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Abstract
Automatically generating captions for images is an exciting area of research, combining
the challenges of modeling human vision and natural language understanding. Typically,
this challenge is tackled with modern deep learning concepts, resulting in complex neural
network models. Deploying these models to a production environment requires careful
engineering to ensure high availability.
This report summarizes our project aiming to develop an image captioning model that is
deployed on the cloud, embedded in a robust production environment. The development of
our model is based on latest research, using convolutional neural networks to extract image
features and LSTMs to generate text of arbitrary length. Visual attention and algorithmic
post-processing steps enabled us to build a model with state-of-the-art performance on
famous open-source datasets.
We embedded our model into a service-oriented architecture (SOA) that enables multiple
desirable properties of a production environment beyond high availability. This includes
elasticity, i.e. responding to changes in demand on the service in near real-time, con-
tinuously deploying new versions of individual services without disrupting the system,
and monitoring failures with a high level of granularity. Eventually, we leveraged the
power of the Google Cloud Platform to focus on application development rather than
provisioning infrastructure. With the usage of GPUs to perform model inference, our
system easily scales to hunderds of concurrent requests while keeping response times be-
low one second despite the apparent complexity. The service is also publicly reachable at
https://dilab.inovex.de.

https://dilab.inovex.de
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1 Introduction
Over the last decade, machine learning has taken the world by storm, exhibiting im-
pressive performance on numerous tasks ranging from playing games over understanding
natural language to replicating aspects of human vision. One task, in particular, that has
been studied to great extent in the scientific community is the problem of automatically
generating captions for images. This is a challenging task considering that a machine
learning model has to have both the ability to perceive images as well as to generate text
— the latter still being a mostly open research question due to the discrete nature of
natural language. Nonetheless, researchers have been able to develop powerful models
that are able to accurately summarize the contents of images [1, 16, 17, 18].
With our project, we want to enable end users to leverage these advances in image cap-
tioning. This allows not only the general public to get a feeling for the current state of
image captioning research but also enables developers to generate captions for a large
number of images. This, in turn, allows for more advanced information retrieval pipelines
merely based on images.
However, building a scalable image captioning service requires skills not only in statistical
modeling but also in data and software engineering. Deploying a machine learning model
into production and enabling hundreds of simultaneous users goes far beyond the area of
expertise of a data scientist. Data preparation, model development and training constitute
only a tiny fraction of the tasks required to build a robust system as already discussed in
depth by Sculley et al. in 2015 [14].
The complexity of deploying machine learning models with state-of-the-art techniques is
only amplified by recent developments in application management. Over the last couple
years, advances in low-overhead virtualization, cluster management software, microservice
architectures, and cloud computing have changed the way companies approach the design
of large-scale software systems.
Our system was developed over the duration of four months in partnership with inovex
GmbH and under the guidance of Dr. Robert Pesch, Sebastian Blank and Julia Kron-
burger.
In this document, we want to outline the approach we have taken to build our image
captioning service. In Section 2, we will first dive into the design of our model driving
our system’s predictions. Building upon that, Section 3 will then outline techniques to
enable continuously evaluating new iterations of model architectures. Lastly, in Section
4, we will focus on our system’s architecture and how we ensure high availability under
the assumptions of operating under high load, the existence of adversaries, and unreliable
infrastructure. To round things off, Section 5 will give an overview about the application
programming interface exposed by our system as well as the user interface visible to the
end-user along with the model and load testing results.

1.1 Development Cycle

Agile methodology is recently commonly adapted in many areas as a more interactive
approach within the development cycle. The following briefly explains how we applied
agile methodology during our software development cycle.
The project was kicked off by a brainstorming session where team members and mentors

https://www.inovex.de/
https://www.inovex.de/
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collaboratively decided on the project’s points of focus. Based on a variety of ideas, a
common understanding of the project’s progress emerged and the backlog was filled by
the mentors. Scrum was chosen as a project management process framework as illustrated
in Figure 1 in order to enable a high degree of flexibility over the short duration of the
project. We worked in sprints of two weeks, always introducing a new set of features
within that time-frame. In order to keep track of current and upcoming tasks, we made
use of Jira. Furthermore, Confluence was leveraged to document our progress and share
valuable information, Slack was used for asynchronous communication, and GitLab for
code collaboration as well as continuous integration and deployment as further described
in Section 4.3. Additionally, each sprint was concluded with a Sprint Retrospective where
we individually provided positive and negative feed-backs for the completed sprint, and
based on the feed-backs, took actions that needs improvement within the following Sprint.

Figure 1: Scrum Framework

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence
https://slack.com/
https://about.gitlab.com/
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2 Model Development
In the following, we want to outline the architectures of the models that we have devel-
oped to perform image captioning. To justify our choices, we will provide some general
background on artificial and convolutional neural networks as well as LSTMs first.

2.1 Background

Artificial neural networks have originally been inspired by biological neural networks.
Mathematically, a simple two-layer fully connected neural network can be described as
follows:

s = W2 max(0,W1x+ b1) + b2

(W1 ∈ RN×D,x ∈ RD, b1 ∈ RN ,W2 ∈ RQ×N , b2 ∈ RQ

Here,W1,2 are weights and b1,2 are biases that can be optimized by some procedure such
as gradient descent. One of the most important aspects is the non-linearity (activation
function) that allows for arbitrarily complex, highly non-linear, functions when stacking
many layers.

