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1 Introduction 

Many years ago, self-driving cars existed only in science fiction films and books. Nowadays, there are 

lots of private and governmental companies and research institutes that have invested in the 

production of autonomous cars and indeed, some of them like Nvidia were already successful in this 

area. Based on the official definition of autonomous driving given on the website of Daimler AG, 

 „[s]elf-driving means the autonomous driving of a vehicle to a specific target in real traffic without the 

intervention of a human driver.“ [1] 

A self-driving vehicle receives the required data from different sources such as cameras or sensors 

installed on the car. To drive autonomously, the car should be able to receive the data from available 

sensors, analyze it and send the controlling commands to the engine, brake and steering system, 

accordingly. In other words, the tasks done by the driver such as receiving the data by eyes, analyzing 

the images with brain and sending the steering commands to the foots and hands should be 

automated. Experts have defined in total five different level of automation which differ from another 

basically in the contribution level of the driver. These five levels are: 

1- Driver assistance 

2- Partly automated driving 

3- Full automation 

4- Highly automated driving 

5- Full automation (No driver) [2] 

The main bottleneck in autonomous driving is to train the cars to recognize the objects and obstacles 

they should avoid. Among many external objects for a car, the yellow or white lanes which define the 

borderlines of the streets and highways can be used in a positive way to train the cars to drive 

autonomously. If the car can follow the lanes, it can be assured to a high extent that the car stays on 

the street. To examine this concept, the project “Autonomous lane following in a simulated 

environment“ was established by ITK Engineering GmbH [3]. As it can be realized from the project’s 

name, the project uses a simulated environment generated by the game engine “Unity“. This car 

simulator was built for Udacity's Self-Driving Car Nanodegree program to clone the behaviour of the 

car and is freely available for everyone at GitHub repository of the project [8]. The overall idea of the 

project is to set up a virtual simulation environment utilizing the before mentioned simulator. Using 

the images collected from cameras mounted on the car and other controlling variables, a 

Convolutional Neural Network (CNN) is defined and trained. The complementary information provided 

by the simulator are steering angles, throttle, brake and speed. Based on the trained CNN, a model is 

generated which is aimed to be able to drive the car autonomously in the virtual simulated 

environment.  

The whole project is structured and performed using the SCRUM agile project management [20]. The 

students participating in the project were obliged to participate in the introductory course on SCRUM 

project management organized and performed by ITK Engineering GmbH for two days. 

The rest of this documentation is organized as follows. In part two, the system and software setup is 

explained. Then, it continues with generation of the environment to train the network. Section four 

provides the CNN related definitions and the training process of the neural network. In the fifth 

section, the implementation of an interface to communicate between the simulated environment and 

the model is discussed. Finally, section six will demonstrate the obtained results and suggestions for 

future work and completion of the project. 

 



 

Autonomous Lane Following in a 

Simulated Environment 

–confidential– Seite 7 von 32 

 

©
 I
T
K

 E
n
g

in
e
e
ri

n
g

 G
m

b
H

, 
D

o
k
-I

D
: 
xx

x,
 v

 x
.y

.z
, 
g

ü
lt

ig
 a

b
 1

5
.0

2
.2

0
1
7
 

2 System and Software Setup 

As already mentioned in the introduction part, the whole project is formulated and built using a pre-

existed car simulator which was developed for Udacity's Self-Driving Car Nanodegree program. 

Udacity is an educational organization offering massive open online courses (MOOCs) [4]. The self-

driving car simulator is developed originally to teach the concepts of deep learning and neural 

networks to the students. This project is available freely on the GitHub platform – world’s most famous 

platform for software development and version control [5]. 

