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Abstract

With the growth of retrieval and information systems a new type of search engines has
emerged: image-based search engines. Instead of searching textual documents by text a
user can search for a specific document by uploading a picture of the resource. Such a
search engine can be especially useful to improve user experience of different expert tools.
An exemplary application is in maintenance to find documentation and manuals given
the photo of a defective component. These use cases motivated the development of an
image-based document search application in this project.

The underlying task of this application is finding relevant textual descriptions for a given
image and is referred to in the literature as image-to-text retrieval. To realize this task, we
implement and evaluate in our project different state-of-the-art deep learning techniques
to embed text and images in a joint visual-semantic vector space. We explore VSE++,
a pairwise learning method, as well as Visual Semantic Reasoning, an attribute learning
method. With a joint-embedding approach, the retrieval can be formulated as a similar-
ity search in the retrieval corpus using an efficient and scalable vector-based search engine.

The main goal of this project is to develop a production-ready end-to-end system. Through-
out the whole project, design decisions were carefully considered to achieve scalability and
reliability of the application as well as good user experience including retrieval quality and
fast response time. We present a cloud-based microservice application running in a Ku-
bernetes cluster ensuring these desiderata. As we are presenting an end-to-end-application
the cluster includes a web application for the user interface, a REST-based backend, a
service for training and evaluating deep learning retrieval models as well as the distributed
search engine FElasticsearch. To overcome the challenges of deploying machine learning
models we also include MLflow as a service component to manage the machine learning
lifecycle.

We show in this report how to shift machine learning based software into production,
assuring extensibility of the system as well as scalability and ease of maintenance. Overall,
we achieved a good retrieval performance on the Flickr30k and COCO dataset as well as
fast response time to user requests. We also see that methods like attributes learning
significantly improve the retrieval quality but also lead to a longer inference time due to
additional extraction of specific attributes. The system we are presenting can easily be
adapted to any kind of retrieval corpus by training the presented deep learning models
on provided data.
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1 Introduction

With the increasing adoption of smart devices and the explosion of available data, meth-
ods to search and retrieve information have grown in importance. In the most familiar
settings text-based retrieval systems such as modern day search engines, allow us to search
large corpora of documents to find relevant information. This application is not only valu-
able on its own but also plays a fundamental role in even more advanced systems such as
question answering and machine understanding.

In addition to such applications, research has also focused on cross-modal retrieval, which
is the task of retrieving information from different forms of media, i.e. searching using
not just text, but also images, sound, etc. In this project we focused specifically on the
image-to-text retrieval problem which can enable an image-based document search. In
this domain we would like to use an image as our query and retrieve text documents
with a high relevance. The intended use case is to allow technicians to search for detailed
information about the parts of a machine which are getting serviced. This can simplify
the process of searching for information instead of spending time to find obscure names
and details to describe these parts.

The focus of our project aims to leverage state-of-the-art image-to-text retrieval methods
and deploy it to a production-ready system which can scale and evolve as demand in-
creases. This means that our focus was not only on retrieval quality but also on practical
considerations. Furthermore, our system enables a retrieval process to be done in real
time which in our case implies fast response time of the retrieval.

The following list describes the necessary requirements for our end-to-end system:

e Implement a service for retrieving text documents based on images using state-of-
the-art deep learning models for multi-modal embeddings.

Models can be replaced and extended.

Develop a standardized workflow for evaluating and deploying models to production.

Load data and train models in a consistent workflow.

Scalable database / search strategy is used to retrieve documents based on the vector
embeddings.

|Continuous Integration (CI)}/Continuous Deployment (CD)| Pipelines are available
for all components to run testing and deployment.

e Services are deployed in cloud environment.

For developing our application, we followed the agile framework SCRUM [26] which makes
inherent complexity of new software development manageable by starting with a
mum Viable Product (MVP)[and improving it incrementally. Therefore, our first step was
to explore academic research for evaluating promising approaches for the image-to-text
retrieval task and design the initial architecture of our end-to-end system. We continued
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working in two-week sprints where we developed further features and refined our applica-
tion.

To present our project, we first provide an overview about related work in Section [2} In
Section [3|and [4 we introduce the methodology of the project by first explaining the image-
to-text retrieval methods and second, explaining the system architecture of the developed
application. We present the results of our end-to-end application in Section [5| before we
conclude with a summary in Section [6] and provide an outlook for further enhancements
of the application in Section [7}
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2 Related Work

In this section, we first give an overview about deep learning methods for image-text-
retrieval and then focus on three promising approaches for our use case.

2.1 Review of Image-Text-Retrieval

Image-to-text retrieval has been extensively studied by the researchers, therefore there
are many different approaches for solving this problem. Following the categorization
introduced by [4], one can classify the methods based on the way the final cross-modal
embeddings are obtained:

e pairwise learning,
e interaction learning,

e attributes learning.

Pairwise learning methods aim at embedding texts and images in a joint vector space.
The goal is to obtain semantically similar vector embeddings for images and texts. These
approaches consist commonly of two branches, one for encoding of the images and another
one for encoding of texts. The outcomes of both branches are vectors and their similarity
is calculated. The measure of their similarity provides then the supervisory signal that is
used to improve the encoders in the training phase. Prominent examples of such methods
are [Visual-Semantic Embeddings with Hard Negatives (VSE++)| and DCMP [8 36].