2.1.1 Convolutional Neural Networks (CNN)

Convolutional neural networks are a category of neural networks that are particularly
applicable when working with images. They combine three architectural ideas to ensure
some degree of shift, scale, and distortion invariance: local receptive fields, shared weights
and spatial or temporal sub-sampling [6]. Using these concepts, they generally require
much fewer parameters and provide better performance.
The convolutional layers can be described via three dimensions — width, height and
depth. The depth describes the number of filters with learnable parameters. Intuitively,
their purpose is to extract “shapes” or “visual features” by being slid across the input.
In addition to the convolutional layers, pooling layers are often used to decrease the width
and height dimension and decrease computational complexity in subsequent layers.

2.1.2 Long Short Term Memory Cells (LSTMs)

Long Short Term Memory cells were introduced by Hochreiter and Schmidhuber and
belong to the family of recurrent neural networks (RNNs) [5]. They are most commonly
used when working with sequential data such as text. Conceptually, they can encode
variable length inputs into a fixed-size vector and, likewise, generate a sequence from a a
fixed-size encoding. RNNs take sequence of vectors x1, . . . ,xn and an initial state vector
h0 as an input and return corresponding output vectors y1, . . . ,yn and hidden states
h1, . . . ,hN . yi depends on all the inputs and hidden states with index j < i. So yn can
potentially capture information about the whole input sequence.
RNNs are fully differentiable and can be trained via gradient descent by performing un-
rolling. However, when sequences are long it becomes more challenging due to vanishing
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gradients [12]. LSTMs are a specific type of RNNs which attempt to solve this prob-
lem by introducing gates that enable gradients to “flow” better and to detect long-term
dependencies.

2.2 Vanilla Encoder-Decoder Model

The encoder-decoder image captioning method works in a simple end-to-end manner and
consists of the following steps:

1. A convolutional neural network is used to extract features from the image.

2. The output of step 1 is linearly transformed to have the same dimension as the
LSTM network which processes it into a sequence of words. The next words are
generated based on the current time step and the previous hidden state. This process
continues until and “end-of-sequence” token is generated.

For the development of our own encoder-decoder model we used resnet-152 [4], pre-trained
on ImageNet. The decoder was chosen to be an LSTM network. The arhcitecture is
illustrated in Figure 2.
In the training phase, for the decoder part source and target texts are predefined. For
example, if the image description is “A dog is lying on the grass” , the source sequence is
a list containing [’<start>’, ’a’, ’dog’, ’is’, ’lying’, ’on’, ’the’, ’grass’] and the target
sequence is a list containing [’a’, ’dog’, ’is’, ’lying’, ’on’, ’the’, ’grass’, ’<end>’].
Using the source and target sequences as well as the feature vector, the LSTM decoder is
trained as a language model conditioned on the feature vector.
In the test phase, the encoder works in the same way as in the training phase. However, the
LSTM decoder can not see the image description. Therefore it feeds back the previously
generated word to the next input (auto-regressive approach).

Input Image 
[224 x 224 x 3]

ResNet 
[1 x 1 x 2048]

CNN

Pre-Trained on 
ImageNet

MLP

Trainable 
Layer

LSTM LSTM LSTM LSTM

Softmax Softmax Softmax Softmax

A dog is <end>

<start> A grassdog

Figure 2: Vanilla encoder decoder

2.3 Attentive Encoder Decoder

A common issue with encoder-decoder architectures is the bottleneck problem. The encoder
has to encode the input into a fixed-size vector containing all the required information for
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sentence generation. As this is a non-trivial task, attention mechanisms are introduced
to improve the performance.

2.3.1 Attention in Neural Networks

The main idea of attention is to break down the input into smaller parts and allow the
decoder to prune unnecessary parts. This process is conditioned on the current state of
the decoder, allowing different sub-parts of an input to be considered at different decoding
steps, hence mitigating the bottleneck problem.
Suppose x = x1, . . . ,xn are the parts of an input. At the decoding step, let ht−1 and ot−1
be previous hidden state and previous output, respectively. Then, the attention value at
decoding time step t is generally defined as a(t)

att = fattention(ht−1,x). The input to the
current decoding step becomes a concatenation: [ot−1;a

(t)
att]. Here, fattention is often taken

as a trainable single layer neural network which outputs a distribution over the inputs
and then simply takes their weighted sum, yielding a value for aatt. This requires the
input to be naturally composed of smaller parts. In case of machine translation, these
can be source sentence words. In our case of image captioning the small parts of the input
decoder can “attend to” are individual pixels.

2.3.2 Visual Attention for Image Captioning

Visual attention for image captioning was proposed by Xu et al. [18]. The general ar-
chitecture is shown in Figure 3. This model is a significant improvement over the basic
encoder-decoder described above, although it still follows the same structure.
The first difference comes in the encoder part, where the encoding of an image is no longer
a single 2048-dimensional vector, but a feature map of size 14 × 14 × 2048. The image
is reduced to a lower-resolution feature map where each pixel corresponds to some region
of smaller pixels in the original image and has a 2048-dimensional encoding. We will use
this encoding for calculating attention values in the decoder and get the distribution of
attention over original image pixels.

The first hidden state h0 = [c0, s0] is calculated by taking the mean of the image encoding
and passing it through separate trainable multi-layer perceptrons (MLP). The first input
x0 is just a random embedding for a special token word 〈start〉 concatenated with initial
attention a0. wt denotes the output word with highest probability at time step t.