2.1 Simulator Installation 

In order to set up the environment, we first need to install the followings: 

• Unity game engine 

• Git LFS (Optional) 

• Udacity Self-Driving Car Simulator 

As stated above, Unity is a game engine which was used by Udacity simulator. To be able to open the 

simulator, first, we need to install this game engine. The installation can be done by visiting the Unity 

website [10]. The Personal license is enough and works well with the Udacity simulator. For the 

purpose of this project, version 5.5.5f is installed. It is needed to mention that by installing the Unity 

engine, the Visual Studio Community will be also installed automatically. This platform is free of charge 

and is necessary to open the scripts written in the Unity framework. Nevertheless, it was advised by 

mentors to use the Visual Studio Code instead of the Community version.   

Downloading the Udacity Self-driving car simulator is possible in two ways: first, one can go to the 

GitHub repository of the project [8] and download the ZIP file. The alternative option is to use the Git 

Large File Storage (LFS) [9]. But to be able to use it, first, one needs to install the Git command line 

extension. This can be installed either by downloading from the Git website [9] or by installing the 

GitHub Desktop [5]. Now the system is ready to clone the project from the GitHub repository [8]. 

In order to use the simulator, it has to be built using the Unity engine. In this regard, one should open 

the Unity and open the simulator project by clicking on file > open project and give the address 

where the project is stored. When the project is loaded, one need to click on file > Build settings. 

After choosing the correct platform and pressing Build, Unity asks for the name and the location that 

the instance of the simulator should be saved. Finally, one can start the simulator by executing the .exe 

file saved in the defined path under the defined name. 

2.2 Simulator in Details 

By clicking on the generated .exe file from the previous section, the configuration screen will show up 

as it is displayed in Figure 1. In this page, one can select the graphics quality of the simulator as well as 

the input keys to steer the car. 
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Figure 1- Configuration Page of the Udacity Simulator 

 

By pressing the play button, the main screen of the simulator appears. This simulator is designed to 

perform in two different modes, naming training mode and autonomous mode as it is shown in Figure 

2.  

 

 

Figure 2- Udacity Simulator Main Screen 

 

In addition to the modes, the simulator uses two tracks, the lake-side track and the jungle track. The 

user can choose each of the tracks that are desirable for training the car or for autonomous driving. By 

choosing one of the modes, a car is located at the start point of the selected track as it can be seen for 

the lake-side track in Figure 3.  
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Figure 3- Starting Scene in the Training Mode for Lake-side Track 

 

 Training Mode 

As illustrated in Figure 3, on the right corner of the screen there is a “Record” button. By pressing this 

button, the simulator asks for the path to save the recorded information. This information will be used 

later for training the neural networks in section three. After choosing the desired path, the car is ready 

to drive using the defined keys from the configuration screen. These keys are always accessible by 

selecting the controls button from the main screen. To pause or stop the recording, the record button 

has to be pressed again. At this point, the simulator starts to store the data in the selected directory. 

The data is stored in two formats. First, the images received from three cameras mounted on the car 

are saved in a folder called IMG. The images are labelled by the camera location and the epoch that 

the image is recorded: [camera_location_year_month_date_hour_minute_second_microsecond] [7]. As 

an example, the image obtained from the central camera at one exact epoch is illustrated in Figure 4. 

 

 

Figure 4- Image Naming Sample (center_2018_01_18_11_17_53_634) 

 

The second type of data is saved in a CSV format and it is called “driving_log”. In this file, the location 

of the saved images from all three cameras is given as well as the steering angle, throttle and speed of 

the car in that particular epoch. Also, information on the existence of a braking event is provided [8]. A 

sample of this CSV file for four consecutive epochs is shown in Table 1. 
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Table 1- CSV File Containing the Steering Information of the Car 

Center camera Left camera Right camera 

S
te

e
ri

n
g

 

A
n

g
le

 

T
h

ro
tt

le
 

B
ra

k
e

 

S
p

e
e
d

 