Interaction methods like(Object-Semantics Aligned Pre-training for Vision-Language Tasks
or CAMP |20, [32] tend to achieve the highest accuracy among all types of meth-
ods. This group of approaches assumes that images and texts are not encoded separately.
Information flows between both branches before obtaining the embeddings in the joint
vector space, which makes it possible to learn correspondences between particular parts of
images and texts. However, such interactions make these methods prohibitively expensive
in terms of computation.

Attributes learning methods such as [Visual Semantic Reasoning Network (VSRN) and
ACMM |19, |13] attempt to obtain high-level features from both texts and images and
then compute correlation between them. The difference to interaction methods is that
there is no flow of information between text and image branches when creating their
vector representations. The correlation between features is calculated after the feature
extraction, which leads however to increased inference time.

In the next sections we provide a broader introduction to the methods that we decided to
focus on for our image-to-text retrieval system. As stated in Section [T our system should
provide fast retrieval, that is why, the accuracy scores achieved by the methods could
not be our only selection criterion. Hence, we will introduce [VSE+-+ and [VSRN| which
we find to be suitable approaches for fulfilling the pre-defined goals. We provide also
a comparison of them with [OSCAR] which outperformed all other approaches in terms
of accuracy but is not suitable for an efficient image-to-text retrieval system due to its
computational complexity.
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2.2 VSE++: Improving Visual-Semantic Embeddings with Hard
Negatives

embeds text and images in a joint vector space. The image i is passed through
an image encoder ¢(i, ©,), whereas a caption ¢ through a text encoder ¥(c, ©) to obtain
their vector embeddings. ©4 and ©, express the model parameters of image and text
encoders respectively. These embeddings are then mapped into the joint vector space:

f(i>Wf’@¢) = W?¢<279¢) (1)

g(C, Wf> @1/)) = Wf¢(l, 91,11) (2)
Similarity in the joint vector space denoted as s(i, ¢) is measured by cosine similarity.
The model is trained using a loss function focused on hard negatives. Hence, for an image
text pair (i,c) one wants to maximize its dissimilarity with the most similar incorrect
image and caption in the batch. Most similiar incorrect image can be denoted as: i’ =
argmax,_;s(j, c) and most similar incorrect caption as ¢ = argmax.s(7, d).
Thus, the loss is defined as:

L(i,¢) = maxfo + s(5,¢) — s(i,)]. + maxla+ s(,¢) = 56,04 3)

where « denotes a margin, which is a hyper-parameter of the model [§].

The authors used in the experiments VGG19 as an image encoder and [Gated Recurrent|

Unit (GRU)| as a text encoder |27, |6].

2.3 VSRN: Visual Semantic Reasoning for Image-Text Match-
ing

In past work, the image embeddings had no semantic features that represent relationships
between objects or salient regions in the image. However, when humans perceive an im-
age, we not only see the individual objects but also recognize the relationships between
them. [19] tries to build a system similar to human vision and reasoning by intro-
ducing an image representation that captures the relationships between objects.

Inspired by the success of bottom-up attention mechanism in image captioning [1], recent
image-text retrieval models make use of object detection models such as Faster R-CNN
[25]. One of previous works, SCAN |[18], uses a Faster R-CNN model to extract image
region features and then applies attention to the regions and text tokens to generate the
embeddings. It achieved remarkable performance on image-text retrieval tasks.
introduced a more advanced architecture by including a [Graph Convolutional Network|

to capture semantic features of images and outperformed SCAN.

[VSRN]is built on top of VSE++], and therefore they are similar in the structure. It also
maps images and text into a joint embedding space of dimension D and computes cosine
similarity between them. However, has a unique image encoder architecture, which
consists of [GCN] and bottom up attention using Faster R-CNN.
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Bottom-Up Attention The goal of bottom-up attention is to generate a set of image
region features V = {vy,...,u3},v; € RP using regional features F' = {fi,..., fx}, fi €
R2048 extracted by a Faster R-CNN. Each feature vector v; represents an object or salient
region in this image. The amount of regions to represent an image is restricted to 36
selected by the highest detection confidence scores. To obtain v;, we first extract regions
features f; € R2%%® using the Faster R-CNN and forward it through a fully-connected layer
with the parameters Wy and by to transform them to a D-dimensional vector:

v; = Wyfi+ by (4)

Image Encoder with [GCN| and [GRU| Using the region features, a fully-connected
graph G, = (V, E') with weighted edges is constructed where V' is the set of region features
obtained by bottom-up attention and the adjacency matrix F contains the affinity scores
for each edge connecting two regions. An edge with high affinity score indicates a high
correlation between the two regions. The pairwise affinity of two regions v;, v; is computed

by

(v, v5) = p(vi) T p(vy)
p(vi) = Wyu; (5)
o(v;) = Wy
where W, and Wy are learnable weight matrices. GCN with residual connections is
applied to the graph G, to generate a set V* = {v},...,v;},v; € RP containing region
features with relational properties. Mathematically, this can be expressed as

Ve =W,(EVW,) +V (6)

where W, € RP*P is the weight matrix of the GCN layer, W, is the weight matrix of
residual structure and £ € R¥** is the row-wise normalized affinity matrix.

To perform reasoning on these region features, [GRU]| takes the region features in V* and
updates the hidden representation which describes the whole image. The final embedding
I of the image is the last memory cell.

Text Encoder and Loss Functions uses the same text encoder as
To train the model, a loss function consisting of two objective functions Lj; and
L¢ is used.