Eimg = EncoderCNN(image) ∈ R14×14×2048

Ē = mean(Eimg) ∈ R2048

c0 = finit,c(Ē) ∈ R512

s0 = finit,s(Ē) ∈ R512

Et
att = fattention(Eimg,ht−1) ∈ R196

xt = [wt−1;E
t
att] ∈ R256+196

ht = LSTMR(ht−1,xt,at) ∈ R1024
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Input Image 
[224 x 224 x 3]

ResNet 
[14 x 14 x 2048]

CNN LSTM LSTM LSTM

Softmax Softmax Softmax

A dog <end>

<start> A grass

MLP

Cell State + 
Hidden State

AttentionPre-Trained on 
ImageNet

+

Attention +

MLP

MEAN

Figure 3: Encoder-decoder model with visual attention

The attention function fattention can be defined in various ways. Xu et al. describes a
variant called hard attention [18] which randomly samples only a single pixel out of 14·14 =
196. This unfortunately makes the model no longer differentiable, so simple gradient
descent can not be used for optimization anymore. Since the performance improvement
is not significant, we chose to use soft attention defined below.

fattention(Eimg,ht−1) = Eimg �α

α = softmax(AW att)

A = ReLU(EimgW
img +W hht−1) , with

W img ∈ R2048×1024,W h ∈ R1024×1024,W att ∈ R1024×1,A ∈ R14×14×1024.

Because α is a distribution and a weighting factor of the input image, it represents which
parts of the input image the decoder gets to have as an input. Using this knowledge,
we can visualize this distribution over the original input image and see which part of the
image the decoder uses when predicting a particular word. Examples of such visualizations
from our attention model are given in Figure 4.

2.3.3 Additional Benefits of Attention

Having an attention module in neural networks often improves the model performance.
This has been shown numerous times in the field of machine translation [9]. Attention
also helps with the infamous gradient vanishing problem of recurrent neural networks by
providing additional pathways for gradients to flow through during backpropagation. But
perhaps the most important benefit is interpretability which is especially helpful when
exploring model errors. Such examples are shown in Figure 5.
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(a) a person is skiing down a
snowy slope

(b) a herd of cattle grazing on
a lush green hillside

(c) an elephant is standing in
the field with trees

Figure 4: Examples of visual attention for underlined words

(a) a bird that is standing on a
tree

(b) a group of elephants swim-
ming in the water

Figure 5: Attention visualization for words that the model got wrong

2.4 Beam Search

So far, only the greedy decoding approach has been described as taking the most probable
word at each decoding step as shown in Figure 6.
This is intuitively sub-optimal, because there is no way to undo mistakes at earlier steps.
A less probable beginning in a sentence could have resulted in better continuation and
overall a better caption. One efficient solution of this problem is called beam search and
an example for decoding a sentence using beam search is shown in Figure 7.
Instead of taking a single most likely word at each time step, beam search takes k most
probable words. Then, for each of those k previous words another k possible continuations
will be generated. To keep number of tracked sequences from increasing exponentially,
the algorithm only keeps the top k of possible sequences after each decoding steps. This
does not lead to an optimal solution to the problem, but in practice, it provides significant
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Figure 6: Greedy decoding of a sentence. Image from cs224-github.

improvements over greedy decoding.
k is often referred to as beam width. Using beam search decoding also allows to have
multiple different sentences as a decoding result, ranked by their estimated probability.
To gain a better understanding of why greedy decoding is a sub-optimal approximation,
we can resort to a probabilistic perspective. The goal of the decoding step is to find the
most probable caption c∗, i.e. the most probable sequence of words w1, . . . , wn given the
image I. While beam search approximately finds the mode of the joint distribution p,
greedy search only considers the factorized distribution p defined by p1, . . . , pn, formalized
as follows:

c∗beam ≈ arg max
w1,...,wn

p(w1, . . . , wn|I)

c∗greedy = arg max
w1,...,wn

n∏
i=1

pi(wi|I).

Hence, in order for c∗greedy to be optimal, words in a sentence must be independent. Intu-
itively, this independence assumption does not hold true, supported by the evidence that
uni-gram language models are well known to perform poorly.

2.5 Data Sets

Image captioning has a lot of widely available public data sets. We chose MSCOCO
[8], Flickr30k [13] and Flickr8k since they are most commonly used data sets to report
evaluation scores on. The statistics of these data sets can be found below in Table 1.

2.6 Evaluation Metrics

The comparison of the generated text with the ground truth is often addressed challenging
in machine translation and image captioning tasks. In our project, the MSCOCO evalu-

https://jeongukjae.github.io/posts/cs224n-lecture-15-natural-language-generation/
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Figure 7: Decoding a sentence using beam search. Numbers given are log probabilities of
words. Image from cs224-github.

Dataset Dataset Type # of Images Images with # of Captions
4 5 6 7

MSCOCO train 82783 82586 196 1
MSCOCO val 40504 40373 128 3
Flick30k train 31783 31782
Flickr8k train 6000 1 5993
Flickr8k val 952 950
Flickr8k test 953 952

Table 1: Image Captioning Data Set Statistics

ation server [2] that is used for the MSCOCO Captions dataset is adjusted to be used in
our system for the evaluation of the captions generated by our model. For the evaluation
of our statistical model BLEU, Meteor, ROUGE-l and CIDEr scores are implemented in
order to assess the quality of the generated caption. The score for a batch of images is
obtained by taking the average over the batch.