C:\...\IMG\center_2018_

01_18_11_17_53_634.jp

g 

C:\...\IMG\left_2018_0

1_18_11_17_53_634.jp

g 

C:\...\IMG\right_2018_0

1_18_11_17_53_634.jp

g 

0 0 0 0.491714 

C:\...\IMG\center_2018_

01_18_11_17_53_750.jp

g 

C:\...\IMG\left_2018_0

1_18_11_17_53_750.jp

g 

C:\...\IMG\right_2018_0

1_18_11_17_53_750.jp

g 

0 0 0 0.48678 

C:\...\IMG\center_2018_

01_18_11_17_53_870.jp

g 

C:\...\IMG\left_2018_0

1_18_11_17_53_870.jp

g 

C:\...\IMG\right_2018_0

1_18_11_17_53_870.jp

g 

0 0 0 0.479955 

C:\...\IMG\center_2018_

01_18_11_17_53_985.jp

g 

C:\...\IMG\left_2018_0

1_18_11_17_53_985.jp

g 

C:\...\IMG\right_2018_0

1_18_11_17_53_985.jp

g 

0 0 0 0.475139 

 

 

 Autonomous Mode 

In this mode, the simulator uses the trained model to steer the car on the selected track autonomously 

[6]. This concept will be addressed in more details in later in section four where we explain our neural 

networks and section six, the project result.  

 

2.3 Programming Platform 

 Programming Languages 

The whole process of programming and training the neural networks were performed with Python 

programming language. In this regard, Anaconda package is used. Anaconda is an open source 

distribution of Python which is suitable for large-scale data processing [4] Anaconda is simply a very 

useful set of Python packages and a package manager called conda. This package can be installed 

from the Anaconda website. For the purpose of this project, the conda version of 4.4.8 is chosen – is 

the current version at the date of this documentation. In addition, the programming language utilized 

to generate the roads and other assets of the simulator is C#.NET which is one of the main 

programming platforms for Unity. In this regard, a predefined Unity framework is used.  

 TensorFlow 

Tensorflow is an open-source Machine Learning framework used for numerical computations. Its state 

of the art design is suitable to deploy the computational effort on one or more Central Processing Unit 

(CPUs) or Graphics Processing Unit (GPUs). Tensorflow was born within Google's Machine Intelligence 

research organization for the purpose of machine learning and deep neural networks research [11] and 

is up to date, one of the most used frameworks in Machine Learning. In this project, the Tensorflow 

version 1.4.0 with GPU support is installed. The GPU capability helps to run the training process 

significantly faster [11].  
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 OpenDrive 

Every car needs a road to drive on. The car used in this project is not exceptional. To be able to 

generate the underneath road and its surrounding environment, the open file format specification 

from openDRIVE® version 1.4 is applied [12]. In an openDRIVE® file, the geometry of roads is 

described by Extensible Markup Language (XML) syntax. For more details, one can refer to the 

specification file available on the website of openDRIVE®. The generated environment is saved in the 

.xodr format [12]. This format is fed to the Unity game engine and translated to a 3D model of the 

environment.   

 Tools Interaction 

Considering all presented tools above, the following Figure shows the work logic of the project and 

interaction of the tools in one frame. 

 

 

Figure 5- Interaction of the Tools 

 

As shown above, the environment required for driving the car is generated based on the specifications 

of openDRIVE® and fed to the Unity simulator. Unity simulator uses this environment to generate the 

required steering data to train the model. Later the model steers the car autonomously in the 

generated environment.  
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Unity Simulator 
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3 Road Generation Process 

As stated in section 2.3.3, the generation of the road and the surrounding environment was performed 

using the specifications of the openDRIVE® in XML format. This process consists of the following steps 

as it is shown in Figure 6: 

 

Figure 6- Environment Generation Process 

The generation of the environment in .xodr is done using a free application called OpenRoadEd [13]. 

As can be seen in Figure 7, different parts of the roads consisting of straight roads, arcs and spirals are 

generated using the road settings panel. Later, the roads are connected to each other to form the 

whole track. In this part, the definition of the environment can be also done using the available 

textures or by adding the desired textures to the library of images. By saving the geometry, the 

generated environment is transformed automatically to .xodr format.  