L=Ly+ Lg (7)

The matching loss Ly, also inherits the loss of VSE++ a hinge-based triplet ranking loss
with emphasis on hard negatives. Additionally there is a caption generation loss Lg to
optimize the reasoning capabilities of the[GCN] Sentences similar to ground-truth captions
can be generated by applying a sequence-to-sequence model with attention mechanism
[31] to image embeddings. The caption generation loss is defined as the negative
log-likelihood of the predicted sentence:

!
Lo ==Y logp(ulyi,V":0) 8)
t=1

where [ is the length of output word sequence Y = (y1,...,y;) and @ is the parameter of
the sequence-to-sequence model.
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2.4 OSCAR: Object-Semantics Aligned Pre-training for Vision-
Language Tasks

OSCAR] [20] is the state-of-the-art vision-language model. It can be widely used in many
vision-language tasks such as image-text retrieval, visual question answering or image
captioning. For image-to-text retrieval task, is first pre-trained on image-text
pairs to generate image and text embeddings and performs a binary classification to find
the most similar image-text pair.

Pre-training Input of is a triple (W, Q, V) where W is the sequence of word
embeddings of the text, ) is the word embedding sequence of the object tags detected
from the image, and V' is the set of image region features. () and V are generated using
Faster R-CNN. Each region feature v € V' is a position-sensitive region feature vector. It
is generated by concatenating region feature v’ € R?*#® and region position z € R* or RS
extracted from an image by Faster R-CNN. A set of object tags with high precision is also
detected by Faster R-CNN. @ is the sequence of word embeddings of these object tags.
The pre-training objective of [OSCAR] consists of two loss functions, masked token loss
and constrastive loss. The masked token loss is defined as the negative log-likelihood:

Ly, = _E(V,H)ND log p(hi‘H\i; V) (9)

where H = [W, Q)] is the discrete token sequence. At each iteration, each input token in
H is masked with probability 15% and replaced by a special token [MASK]. The masked
tokens should be predicted by their surrounding tokens H\; and all image features V.

The constrastive loss is defined as:
Lc = _]E(H/,W)ND logp(y|f(H', W)) (10)

where H' = [Q, V]. 50% of tokens in @ are replaced by random tokens from the dataset.
The loss L¢ aims at punishing the examples that contained the replaced tokens, but were
predicted to be correct.

The full pre-training objective is defined as the sum of masked token loss and contrastive
loss:

LPre—training = LMTL + LC (11)

Image-Text Retrieval To solve the actual image-text retrieval task OSCAR casts the
retrieval into a binary classification problem for each image-text pair where a higher classi-
fication score indicates semantic similarity between image and text. Therefore, the model
is also optimized using a binary classification loss. During test time, each image-text pair
is forwarded through the network to obtain classification scores. By selecting the top K
image text pairs with highest classification scores the results are retrieved.

The authors of [OSCAR] argue that using tags of objects from images and learning cor-
respondence between image regions and words of captions with multi-head attention are
crucial for achieving the state-of-the-art results on benchmarks. However, due to the
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complexity of pre-training procedure as well as foreseen long inference time because of
computational complexity of this approach, we find it not suitable for an efficient image-
to-text retrieval system.
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3 Model Selection

In the following section we will introduce the methodology to develop the image-to-text
retrieval component of our service. Therefore, we will first introduce the datasets which
serve as our retrieval corpus. Due to a lack of real-world data we use publicly available
datasets which are used in academic research. Second, we explain the evaluation metrics
used to compare different approaches. Finally, we will introduce a baseline followed by
the actual image-to-text retrieval methods we implemented.

3.1 Datasets

To evaluate our implementations and benchmark additional experiments we chose to use
Microsoft (Common Objects in Context (COCO)| [21] and Flickr30k [35]. These datasets
are the de facto standard for evaluating research in this area. In general the images
contained in both datasets can be characterised as diverse, with objects in context, making
them challenging for computer vision models to understand. They also include short
one sentence descriptions of what the picture contains. The captions were generated by
following the same guidelines as originally outlined by [12| using [Amazon’s Mechanical|
Turk (AMT)| These instructions included focusing on visible objects in the image and
describing the scene from an objective third person perspective. Captions were also
checked for basic spelling correctness and relevance to the reference image.

3.1.1 Flickr30k

The Flickr30k dataset was originally published with the intent of spurring more advanced
research in the domain of natural language processing [35]. It consists of 31,783 images
collected from Flickr each annotated with five captions. The dataset sets aside 1,000
images and related captions for validation and testing respectively. The original purpose
of such data was to measure the linguistic similarity between the five related captions
written by different annotators. This means that in its original inception, the dataset was
not explicitly focused on the actual content of the images and the authors didn’t balance
the images for different classes of objects leading to a bias towards images of humans and
animals. Despite the shortcomings in the image data, because of it’s high prevalence in
the research we deemed it worthwhile of using in our experiments.

3.1.2 COCO

In contrast, the [COCO] dataset was conceived with the explicit purpose of advancing
the state-of-the-art object recognition and scene understanding [21], 5]. While previous
computer vision datasets included pictures of single objects in ”iconic” poses, the purpose
of [COCOQ] was to collect more complex images where objects are contextualized, meaning
objects can be found in scenes and in all manner of poses. Exploiting lessons learned from
preexisting datasets like ImageNet [7] the authors also carefully considered things like:

e How often do categories of objects appear in the dataset.

e The number of copies of an object in a single image (i.e. the number of people in a
photo).
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e The size of objects varies so that computer vision models must consider additional
items, aside from the largest object in the foreground.

In total [COCQ| contains 123,287 images, from which we randomly select 113,287 for
training and 5,000 for validation as well as testing [15]. Similar to Flickr30k each image
is annotated with five captions.