2.6.1 BLEU

BLEU score is the most commonly used text evaluation metric. It analyzes the precision-
based exact n-gram matches between the candidate and the references. An n-gram is a set
of one or more ordered words [11]. The BLEU score per n-gram is calculated as follows:

Bn(C,R) =
count(Cn ∩Rn)

count(Cn)
,

where Cn is the set of n-grams of candidate and Rn is the set of n-grams of all refer-
ences per image. The matches between candidate and references are considered position
independent among the references. To favor the short candidates and penalize the long
candidates, a brevity penalty is used as stated in the following formula:

https://jeongukjae.github.io/posts/cs224n-lecture-15-natural-language-generation/
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b(C,R) =

{
1, if lC > lR

e1−lR/lC , if lC ≤ lR
,

where lC is the total length of candidate and lR is the total length of the closest reference.
The overall BLEU score is then computed by taking the average of individual n-grams
including the brevity penalty.

BLEUN(C,R) = b(C,R) exp

(
N∑
n=1

wnlog(BN(C,R))

)
,

where N = 1, 2, 3, 4 and wn = 1
N

to consider the average of all n-grams.

To sum up: even though BLEU score is easy and fast to calculate it does not correlate
well with human judgement.

2.6.2 Meteor

Meteor considers sentence-level word alignments between candidate and references indi-
vidually [3]. Unlike BLEU, Meteor does not only evaluate exact token matches but also
considers word stems, synonyms and paraphrases.
Considering all the matches between the best scoring reference and the candidate, the
precision PM and recall RM are computed as follows where m is denoted by the set of any
match, lC is the length of the candidate, lR the length of the reference, and the number
of chunks1 ch. α, β and γ are free parameters such that the metric fits human judgement
better.

PM =
|m|
lC

RM =
|m|
lR

Fmean =
PMRm

αPM + (1− α)RM

Pen = γ.(
ch
|m|

)β

Meteor = (1− Pen)Fmean

2.6.3 Rouge

Rouge has a set of metrics designed differently such as the measurement of the sentences
based on n-gram recall, a set of shared words and skip bi-grams [7]. We adapted Rouge-l
which uses a measure based on a set of shared words that exists both in the candidate
and the reference, named the longest common subsequence (LCS). Rouge-l is calculated
on a sentence-level which means it considers the score of the best matching reference per
candidate. Unlike n-grams approaches, Rouge-l allows in-sequence matches instead of
consecutive matches, and there is no need to predefine n-gram length as it already covers
the longest possible match.
Rouge-l is referred as the F-measure calculated from the recall Rlcs and the precision Plcs

between the sequence of words of candidate and reference.
1A chunk is defined as the series of contiguous and identically ordered matches in both candidate and

reference
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Rlcs =
LCS(C,R)

lR
, Plcs =

LCS(C,R)

lC

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
,

Here, C is denoted as the set of words of the candidate and R similarly of the reference.
LCS(C,R) refers to the longest common subsequence of C and R, and β = Plcs/Rlcs.

2.6.4 CIDEr

CIDEr evaluates how good a candidate matches the consensus of references by considering
the TF-IDF weights of each n-grams [15]. By TF-IDF, the n-grams that commonly occur
across all images are weighted lower as they are likely to be less informative and vise versa.
A sentence will be first represented as a set of its n-grams considering one to four words.
Then, a TF-IDF weighting of each n-gram is calculated with the following formula:

gn(S) =
Sn∑
l∈V Sl

log

(
|I|∑

Ip∈I min(1,
∑

q Sq)

)
.

The first part holds for TF where Sn is the number of times an n-gram occurs in the
sentence S, V is the vocabulary of all the n-grams. I is the set of all images and the
second part holds for IDF value.
The CIDEr score for n-grams of length n is calculated by the average cosine similarity
between the candidate and references as following

CIDErn(C,R) =
1

m

∑
j

gn(C).gn(R)

||gn(C)||.||gn(R)||
,

where gn(C) is a vector formed by gn(C) of all n-grams of length n. The varying length of
n-grams is then combined by taking the average of all CIDERn scores where n = 1, 2, 3, 4.

CIDEr(C,R) =
N∑
n=1

1

N
CIDErn(C,R).
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3 Experiment and Model Management
Model development code is comprised of a very small part of any production ready ma-
chine learning system. Sculley et al. discuss the current hidden debts in general machine
learning systems in details which include debts in data dependencies, reproducibility,
process management, configuration and abstraction [14].
In order to tackle these technical debts we have introduced a model evaluation framework
by leveraging the technologies mentioned in Figure 8 as well as a complex service archi-
tecture which we will discuss later in Section 4. This architecture allows us to develop
models as part of an infrastructure which reduces the need for such dependencies.

Data Loading Interface Training Interface Experiment Tracking

Figure 8: Model Evaluation Framework

3.1 Data Loading Interface

As discussed in above sections, there are a variety of publicly available data sets. In
order to reduce data set dependency in model development, we introduced a data loading
interface as visualized in Figure 9. This interface not only allows us to abstract data
dependencies away from model development, but also enables the development of models
with reproducible results, as the desired data sets can easily be configured.

MSCOCO

Flickr30k

Flickr8k

Image Storage

Metadata

Common Format

Query DSL

Data Loader

Figure 9: Data Loading Interface
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All data sets are converted into a common format where the images are stored in a Google
Cloud Storage Bucket. The images’ URLs, along with other metadata information (such
as dataset of origin, image height and width) as well as all available reference captions are
then stored in MongoDB, a NoSQL database. The database is then queried by a query
DSL and a PyTorch data loader provides an interface for model development, combining
metadata and images.
One of the key components of the data loading interface is the Query DSL that we
introduced. It allows for a very easy configuration of the data set that is used to run an
experiment. The custom regular expression is comprised of the following four parts:

1. Dataset (MSCOCO, Flickr30k, Flickr8k)

2. Dataset split (Train, Validation, Test)

3. Number of items

4. Seed for sorting items

<dataset>[<datasetSplit>]-<numitems>s<seed>

mscoco[train]-1000s42

3.2 Training Interface

Image captioning models are developed either locally or in the cloud. Model training
environments can differ depending on which types of resources are available. Model de-
velopment should be free from any process management or environment dependencies.
We introduced abstractions, which allowed models to be trained on CPUs and GPUs
depending on the resources which are available.
One of the key components of any model training process are its hyper-parameters which
require tuning over different experiments. Such parameters are important to be config-
urable for ease of training as well as be logged to ensure the results are always reproducible.
The model training repository contains a Python evaluation script which can be run by
providing the name of the chosen model directory where the model is defined along with
its set configurations. The script automatically trains and later, evaluates the model on
a fixed pre-defined data set based on the evaluation metrics discussed in Section 2.6.