 

Figure 7- OpenRoadEd Interface 

In the second step, the generated .xodr files are converted to roads, arcs and spirals in the Unity 

engine. This is done using the C# script called RoadGenerator.cs, which was written in the Unity 

specifications format. In the code, the .xodr file is read line by line and each XML tag is converted into 

its appropriate data with its x coordinate value, y coordinate value, heading and road length. A new 

Environment generation 

in OpenDRIVE® .oxdr 

format using 

OpenRoadEd App

Feeding the generated 

.xodr file to Unity 

engine, Generation of 

the environment from 

.xodr file in C# code

Using the generated 

environment as a 

scene to be displayed 

as the virtual 

simulation 

environment 
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environment is subsequently built utilizing these extracted features, and shown on the GUI. From this 

environment, the road part is mainly considered for the training of the CNN. This environment is saved 

as a scene in the Unity engine and appears as the virtual simulation environment to collect the ground 

truth data for CNN training and later to test the generated model in the autonomous mode. Figures 8 

and 9 provide two samples of the generated roads in Unity.  

 

 

Figure 8- Straight road generated in Unity 

 

 

Figure 9- Curved road generated in Unity 
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4 Convolutional Neural Networks 

4.1 Introduction 

The idea of Machine Learning is to provide computers with the ability to build a model from data 

observations (image, audio, etc.), that can make decisions and predictions based on similar data. We 

will now introduce some machine learning terminologies, which we will use in the project. 

 Supervised Learning 

Given a space X that yields a representation of the image space containing the images from the unity 

framework. We consider a finite subset of training examples XTrain = {x(1), ..., x(n)} ⊆ X. Let further y(i) be 

the corresponding ground truth data with respect to x(i), e.g., the steering angle, brake and throttle. For 

supervised learning, the model Mw is trained with the training set T = {(x(i), y (i)) | i =1, ..., n} which 

includes the training examples and the corresponding ground truth data. 

 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a group of models in Machine Learning, which are inspired by 

the structure and functions of biological neural networks [17]. The central neural system in the 

mammals’ brain contains a huge number of neurons, which are strongly interconnected. With the help 

of this structure, information is processed and evaluated across neurons by electrochemical 

interactions. The ANNs are then an attempt at implementing a similar way of information processing 

on computers. 

We illustrate below the internal structure of an artificial neuron, which is the constitutive unit of ANNs. 

The artificial neuron receives one or more inputs xi. All inputs are then multiplied by corresponding 

weights wi and summed up together with a threshold term θ known as bias. After that, this input is 

passed through a non-linear function φ known as an activation function to produce a certain output y. 

We summarize the whole operation applied by an artificial neuron in the following formula: 

y = φ (∑ xi · wi + θ) 

We can represent the ANN as a model Mw , that is composed of learnable weights w, and activation 

functions φ. 

 

 

Figure 10- Artificial Neural Networks 
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The above Figure 10 shows how the architecture of this model is constructed based on neurons 

interconnected with each other. With the correct parametrization, Mw can approximate a certain 

function G, to realize a specific task (e.g. emulating a Turing Machine [18]). These networks grow big 

quickly, using a great number of parameters and thus are hard to train. This represents the major 

restriction of their usefulness. 

The size of the neural network is calculated by the sum of total connections and number of biases in 

all the layers of the network. 

 

Figure 11- Neural Network 

The above network, shown in Figure 11, has [3 x 4] + [4 x 2] = 20 weights and 4 + 2 = 6 biases for a 

total of 26 learnable parameters. The number of parameters can be up to 100 million, but the 

parameter size should be appropriate to the size of the network. The more parameters used by the 

CNN, the more time and memory it needs. Using fewer parameters, the greater the chances are for the 

network being insufficient to yield a good model to the data. 