3.2 Evaluation Metrics

We have chosen the following metrics to evaluate our models. For most of our comparisons
we use recall and precision as they are commonly used to evaluate information retrieval
tasks. These metrics allow us to evaluate if our model is able to retrieve the relevant text
given that the text exists in our database.

In addition, we are evaluating our retrieval system using [Bilingual Evaluation Understudy|
a metric to measure similarity of texts. In this way, we introduce a continuous
text relevance instead of a binary relevance and measure how the retrieval is performing
on unseen data. This simulates the situation where we want to retrieve the most appro-
priate caption for a new image from a fixed corpus containing only imperfect captions.
Additionally, it allows us to compare our baseline approach which we introduce in Section
3.3 with the image-to-text models.

3.2.1 Recall and Precision

In order to evaluate our retrieval performance we use the ranking metrics recall and pre-
cision at position K (R@QK and PQK respectively). Generally, RQK measures how often
the correct response appears in the top K results whereas PQK measures how many of
the top K results are relevant.

To calculate RQK for a given image query, we sort the results of an image query by
their cosine similarity, and then considering the resulting top K captions we indicate in a
binary fashion whether or not one of the relevant captions is present. While at the instance
level this is binary, averaged over the entire test set it provides an intuitive measure of
retrieval performance. Similarly PQK is calculated by considering what percentage of the
top K ranked results from an image query are relevant. PQK is especially useful if the
underlying dataset contains multiple relevant documents for a given input image. In most
of the literature K is set to 1, 5, and 10. However, for our use case we expect a user will
want to look through fewer than ten documents and chose to measure performance at K
set to 1, 3, 5.

3.2.2 Bilingual Evaluation Understudy

In addition to precision and recall, we also utilize [23] to provide a multi-level
ranking between the captions. Originally devised as an automatic means of evaluating
machine translations, [BLEU] considers a set of reference sentences and a candidate trans-
lation and scores it based on n-gram precision. This means in the uni-gram case for a
reference sentence "the cat on the mat" and candidate "the fat cat", the candidate
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would score % = 0.4. While there are many possible ways to configure the score,
in particular defining how many n-grams one wants to consider, we use the default
lural Language Toolkit (NLTK)| implementation which considers up to quad-grams [3].
We do not further experiment with other configurations because we are not focused on

translation and the BLEU]score serves simply as a metric for evaluating retrieval quality.

3.3 Baseline

Since our data contains explicit image-caption pairs, a naive approach to achieve image-
to-text retrieval is to first apply image-to-image retrieval and then, for the best matching
image result, return its corresponding captions from the dataset.

Using this approach we avoid the task of learning a mapping into a joint embedding space
and instead assume that an image encoder can create embeddings which will help us re-
trieve similar images with similar captions. While this is simpler in terms of modeling,
it is also more restricted because our model cannot use additional semantic information
that is provided by the captions. Due to this limitation, we anticipate that the retrieval
quality will suffer.

To evaluate this baseline we use our test set as query images, the training data as a
pool of candidates and then we compared if image-to-image search yielded more similar
captions than the primary image-to-text retrieval process. Since PQK and RQK are
not well defined for the task of image-to-image retrieval, we adopt the [BLEU| metric to
compare retrieval methods. Concretely, for a given image and its set of captions, (i,, C,)
we generate an embedding for the image and then search for the image embedding with the
highest cosine similarity from our set of candidate images and return the resulting image
and its captions (i,,C,). In order to generate these embeddings a pretrained ResNet152
[11] with the final classification layer removed is used to generate image embeddings of
dimension 1024. This model was chosen in order to maintain comparability with our
VSE-++ implementation which we will outline next.

3.4 Implementation

In the following section we will describe the final implementations of the image-to-text

retrieval models. We chose [VSE++ and because, despite lower accuracy than
[OSCAR], it provides faster inference time as mentioned in Section [2.1]

3.4.1 VSE++

The dimensionality of the joint embedding space in which aims to embed images
and text is set to 1024 in our experiments. We use a Resnet152 for encoding the images
and a [GRU]| for encoding text. Before feeding the images in the encoder, the images are
resized to the shape 224x224 and for training additionally centered and randomly cropped.

In order to preprocess our captions a vocabulary was determined using available training
data. The vocabulary contains all tokens that occur more often than a defined threshold
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in all captions. On the combined flickr30k and [COCO]dataset this results in a vocabulary
with 16461 words.

The captions are tokenized using [3], one-hot encoded respecting our vocabulary
and then passed through a embedding layer to obtain word embeddings of dimension 300
which serves as the input to the text encoder.

3.4.2 VSRN

As described in Section [2.3[VSRN] uses semantic features in the images to generate visual-
semantic embeddings. The original paper relied on pre-computed image regions from a
Faster R-CNN model as the semantic features [25]. Since we, however, need to build an
end-to-end system which can generate embeddings for new, unseen images, we need to
integrate Faster R-CNN into our model. Because training a Faster R-CNN is computation-
ally expensive and resource consuming we use Detectron2 for that task - an open-source

framework which implements state-of-the-art detection algorithms and region extractors
[34].

Due to the fact that [VSRN]is built on top of and to ensure comparability many
configurations remain identical. We set the dimension of the joint embedding space again
to 1024 and applied the same transformations to the text including tokenization, one-hot
encoding using pre-defined vocabulary and learnable embedding layer resulting in word
embeddings of dimension 300.
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4 Service Architecture

Having introduced the deep learning component of our system we will now describe the
overall service architecture required to build our image-based document search. In order
to manage the complexity of this system while implementing the project goals as stated
above in Section [I] we made use of agile software deployment methodologies, DevOps
frameworks and careful user experience design.