3.3 Experiment Tracking

The models trained and evaluated across different environments can get lost until all of
them are logged and stored in one place. A MLflow server acts as logging server which
enables us to track all experiments, log metrics evaluation results and store models as
artifact in a model repository. The desired models are then registered in the MLflow
server and can later be loaded as elaborated in the next section.
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4 Service Architecture
Modern production systems are expected to fulfill a broad variety of requirements. One
important aspect is high availability, ensuring that the service is available at all times.
In this regard, measures to achieve fault tolerance need to be taken, assuming that the
physical underlying infrastructure is unreliable. At the same time, response times have
to be kept low even if lots of users are concurrently accessing the service. This, in turn,
requires a way to automatically increase computational resources under a high load. These
aspects will be focused on in Sections 4.1 and 4.2.
Additionally, new iterations of the service ought to be deployed without taking the service
down at any point and failures should be monitored continuously. These two aspects will
be discussed in Sections 4.3 and 4.4, respectively.

4.1 Cloud Computing and Virtualization

Since the introduction of Amazon Web Services in 2006, cloud computing has transformed
the way many companies provide services to their users. Instead of managing their own
on-premises data centers, many companies have moved their workload to different cloud
computing platforms. Generally, cloud computing is characterized by providing companies
with an on-demand, seemingly infinite, pool of computing resources [10]. While cloud
computing platforms provide many forms of services, our project was focused around
their “Infrastructure as a Service” (IaaS) offering.
This offering enabled us to easily use fundamental compute resources where we could
run arbitrary software. Importantly, we could also leverage cloud computing platforms’
property of “rapid elasticity”, enabling to “scale rapidly outward and inward commensurate
with demand” [10].

4.1.1 Google Cloud Platform

The Google Cloud Platform (GCP) is the cloud computing service offered by Google. Out
of the many offerings, we made use of three components in particular:

• Cloud Storage enables storing large amounts of (binary) data cheaply. As already
described in the previous section, we primarily used this service to store the data
used for training our models.

• Compute Engine allows for creating virtual machines (VMs) with arbitrary config-
uration regarding number of CPUs, available RAM as well as GPUs. In order to
train our models in a reasonable time, we created VMs of appropriate size.

• Kubernetes Engine provides a fully managed version of Kubernetes, a cluster man-
agement system that we will describe in more detail in the following. The Kuber-
netes cluster represents the core of our production-grade architecture.

inovex provided us with a sufficient budget to make use of all these components to a
reasonable extent.

https://cloud.google.com/
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4.1.2 Docker and Kubernetes

At the same time as cloud computing emerged, virtualization techniques2 gained ever
more traction — the incentive being that multiple heterogeneous applications should be
deployable easily into a production environment although development happens locally.
One of the most prominent tools for ensuring a consistent environment for applications
is Docker. Here, a so-called Dockerfile is used to specify a base operating system, depen-
dencies of the application and install the application itself, resulting in an image. That
image can then be used to run the application fully isolated from all other processes by
leveraging low-overhead Linux virtualization concepts. The running image is then referred
to as container.
Kubernetes then builds upon Docker. As a container orchestration system, it is responsible
for distributing containers among the nodes of a (large) compute cluster depending on the
containers’ resource requirements. For an application to be run via Kubernetes, so-called
Kubernetes manifests are used to specify higher-level properties of the application. While
a pod is a collection of multiple Docker images, deployments manage pods to ensure a
certain replica count. That means, whenever a pod goes down for some reason, Kubernetes
ensures that it is restarted again, distributing traffic automatically among the running
pods — a first step towards high availability. Likewise, whenever an entire node goes
down, pods are re-scheduled on healthy nodes. Further features of Kubernetes and how
we make use of them will be elaborated in the following sections.

4.2 System Design

The design of our system revolves around the idea of a cloud-native application. One of
the most prominent properties of such an application is the use of a service-oriented ar-
chitecture (SOA). Instead of building a monolithic system, responsibilities are partitioned
into independent (preferably stateless) microservices with a single, well-defined task.
Such an SOA brings a multitude of benefits. First, potential errors are isolated and the
system remains functional in the case of occasional interruptions. Second, components
can be developed independently while using different programming languages — only the
interface between the components has to be defined. Lastly, microservices can easily be
scaled horizontally3 and traffic can be load-balanced among them.
In our case, we isolate these microservices using Docker containers and orchestrate them
across a cluster of nodes using Kubernetes. The entire infrastructure is eventually provi-
sioned by the Google Cloud Platform.
Figure 10 gives a high-level overview of our architecture. All requests that are made
against our service go through an edge-level load balancer provisioned via the Google
Cloud Platform as well as an “internal” load balancer, a so-called ingress controller. This
concept will be explained in more detail in Section 4.2.1.
Depending on the request, the traffic is eventually routed to the correct backend service.
On the one hand, we established a frontend service serving the static files4 needed to

2Here and in the following, we are referring to type II (OS-level) instead of type I virtualization.
3Horizontal scaling refers to scaling by adding more nodes and using more replicas of an application.