 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) [19] belong to the approaches known as deep learning 

approaches and can be applied to various problems of computer vision and digital image processing. 

These networks were re-interpreted in 1998 for recognizing digits in a document recognition 

application. 

Similarly, to the classical neural networks, CNNs are composed of neurons arranged in a specific 

structure and holding learnable weights and biases. However, CNNs have the following characteristics:  

• 3D volumes of neurons: Neurons are arranged in CNNs in a 3D structure (width, height and depth), 

which makes this type of networks practical for image processing. While the internal features of 

classical neural networks are computed in hidden layers, CNNs compute 2D feature maps stacked 

together in a 3D structure which is also known as feature hierarchy. As in Fgure 8 (a) neurons inside a 

layer are only connected to a small region of the previous layer, which is known as receptive field. 

 • Local connectivity: Since we work with a high dimensional input such as images, it is 

computationally very expensive to connect all neurons from one layer to all neurons from the previous 

layer. CNNs exploit the fact that the input (image) is spatially correlated and enforce a local 

connectivity pattern between neurons. The connections are local in space (along width and height) but 
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always extend along the depth, Figure 12. This architecture ensures that the learned network weights 

produce a strong response to a spatially local input pattern.  

• Shared weights: As known from the convolution operation, a convolutional filter applies on a certain 

input in a sliding window approach. Building on this property, each filter in the CNN is replicated 

across the entire layer input, which implies that the weights of the neurons are shared. This highly 

reduces the number of parameters and hence increases the learning efficiency, Figure 12 (c). 

 

Figure 12- Convolutional Neural Network  

 

A CNN can be represented by the model Mw, which is characterized by the weights parameter w. It 

consists of nL layers, where each layer can be represented by the function f. More precisely, Mw can be 

formulated as the sequence of functions fi with i ∈ {1, ..., nL}. 

Mw = fnL ◦...◦fi ◦...◦f1 

Let xi be the output of the i-th layer. Each xi is computed from the previous output xi −1 by applying 

the function fi with weights parameter wi:  

xi = fi (wi; xi – 1), ∀ 1 ≤ i ≤ nL 

We can see the inferred data throughout the network has a 3D structure. Therefore, the layer outputs 

are of the form xi ∈ R Wi × Hi ×Di, with (Wi × Hi) representing the spatial dimensions and Di representing 

the depth. Each spatial extent of xi is called feature map in the context of CNNs.   

 Layers of Convolutional Neural Networks  

A CNN [15] architecture is formed by several distinct layers that transform an input volume x to an 

output volume y. The most commonly used layer types are: 
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• Convolution layer is parametrized by a learnable filter bank and the biases. Each filter is spatially 

small with a size typically between 3 and 7. By applying the convolution, we slide each filter spatially 

across the input volume (in height and width directions), and produce a 2-dimensional feature map. 

Intuitively, the network learns filters that activate when they see a specific type of features at some 

spatial position in the input. For a given input volume the convolution implies the computation of the 

dot product between the entries of the input and the sliding filter entries.  

• Activation Functions layers are commonly set after a convolution layer of the network. They are 

needed to make the input more separable and to increase the computational power while keeping the 

input volume dimensions unchanged. Below, we illustrate the non-linear functions that are commonly 

used as activation functions in CNNs. 

 

Figure 13- Activation Functions 

 

 

a) Sigmoid: uses the mathematical formula: 

σ(x)=1/(1+e−x) 

It converts the input value to [0,1]. 1 is when the data is sent with maximum frequency to next neuron, 

and 0 is when it is not sent at all. 

 

b) Tanh: This function is similar to the Sigmoid function, but it converts the input to the range [-

1,1], there is a possibility of getting a saturation level from this activation function. This 

function gives zero centred and is not always positive.  