Our application is decomposed into a set of manageable services which in our case are
faster to develop, easier to understand and updated independently. This architecture de-
sign is also known as microservice architecture.

Figure [1] gives an overview of our system architecture by visualizing components of our
application, interactions between individual components as well as hosted infrastructure.
Most of our services are deployed in a Kubernetes cluster which uses the Google cloud in-
frastructure but when it comes to model development and embedding generator which are
computationally expensive we run the services in the inovex GPU cluster. The frontend
is the only service the user interacts with, where the request for text-retrieval for a given
image is handled. That request is sent from the frontend to our backend service where we
manage the business logic of our application. To enable a separation of concerns, many
of our applications rely on the REST E| standard to communicate.

The following sections will discuss in further detail the technology tool and process for
deploying our cloud application.

Google Cloud
GPU cluster @inovex
o<
= miflow
Model Model storage
training and
evaluation &

/ Backend Frontend User

—©

Embedding Search
generator engine
N

Figure 1: System architecture overview

Lrestfulapi.net
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4.1 Cloud Computing

Cloud computing is the on-demand delivery of I'T resources via the internet with pay-
as-you-go pricing. Instead of owning physical data centers and servers, one can access
technology services such as computing power, storage and databases.

The essential characteristics of cloud computing are on-demand self service, broad net-
work access, resource pooling, rapid elasticity and measured service [24]. Cloud service
providers such as Google Cloud, Microsoft Azure and Amazon Web Services offer different
service models, where the three most common models are Software as a service, Platform
as a Service and [Infrastructure as a Service (laaS)|

4.1.1 Google Cloud

|Google Cloud Platform (GCP)f| is a group of Google’s computing resources, made avail-
able as a public cloud offering. There are many services offered by [GCP| in terms of
networking, big data, compute and storage, which make it possible to construct custom
cloud-based infrastructure. By leveraging the capabilities of [GCP] our application
benefits from running technology agnostic frameworks thereby giving us the flexibility to
deploy any application server and web framework that we deem fit. Some of the
products that are offered are: Compute Engine, Cloud Storage, Virtual Private Cloud,
Kubernetes Engine and Persistent Disk.

For deploying the application we considered Kubernetes Engine and Compute Engine.
While the Compute Engine offers virtual machines, storage options and configuration
options, we decided to use the Kubernetes Engine. Kubernetes is a step up from Compute
Engine and offers many convenient features that suit our application. In the next section
we will further illustrate Kubernetes and its benefits.

4.1.2 Kubernetes

Kubernetesﬂ is a platform for automating the deployment and scaling of containerized
applications across a cluster [30]. By using container-based virtualization for our mi-
croservices, we leverage the container clustering solutions to accelerate the development
and operations process. [14]. The leading container platform is Dockerf| which we use to
package our services into ”containers”, allowing them to be portable among any system
running the Linux operating system.

In Kubernetes we can not run containers directly, instead one or more containers are
wrapped into a higher-level structure called a pod which is the smallest unit of Kuber-
netes. Furthermore, in Kubernetes we have master and worker nodes where each worker
node is managed by the master node. A node can contain multiple pods, and the Ku-
bernetes master node automatically handles scheduling the pods across the nodes in the
cluster [17].

2cloud.google.com
3kubernetes.io
4docker.com
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Achieving scalability, high-availability and fault tolerant capabilities is possible and easier
with Kubernetes because some of its features include service discovery, load balancing,
horizontal scaling and self-healing.

The most popular and flexible method for load balancing in Kubernetes is Ingress. Ingress
is a resource for routing external HTTP(S) traffic to internal services [17]. With load bal-
ancing we distribute network traffic across multiple servers such that no single server
carries too much demand. Moreover, load balancing sends requests only to servers that
are online and also offers the flexibility to add or remove server based on the demand.

If a worker node in a Kubernetes cluster fails, the self-healing feature guarantees that
it is replaced automatically and this way provides high availability of our service. This
means that we don’t have to deal with checking health status of every component in our
application (see Figure [1)).

4.2 Continuous Integration

One of the key challenges in software development is the detection of errors introduced
while developing new code, before its deployment. One idea is that each application
upgrade should have incremental code changes between deployments so that fewer unin-
tended consequences are introduced. By following this practice we manage to improve
the maintenance of our components.

To implement this upgrade we apply the practice of Continuous Integration(CI) where
every code change is automatically and continuously built and tested, ensuring the intro-
duced changes pass all tests, and the application can be containerized.

We use GitLab as our Git-repository manager where the continuous integration pipeline is
also provided. After each code push in our repository the continuous integration pipeline
is executed.

4.3 Components

Since our application is based on a microservice architecture, we will explain in this section
the basic functionality of each of the components and the tools we used.

4.3.1 Model Training and Evaluation

The selection of a proper model for image-to-text retrieval is very important for the quality
of the implemented system. In order to ensure a reliable process of model selection, the
models shall be trained on the same data and evaluated using the same metrics. In this
way, a fair comparison of the models is performed. Automation of this process has been
achieved by implementation of a software module for training and evaluation of the models
in a unified way.
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This module is responsible for defining the following aspects:
e unified processing of datasets
e implementation of the image-to-text retrieval models
e implementation of the training procedure
e implementation of evaluation metrics
e logging the metrics to the model management service
e storing the trained model in the model management service

One of the project goals mentioned in Section [1| was ensuring that models can be easily
extendable and replaceable. For that purpose, the implementation of the models as well
as training and evaluation procedures was based on Pytorch Lightningﬂ The evaluation
is performed using the metrics described in section |3.2] Results of the experiments and
trained model are stored in the model management service introduced in the next section.