This is in contrast to vertical scaling where more powerful nodes are used.
4In our case, this comprises HTML, CSS and JavaScript files.
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Load Balancer

Frontend

App Server

Model Server

Figure 10: High-Level System Design

display a graphical user interface in the browser.
On the other hand, we use an application server managing the “business logic” of our
application. Its responsibilities will be explained in more detail in the following but its
main purpose is to provide a “gateway” to the model server. The model server is only
reachable from inside the cluster and performs the inference for the currently deployed im-
age captioning model. Communication is performed via gRPC, an efficient cross-language
communication protocol. We will discuss the reasoning behind this choice in the following.

4.2.1 Load Balancing

Load balancing is a very important concept of cloud-native applications as it allows to
mitigate the effect of isolated failures as well as to distribute a high load. When balancing
between a set of resources, it periodically checks these resources’ health and distributes
traffic among the healthy ones. Generally, we use load balancing on different levels:

• An edge-level load balancer provisioned by the Google Cloud is responsible for
distributing incoming traffic among all of the cluster’s nodes. Traffic is distributed
in a round-robin fashion upon every incoming TCP connection (L4 load balancing).
Additionally, the load balancer exposes a static IPv4 address to which we point a
DNS A record.

• Once the traffic hits the cluster, it is redirected automatically to one replica (of
possibly multiple) Nginx ingress controllers. First, these controllers provide load
balancing based on the content of the HTTP request (L7 load balancing). All
requests against a route starting with “/api” are routed to the application server
while all other requests are routed to the frontend. Second, they provide TLS
termination. Hence, all traffic is secured via HTTPS once it leaves the cluster’s
network.

• Lastly, we perform load balancing when routing traffic from the application server to
the model server. While Kubernetes provides L4 load balancing within the cluster

https://grpc.io/
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by default, the usage of gRPC requires L7 load balancing5. For this, we make use
of Linkerd which we will discuss in more detail in Section 4.4.1. Its load balanc-
ing capabilities are very advanced — for instance, it distributes requests inversely
proportional to an exponentially decayed average of response times.

4.2.2 Frontend

The frontend service is responsible for serving the static files that are used by the browser
to display the graphical user interface. We use Vue.js as a JavaScript framework that
enables reactive web applications. Such a web application does not require any reloads
but re-renders the user interface once any data that should be displayed is changed. While
using Vue.js, we opted for using TypeScript instead of JavaScript — by introducing types,
many issues can be caught prior to compilation.
Using webpack, the Vue.js code is then “compiled” into HTML, CSS, and JavaScript files6.
These files are further minimized — e.g. variable names are replaced by as few letters as
possible. The reduced size eventually brings the benefit for a decreased page load time.
The static files are finally included in a Docker container running Nginx. As a web server,
Nginx is optimized to serve these files as quickly as possible while providing additional
features. For example, files are “gzipped” to further decrease their size.

4.2.3 Application Server

The application server provides the interface for our application programming interface
(API) and acts as a “gateway” to the model server. Whenever a captioning request comes
in, the image is sent to the model server and its response is returned back to the client.
In the meantime, the image is uploaded to Google Cloud Storage. The link to the image
is combined with the captions outputted by the model and are logged to a MongoDB
instance.
The entire request is further associated with an ID. That ID can then be used to provide
feedback for the model’s predictions. As soon as feedback is provided via the API, it
is associated with the log that was previously written to MongoDB. Eventually, this
information can be leveraged to improve model performance.

4.2.4 Model Server

The model server is possibly the most central component of our architecture as it performs
the most compute-heavy task. Given some image as input, it infers the captions based on a
previously trained model. That model is implicitly defined simply by a name and a version
number. When starting up, the model server loads the specified model from the MLflow
model repository and uses it to perform inference. Based on availability and required
response times, the model can either run on a GPU or on a CPU. Notably, the entire
code for the model does not need to be included in the model server. We use PyTorch’s
just-in-time compilation feature to compile the model into a binary file after training. We

5gRPC uses HTTP/2 under the hood which reuses TCP connections. As a result, load balancing of
TCP connections does not distribute load evenly and request-based load balancing is required.

6The resulting JavaScript code is ES5-compliant, i.e. it runs on older browsers as well.

https://linkerd.io/
https://vuejs.org/
https://webpack.js.org/
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can then use this compiled model to run inference with a “black-box-component”, resulting
in a set of possible captions and (non-normalized) probability scores.
As far as communication with the model server is concerned, we already described above,
that the server is only reachable from within the cluster. For such intra-cluster communi-
cation, gRPC is a common choice as it enables very fast cross-language communication,
decoupling components from each other. Under the hood, gRPC spawns a new thread for
every request coming in. Further, it uses Google’s Protobuf which is optimized for fast
(de-)serialization7 to minimize latency.

4.2.5 Autoscaling

Autoscaling describes a system’s ability to automatically increase or decrease computa-
tional resources commensurate with demand. Generally, there are two kinds of autoscaling
that we use in our image captioning service:

• Service-level autoscaling adjusts the number of replicas of a given service (e.g. the
model server) once its resource requirements hit a certain limit. For example, we
allow a model server replica to use two CPUs. We then spawn as many model servers
as required to keep average CPU usage below 50% to guarantee fast response times.

