwise learning [11]
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Attributes learning [11]
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Interaction learning: OSCAR [4]
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