4.3.2 Model Management

Developing a deep learning based software poses several new challenges to the software de-
velopment process. It requires handling the complex and iterative process of the machine
learning lifecycle including data collection, model training, verification, deployment and
monitoring [2]. In contrast to a software development process this lifecycle is ”empirical,
combinatorial and data driven” [9] requiring extensive experiments to find the optimal
model in the vast space of possibilities. To ensure reproducibility, documentation and
responsible handling of compute resources, tracking and organizing the experiments is
important. Further, model versioning allows tracking and monitoring which model is in
production.

To overcome these challenges and manage the machine learning lifecycle we use the open-
source platform MLflow [22]. In particular we rely on the following three features: MLflow
Tracking, MLflow Models and Model Registry. The open-source platform also comes with
a Python japplication programming interface (API)| user interface as well as built-in in-
tegrations for Pytorch which simplifies the integration into our system.

The first component of MLflow we are using is the tracking tool. As the name suggests
the component MLflow Tracking is used to track metadata of experiments in a central-
ized storage. It enables the developer to log metadata about training, dataset and the
model itself to organize experiments and compare and reference metadata at any time.
For packaging the trained models we use the second component, MLflow Model. For later
deployment of the model we serialize the trained models in the environment-independent
format torchscript. Torchscript is a unified framework to deploy models for inference in
production without requiring source code or pytorch installed. In order to deploy these

Sgithub.com/PyTorchLightning /pytorch-lightning
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packaged and serialized models the third component Model Registry is used. It is a cen-
tralized model storage organized by model categories which facilitates model versioning.
This enables simple tagging and deployment of models to to the end-user inference system.
We tag the models manually to add a checkpoint before shifting a model into production.

4.3.3 Search Engine

Following the project goals stated in Section [} our system should be able to perform
an efficient and fast retrieval of the textual results based on the similarity of vector
embeddings. By relying on two-branch methods with a joint embedding space for image
and text it is possible to pre-compute all vector representations of our underlying retrieval
database and store them. The retrieval step can be therefore formulated as:

1. Receive an embedding of an image

2. Find the most similar text embedding among all the pre-computed text embeddings

Such formulation allows us to reduce the retrieval time in the production system as the
texts do not need to be processed by a text encoder for each user request. This makes it
possible to reduce the operation costs of our system and increase its performance. Another
benefit is the possibility of leveraging the existing solutions, that are designed to perform
an efficient similarity search of dense embeddings. In the next sections of this chapter
we will introduce the chosen search engine as well as the process of indexing the vector
embeddings and their retrieval.

Elasticsearch

The choice of a search engine for our system was conditioned on a few criteria:
e storage and indexing that supports efficient retrieval of dense vectors
e scalability to large amounts of data
e simple integration with the chosen technology stack

Elasticsearch is a distributed storage that fulfills all the defined criteria. Additionally
it is a well-established, mature solution with good documentation and support. In the
following we describe how Elasticsearch was incorporated into our system.

Elasticsearch Data Schema

The structure of the data stored in Elasticsearch is presented in Listing 1. Every image-
caption pair (7, ¢) in the dataset has its corresponding entry (¢(i), ¢, ¥ (c)) stored in Elas-
ticsearch, where ¢(7) is the vector embedding of an image i and v (c) is a vector embedding
of a caption c¢. Both image and caption embeddings are of dimensionality 1024, which
correspond to the dimensionality of the joint vector embedding space described in section

B.4.11
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Listing 1: The data schema stored in Elasticsearch

1

{

2 "image_embedding":{

3 "type":"dense_vector",
4 "dims":1024

5 +,

6 "text":{

7 "type":"keyword"

8 },

9 "text_embedding": {

10 "type":"dense_vector",
11 "dims":1024

= =

w N

—
—

Embedding generation

The procedure of supplying our instance of Elasticsearch with data consists of the following
steps:

1. fetch the trained model from model registry (training procedure and model man-
agement described in the sections [4.3.2 and [4.3.1])

2. calculate the vector embeddings of all texts and images in the dataset

3. save the calculated vector embeddings in Elasticsearch

Text retrieval

In order to retrieve a text, Elasticsearch is queried with an embedding of an image. Later,
a search process based on cosine similarity is performed with the aim of finding the entry
containing the most similar text embedding. As the entry contains also the original text
corresponding to the embedding, it can be directly returned as the result of the query.
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4.3.4 Backend

One of the core components of our end-to-end system is the backend of our web application
which coordinates the retrieval task and serves user requests. Using the Python framework
Fast APIF, our backend server provides an endpoint which receives an image and returns
the most similar captions.

The workflow to retrieve the text for the requested image is as follows:

e The backend is always provided with the latest version of our model by using the
model registry explained in [4.3.2]

e The endpoint processes the received image and generates an embedding using the
loaded model.

e With the generated embedding we find the most similar text embedding by querying
in our search engine.

e The response in the end contains ten descriptions which best represent the given
image.

4.3.5 Frontend

The frontend service offers a simple and responsive user interface that allows users to
upload an image and retrieve texts that best describe the uploaded image. For building
the user interface we use Vue.j§’| which is a frontend JavaScript framework. Vue.js has
many benefits when it comes to building light-weight web apps. Some of the benefits
include:

1. Vue.js itself as a framework has a very small size compared to other JavaScript
frameworks.

2. It offers reactive two-way data binding that makes it easier to update related com-
ponents and track changes to the data.