• Cluster-level autoscaling, on the other hand, adjusts the computational resources
that are available for all services combined. Based on the requirements of all services,
entire nodes (with pre-configured size) are automatically added/removed from the
cluster. Kubernetes makes sure that services are then distributed among all nodes.

4.3 Continuous Integration and Deployment

Continuous integration (CI) and continuous deployment (CD) are two concepts that are
often employed to ensure a high-level of quality of production systems despite frequent
code changes. The idea behind CI is to run a certain set of operations each time a code
change is pushed to a git repository. In our case, these operations include automated tests,
building container images and uploading these images to a so-called container registry
where they can later be referenced. CD, in turn, refers to the deployment of new iterations
of a service to the production environment without disrupting the service.
For all of our services, we adapted the GitHub Flow: the code that runs in production
is always on the master branch. Whenever a new feature is developed, a new branch is
opened and can be merged back into master whenever all automated tests succeed and
code review has been performed. Additionally, whenever deploying into production, we
issue a git tag following SemVer2. Docker images are then build for each new tag and can
later be referenced again. This means, it is always possible to go back to earlier iterations
of a service.

4.3.1 GitLab Runner

In order to execute the operations to be done in the CI/CD pipeline, we used GitLab
runner as it integrates well with our repository management system GitLab. Every repos-

7Describes transforming binary data into native objects and vice versa.

https://guides.github.com/introduction/flow/
https://semver.org/
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itory with such a pipeline includes a “.gitlab-ci.yml” file that defines multiple steps to take
whenever a specific operation happens. A common sequence of events is the following:
once master is tagged, run automated tests, build the Docker image, tag it with the git
tag, and deploy it to production. If any of the steps fails, the entire pipeline is stopped.
Hence, the production system is not impacted until the very last step and theoretically
continues to function properly.
A common issue when running such pipelines is that credentials are required, e.g. to
connect to databases. In order to include these credentials as “configuration parameters”
into the repository, but not leave them readable for everyone, we make use of sops. It
uses Google Cloud KMS, a fully-managed cryptographic key management service, to store
encrypted credentials in the repository.
Lastly, it is mentionable that the GitLab runner runs in its own Kubernetes cluster.
This way, the non-continuous workload by the CI/CD pipelines do not interfere with our
production system.

4.3.2 Kubernetes Helm

Helm is often referred to as package manager for Kubernetes. In our case, we mainly
use it to bundle a set of Kubernetes manifests (as shortly introduced in Section 4.1.2) for
each of our microservices (independently). Whenever something is changed within these
manifests, Helm detects these changes and modifies Kubernetes resources accordingly
with as little changes as possible. Apart from that, we considered the usage of Helm to
be beneficial due to the following reasons:

• Helm makes it possible to use templates for (the rather complex) Kubernetes man-
ifests and uses simple value files for configuration, reducing configuration effort to
a minimum.

• Helm provides rollbacks. Whenever a deployment fails for some reason, one can
very easily go back to an earlier version of the application that was running without
failures.

Lastly, we use Helm to deploy some third-party components such as the MongoDB
database, the MLflow server, and the GitLab runner instance. In these cases, we only
need to provide the value files to configure template Kubernetes manifests.

4.4 Monitoring

Continuously monitoring workloads in a production environment is very important to
identify failures and anomalies, and resolve them quickly. A particular challenge with
service-oriented architectures is the distributed nature of the entire system. Failures
often propagate through the system and identifying the root cause is non-trivial. In our
system, we used two different kinds of monitoring.

4.4.1 Linkerd Service Mesh

A service mesh is a very recent technique towards monitoring service-oriented architec-
tures. As microservices communicate frequently with each other to fulfill their tasks,

https://github.com/mozilla/sops
https://helm.sh/
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monitoring intra-cluster communication is very relevant. For this purpose, we use Link-
erd which also happens to provide load balancing capabilities as described in Section
4.2.1.
Linkerd injects a so-called sidecar proxy, an additional Docker container into every service
that is running. All ingress and egress traffic to and from the service goes through that
proxy. This enables logging all requests and identifying anomalies such as a high failure
rate.

4.4.2 Prometheus and Grafana

Prometheus and Grafana are very common tools for cluster-wide monitoring. While
Prometheus scrapes and stores metrics such as the CPU usage over time (both of the
cluster in total and individual services), Grafana can be used as a dashboard, visualizing
these time series.

https://prometheus.io/
https://grafana.com/
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5 Results
The evaluation of our system is separated into two main functional parts which are eval-
uated independently. The first one regards the statistical model that actually generates
the captions. Here, we evaluate the quality of the captions by comparing them to the
ground truth given in the respective training data set.
The second one evaluates the performance of our system as a whole entity. In order to
evaluate the system we create an artificial load testing method — manually generating
system traffic while continuously monitoring software performance metrics: response
time and throughput (number of requests processed per second).
Last but not least, a description of the graphical user interface and the application pro-
gramming interface are given.

5.1 Model Results

We report all the aforementioned image captioning metrics for both the baseline and visual
attention models. Tests were conducted on the random 10% test split of the respective
datasets. We also provide the results from the reference paper [18] that our visual attention
implementation is based on. We used beam width of size 10. Unfortunately, the reference
paper does not state the exact beam width parameter they used. All the results are
summarized in the Table 2.