 

f(x) = tanh(x) = 2 / (1+e−2x) – 1 

The Tanh in terms of Sigmoid function:   

f(x) = tanh(x) = 2σ (2x) − 1 

c) ReLu: operator applies a thresholding at zero. f (x) = max (0, x). The advantage of the ReLU 

operator over sigmoid and tanh is the convergence acceleration of the learning algorithm to 

the optimal parameters. In practice, sigmoid and tanh can be computationally expensive (due 

to exponentials, etc), whereas the ReLU only applies a thresholding of input volume at zero. 

The disadvantage of ReLU units is that their effect can stop in some cases during learning. For 

instance, if a large update flows through the ReLU unit, the weights can be changed in such a 

way that the activation is always zero and from that point the corresponding neuron is dead. 
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• Pooling layers are usually inserted between convolution layers, reduces the spatial size (W × H) of 

the feature maps produced by the convolutional layers. The most common form of pooling uses a 

filter with spatial extent (2×2), this filter is applied with a moving step of 2 for each filter. This 

operation down-samples every depth slice in the input by 2 along width and height of images. 

However, the depth dimension remains unchanged. W and H. 

The advantage of the pooling layer is to increase translation and distortion invariance of the feature 

maps i.e the activation for a feature can have the same result at different positions in the input. In the 

early years of the CNNs, the widely used method for pooling was the average pooling, which applies 

the average of the feature response in a widow of predefined size. We use max pooling in our project 

that forwards the maximal value of each window. 

• Merge Layer is used when multiple inputs need to be fed into the network. For each input, a layer is 

created and each of these layers is merged using the Merge layer. The Merge layer is also used to 

input an intermediate or auxiliary output of any of the previous layers. 

 Training of Convolutional Neural Networks 

To train a CNN we need to calculate the prediction error between the predicted data ŷ ∈ LH×W and the 

ground truth labels y ∈ LH×W. Therefore, a loss function is added at the end of the network, to provide 

this error 

• The mean squared error loss gives the estimate of the average error squares, that is, the difference 

between the estimator and what is estimated. This is always non-negative, values closer to zero show a 

good model. The basic principle of this loss is to minimize the quadratic sum. The standard form of 

MSE loss function is defined as 

L = 1/n ∑ (y(i) − ŷ(i)) 2 

where (y(i) − ŷ(i) ) ( y(i) − ŷ(i) ) is named as residual, and the target of MSE loss function is to minimize the 

residual sum of squares. 

• Cross-Entropy is commonly-used in binary classification (labels are assumed to take values 0 or 1) as 

a loss function (For multi-classification, use Multi-class Cross Entropy), which is computed by 

L=−1/n ∑ [ y(i) log (ŷ(i)) + (1 – y(i)) log (1 − ŷ(i))] 

Cross-entropy measures the divergence between two probability distribution, if the cross-entropy is 

large, which means that the difference between two distributions is large, while if the cross-entropy is 

small, which means that two distributions are like each other.  

 Regression 

Regression [16] is a mapping of one set of independent continuous input to another set of continuous 

outputs. The inputs are features passed forward from the network’s previous layer. Many inputs will be 

fed into each node of the last hidden layer, and each input will be multiplied by a corresponding 

weight, w. 
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Figure 14- Regression Network 

 

The sum of those products is added to a bias and fed into an activation function. (eg. ReLU)  

For each hidden node, the activation function outputs an activation, a, and the activations are summed 

going into the output node, which simply passes the activations’ sum through. 

A neural network performing regression will have one output node, and that node will just multiply the 

sum of the previous layer’s activations by 1. The result will be the results ŷ, the network’s estimate, the 

dependent variable that all the Xs are mapped to.  

To perform backpropagation and make the network learn, ŷ is compared to the ground-truth value of 

y and the weights and biases of the network are adjusted until the error is minimized, this is similar to 

a classifier. 

In this way, the neural network can be used to get the function relating an arbitrary number of 

independent variables x to an arbitrary number of dependent variables y that can be predicted. 