3. It is easy to use and simple to integrate into other applications built on JavaScript.

bfastapi.tiangolo.com
“vuejs.org
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5 Results

The following section presents the results of our full end-to-end application. Therefore,
we first discuss the achieved retrieval performance of the implemented models. Then, we
present some scalability benchmarks for our search engine and end this section with the
actual price estimates of our application and how the user interface looks.

5.1 Models
5.1.1 Baseline vs. VSE++

First, we focus on the relative performance of our baseline method using ResNet152 with
our multi-modal model by comparing their scores. The scores for
the baseline are calculated taking the maximum achievable score with C; as our reference
sentences, and treating the sentences of C,. as candidate captions. As explained in Section
C, refers to the ground-truth caption and C) corresponds to the set of captions from
the most similar image. To compare this to image-to-text retrieval we can again use
our query image and captions (i4,C,) and retrieve the five most similar captions Ci,s,
note here, the captions could be associated with different images, and again calculate the
maximum achievable [BLEU] score. As shown in Table [I] we see that that our [VSELH|
model achieves a comparatively higher score than the baseline implementation on both
datasets. Although these scores are generally low, this only serves as a proxy to measure
how well our image to image model can translate an image into one of the predefined
captions of our dataset. These results also provide confirmation that our image-text
retrieval can outperform our naive image-image retrieval approach.

Model | Flickr30k | COCO
VSE++ 0.182 0.251
Baseline 0.132 0.229

Table 1: BLEU]| scores comparing [VSE++| with Baseline

5.1.2 Cross-Modal Retrieval

In the following, we will present and discuss the results we obtained for image-to-text
retrieval using and [VSRN] In contrast to academic research, we took the addi-
tional step of training the models on the combined datasets, Flickr30k and [COCO] since
the focus of our project is on creating a compelling system for the end user. This en-
hances retrieval quality by providing model with as much training data as well as using
the broadest possible corpus of captions available. To first validate the correctness of our
implementations we confirmed that the models performance are inline with the published
results.

The models were trained for 25 epochs using Adam optimizer [16] with a learning rate
of 2-107% and a batch size of 128. The learning rate was reduced every 15 epochs by a
factor of 0.1. To avoid vanishing gradients gradient clipping for a norm of 2 was applied.
The margin for the contrastive loss was set to 0.2. To decrease the training time loading
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Model R@1 | R@3 | R@5 | P@Q1 | P@3 | P@5
VSE++ 0.343 | 0.542 | 0.634 | 0.343 | 0.388 | 0.244
VSRN with pre-computed features | 0.461 | 0.667 | 0.759 | 0.461 | 0.392 | 0.339
VSRN with Detectron2 0.315 | 0.516 | 0.607 | 0.315 | 0.275 | 0.241

Table 2: Results of image-to-text retrieval models evaluated trained on Flickr30k and
[COCO} We refer to Recall@K as R@QK and Precision@K as PQK.

data was parallelized among 10 workers.

As shown in Table [2] the obtained results are mixed. While achieves a relatively
strong performance of R@1 0.343 and RQ@5 of 0.634, the [VSRN] implementations yield
inconsistent results. We can see that while the [VSRN]| with pre-computed regions clearly
outperforms on every metric (improving the recall by 12%) our end-to-end im-
plementation of using Detectron2 scores worse than on every metric.

Although discouraging, we expect that it must be due to subtle differences in the training
of the Faster R-CNN. While Detectron2 was developed for segmentation tasks and trained
on[COCO] the originally used bottom-up attention [1] was developed for image captioning
which is more similar to our intended use case than image segmentation. To achieve the
same results and have a model that can properly be used for inference, implementing the
bottom-up attention introduced by [1] in Pytorch is required. Due to a lack of time and
computational resources we leave this as subject of further research.

5.2 Search Engine

Next we turn our attention to some of the other practical aspects of the project. In
particular we chose Elasticsearch as our search engine because we wanted to use a stable
system which was performant, simple to integrate and supported search using embeddings.
While relatively simple to query and use from the client perspective, managing this system
was more challenging than anticipated. In particular, we were surprised to find that in
our current system we needed to allocate a large amount of memory to our elasticsearch
cluster. As shown in Figure [2] for indexes with relatively few documents, the retrieval
step is acceptably fast. The problem comes as scale your index to hundred of thousands
or millions of documents that you would like to rank using cosine similarity. In such
a situation, it is critical that one considers using compute resources which are memory
optimized. This will allow the application to benefit from the scalability and speed of
Elasticsearch.

5.3 Cloud Pricing

In Table 3| we present a brief overview of the monthly costs we accrued from running
all the services running to support entire application during the month of January. Un-
surprisingly, we can see that the major cost components are associated with Google’s
Compute Engine which are the fixed compute resources we’ve allocated to the cluster. If
we wanted to consider cost saving measures we could certainly think about automatically
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Retrieval time from Elasticsearch
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Figure 2: A plot comparing the retrieval time in seconds for a single image embedding
query as the size of the index i.e. the number of embeddings increases.

shrinking the cluster during low usage hours. However, cost savings was not one of the
core goals of our project, and since prices were in an acceptable range, we left things
as they were. That being said, the system in it’s current state is a first iteration. In a
production environment with high demand we would certainly benefit even more from
features like Kubernetes auto-scaling which allow the available resources to both grow
and shrink with changes in resource utilization.