Dataset Model BLEU1 BLEU4 ROUGE METEOR CIDER

Flickr8k
Baseline 35.8 4.5 32.0 12.1 6.6
Attention 62.6 18.2 48.3 18.4 38.5

Attention + Beam 67.6 24.6 52.4 21.4 60.1
Reference 67 21.3 - 20.3 -

Flickr30k
Baseline 36.8 5.3 33.3 13.4 7.4
Attention 61.2 16.6 48.3 16.8 25.6

Attention + Beam 68.4 23.4 50.0 19.3 44.3
Reference 66.7 19.1 - 18.4 -

MSCOCO
Baseline 41.4 11.0 43.7 19.6 35.3
Attention 70.8 24.0 52.9 22.7 48.3

Attention + Beam 72.7 30.3 54.4 24.1 87.6
Reference 70.7 24.3 - 23.9 -

Table 2: Evaluation results of our and reference models on different metrics and datasets.
The reference model evaluation numbers are taken from the "Show Attend and Tell" [18].
On every data set and metric the attention model with beam search performs the best.

5.2 Load Testing

For testing the capacity of our cluster to serve users and scale automatically we did
synthetic load testing. Namely, we generated a load of 10 users simultaneously and
repeatedly requesting captions for random images. Load testing results are described in
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detail on Figure 11 demonstrating the ability of the system to adapt. Scaling horizontally
ensures that there is no limit on how many users the system could serve provided that
the number of machines in the cluster scales commensurate with the request rate.

Figure 11: The effect of auto-scaling on response time of image captioning service under
high load. Minimum response time stays about the same, but mean and maximum time
improves significantly.

5.3 Graphical User Interface

Graphical user interface(GUI) refers to the web-based interface where the end-users can
interact with the Image captioning system. It is essential to have an easy to use and
responsive UI design.

In Figure 12 the following possible user interactions are visualized:

1. User visits the website at https://dilab.inovex.de/ and uploads an image by clicking
on the upload icon button.

2. User clicks on "Caption Image" button.
3. User receives the listed captions for the image.
4. User visualizes the attention of the word "airplane" of the first caption by either

hovering or clicking on the word.
5. User visualizes the attention of the word "people" of the last caption.
6. User either clicks on the like button to leave a feedback for the best interpreted

caption or goes back to step 1.
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Figure 12: GUI with user interactions

5.4 Application Programming Interface

The Image captioning System is reachable through an application programming interface
(API) as well. Our image captioning API is a way of letting developers reach our system
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and integrate it with their own applications by sending HTTP requests and receiving
HTTP responses. There are two endpoints provided by the image captioning API as
listed below:

• A user sends an HTTP POST request at https://dilab.inovex.de/api/caption in-
cluding the image as a file in a JSON data format with the ’image’ key. A potential
response is shown as an example below.

1 {
2 "logId": string,
3 "captions": [
4 {
5 "attentions": list of attention images,
6 "probability": integer,
7 "text": string
8 },
9 {

10 "attentions": list of attention images,
11 "probability": integer,
12 "text": string
13 },
14 {
15 "attentions": list of attention images,
16 "probability": integer,
17 "text": string
18 }
19 ]
20 }

• A user sends an HTTP POST request at https://dilab.inovex.de/api/feedback as
a JSON form data including the logId of the image with ’logId’ key and the best
caption text as a feedback with ’feedbackCaption’ key. As a response, a success
status code is returned.
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6 Conclusion
Eventually, our service is driven by a state-of-the-art deep learning model for image cap-
tioning. Starting from a simple encoder-decoder architecture consisting of a CNN followed
by an LSTM responsible for text generation, we later included visual attention, result-
ing in improved performance. State-of-the-art was then achieved by moving from greedy
search to beam search to heuristically extract the most likely sentence from the model’s
output distribution instead of the sequence of most likely words.
During model development, we made use of an experiment management system and a
dedicated evaluation framework. This way, we could track all experiments and easily
ensure that they are evaluated on the same (unknown) data such that the best performing
model can easily be identified.
The most advanced model was then deployed within a service-oriented architecture (SOA)
that ensures high availability under the assumption of unreliable infrastructure. At the
same time, we leveraged the benefits of an SOA to ensure elasticity to respond to varying
demand and continuous deployment of individual services to facilitate development.
In order to provide ordinary users as well as developers to use our service conveniently,
we introduced both a graphical user interface hosted at https://dilab.inovex.de and an
HTTP API. For the latter, we even provided easy-to-use SDKs in Python and TypeScript.

6.1 Future Work

As far as the development of the model is concerned, plenty of future steps can be taken.
On the one hand, it might be beneficial to include some kind of uncertainty measure in the
output of the image captioning model. This way, the model can abstain from generating
meaningless captions if the image does not provide enough information (e.g. a completely
black picture) or the image is well outside the distribution of the images that the model
was trained on (e.g. diagrams). In order to prevent hand-picking a probability threshold
for the model output to classify an image as “non-captionable”, one would have to include
such images into the training procedure and adapt the architecture of the model.
On the other hand, external knowledge sources can be leveraged to generate more mean-
ingful captures as presented by Wu et al. in 2017 [17]. External knowledge sources can
identify better connections between the entities present in the image and thus enable more
meaningful captions.
Furthermore, a potential model improvement is the incorporation of user feedback which
we currently log into the database. The model can be trained continuously to improve
its performance according to the user feedback. In particular, the model will be able to
improve its performance on images that are outside of the distribution of the data set
that it was trained on. Also, the model might be trained to improve its performance on
a particular set of entities.
From an engineering perspective, a possible improvement is the rewrite of the model
server in C++ instead of Python. While the inference time itself is expected to decrease
only by a small margin as the compute-heavy steps are executed on the GPU anyway,
one can expect a significant drop in latency as well as memory consumption. Eventually,
this enables a higher throughput and reduction in costs, following a decreased demand
for computational resources.

https://dilab.inovex.de
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