5.4 'Web Application

Finally, we present a brief overview of our web application in Figure [3 Here the user
just needs to select and upload their favorite picture. Upon submission they will be
presented with a selection of ten possible captions ranked by similarity as shown on the
right side. This example show how effective our retrieval method is, from our database
of over 500,000 captions we see that all results match thematically, and within our top
five results we have relevant results. For the final use-case where we would like to retrieve
long technical documentation instead of brief captions it is likely that the user interface
would need to be restructured. As previously mentioned, a simple step would be reducing
the number of results returned to avoid overwhelming the user.
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Service Resource Type Subtotal
Compute Engine | E2 Instance Core €153.36
Compute Engine | E2 Instance Ram €82.20
Compute Engine | Storage PD Capacity €26.47
Compute Engine | Network Load Balancing €17.82
Compute Engine | Misc. Networking Services €14.58
Cloud Storage Download Worldwide Destinations €18.88
Cloud Storage Standard Storage €0.71
Cloud Storage Regional Standard Class B Operations €0.09

Total €314.11

Table 3: A high-level overview of the operational costs for the month of January, note,
we manually aggregated a group of ”Misc. Networking Services” which on average cost

less than 1 euro.

Image Text Retrieval

Upload Image

Browse... 000000000400.jpg

Textual Results

Figure 3: An example screenshot of the user interface returning relevant captions for the

uploaded picture.

SEND

« ariverboat is hauled by a much larger house boat

+ awhite boat is tied to a dock

+ awhite boat full of stuff out on the water .

+ the small white boat sits out of the water on its trailer .

» asmall dog sitting on top of a white boat .

+ asmall white boat on the water by a dock .

+ awhite pontoon-type boat is in the water with people in it .

= the white boat on the water have stopped .

+ asmall boat in the water is tethered to a dock .

+ asmall white boat sits in the water .
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6 Summary

This project focused on building a scalable, modular image-based document search. Build-
ing such a system required that we not only understand and implement state-of-the-art
research, but also consider what impacts it would have on the architecture and speed of
our system. This goal guided us to prioritize simpler approaches [VSE+-+ and [VSRN] over
state-of-the-art methodologies such as [OSCAR]

Furthermore, in contrast to the typical one-off approach of academic code, our deep learn-
ing models needed to be trained, evaluated and deployed in a consistent manner in order
to manage complexity of the overall system. This allowed us to not only train multiple
models in a relatively brief period of time, but also provides a path to maintain and
seamlessly replace models as the system develops.

Finally, in order to serve as a framework which can benefit inovex in the future we lever-
aged modern infrastructure best practices to provide the foundation for a stable system.
Through the use of technologies like unit tests, [CI| pipelines, and infrastructure as code we
can be confident that our code and infrastructure are running in a stable and reproducible
manner.

Execution of this project also presented many challenges for our team. Fundamentally,
the academic topic is challenging because it draws knowledge from natural language pro-
cessing, computer vision, and information retrieval. Even with the challenges we had
training [VSRN] it still showed significant performance improvements over show-

ing the power of attributes learning methods.

In addition, this project lays out a strong roadmap how to build a production-ready
image-to-text retrieval system. While the tech stack we employed is complex with many
layers of abstraction, we observed that many of the technologies we have adopted are
in fact very mature and help manage the complexity of an end-to-end system. Further,
as previously mentioned there are also many open topics which could be investigated to
improve aspects such as scalability and performance.
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7 Outlook

To further enhance the performance of the image-to-text retrieval system, there are many
improvements to the modeling which could be done. First, training an end-to-end [VSRN|
which includes a Faster R-CNN inspired by the bottom-up attention mechanism and fine-
tuned on the retrieval corpus should yield better performance. Especially for the intended
real-world use case this can provide a huge benefit regarding user experience since the
retrieval quality increases.

As stated in our report we focused on approaches with a joint visual-semantic embedding
space to achieve efficient and fast retrieval. However, interaction methods have shown
that removing this constraint and modeling interactions between features of images and
text leads to a significant improvement in performance [20]. To circumvent the high infer-
ence time of O(n) with n being the total number of text entities in the retrieval database
we propose a two-step retrieval to balance the trade-off between retrieval quality and
response time [29]. In the first step responsible for pre-selection the top [ similar image-
text pairs are retrieved using a pairwise learning method with low inference time. In the
second step, we then apply the interaction method which operates on each of the [ image-
text pairs instead of the whole corpus to retrieve the final result of top K most similar
text entities. With K < | < n the required response time can be significantly reduced
compared to relying only on an interaction method. It is subject of further research to
verify the effectiveness of this approach and evaluate if it leads to the expected increase
in retrieval performance while keeping the inference time low.

Further, we want to propose adding uncertainty quantification to our retrieval model to
assess the reliability of our system and to identify out-of-distribution samples to reject
queries for which we have no fitting response in the underlying retrieval corpus. Besides
improving the reliability uncertainty quantification can be useful to identify weaknesses
in the model.

Uncertainty quantification is a novel upcoming research topic and has mostly been stud-
ied for regression and classification tasks. For retrieval, however, research is still in its
infancy. First approaches cast the retrieval task to a regression or classification task us-
ing Monte-Carlo Dropout [28], Deep Bayesian Neural Networks [10] as well as stochastic
embeddings to estimate uncertainty [33]. In all three approaches, uncertainty of the map-
ping into the visual-semantic space is estimated instead of representing the uncertainty in
the similarity score of two embeddings. The presented approaches seem to be promising
for our application and we would like to encourage further work on that to improve the
trustworthiness and reliability of our system.
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