 Data Pre-processing 

The images can be pre-processed in many ways before being fed into the network. The image can be 

replicated with various changes. Example shifted horizontally/vertically, vertical/horizontal flip, rotation, 

centre, normalize, zoom, rescale. A user-defined pre-processor function can also be used. All the above 

can be done using the ImageDataGenerator from Keras [14]. The images produced here can also be 

stored in a file location to be analysed before feeding into a CNN.  

The data needs to be normalized before being fed into the network. Normalization of data can be 

done for images and the data used as ground truth. Normalization of data is converting all the data to 

the same range, so when all the parameters are in the same range, the same activation function can be 

used in one layer over all the parameters. This ensures that all the parameters have the same influence 

on the model.  

4.2 Implementation of Convolution Neural Network  

For implementing the CNN, we implemented a few basic projects to understand the different features 

of a convolution neural network. Some of them are:  
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1. To classify a ‘tree’ image from a ‘non-tree’ image. The purpose of this classification is to set up 

a simple neural network and understand the various layers used for classification. The MNIST 

data classification was used as a reference for this classification. 

2. The above classification was then extended to use images produced by unity, of size 

160*320*3. The ground truth for this data set was 1 if there was a road in the image and 0 if 

there was no road in the image in front of the car. 

3. To train a CNN model to steer the car in autonomous mode. The model read the images, 

'Speed' as input and to predicts the 'Steering Angle', 'Throttle', 'Brake'. All the above data is 

sent from unity to the CNN.  

 Classification 

To start with, we trained the model to classify images received from unity. 

 Data Generated from Unity 

The two classes of classification are ‘road’ and ‘no road’, ‘road’ class is when the car is on the road and 

the lane is in front of the car. The ‘no road’ class is when the car is not on road, but on the side path, so 

there is grass or sand in front of the car. 

 

Figure 15- Class ‘road’ 

 

Figure 16- Class 'no road' 

4.2.2.1 CNN Details 

• Size of Images used for training: 160 * 320 * 3 

• The training set consists of 750 images and its respective ground truth 

• The testing set consists of 150 images and its respective ground truth 

• Images are being read from a location in file browser using ImageDataGenerator from Keras 

• Loss used for this model: categorical_crossentropy 

• Optimizer used for this model: SGD 

• Batch size to train the model: 5 

• Number of epoch to train the model: 20 
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4.2.2.2 Convolution Layers Details 

 

Table 2- Convolution Layers Summary 

Layer (type) Output Shape Param # Activation Function 

conv2d_3 (Conv2D)      (None, 149, 309, 32)    13856 'relu' 

max_pooling2d_3 (None, 37, 77, 32) 0 
 conv2d_4 (Conv2D) (None, 35, 75, 32) 9248 'relu' 

max_pooling2d_4        (None, 8, 18, 32)                 0 
 flatten_2 (Flatten) (None, 4608)                      0 
 dropout_3 (Dropout) (None, 4608)              0 
 dense_3 (Dense) (None, 64)                 294976 'relu' 

dropout_4 (Dropout) (None, 64)                0 
 dense_4 (Dense) (None, 2)                130 'softmax' 

Total Parameters: 318,210 
   Trainable Parameters: 

318,210 
   Non-trainable Parameters: 0 
   

 

4.2.2.3 Network Results 

 

Figure 17- Network Loss 

 

Table 3- Result Metrics 

Metrics 1st Epoch Last Epoch 
Loss 0.698 0.0522 

Accuracy 0.575 0.9938 

Validation loss 0.6675 0.12 

Validation accuracy 0.5312 0.9688 
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 Training the Model to Drive the Car Using Regression 

4.2.3.1 Data Generated from Unity 

From Unity, we receive the image and speed which is fed to CNN as input, and the model outputs shall 

be steering angle, brake and throttle. 

All the data used in the CNN needs to be manipulated such that the most important information is 

enhanced, this will help the CNN learn better. 

The images received from Unity are of the size 160*320*3. The image contains trees and mountains in 

the background, all this data is not important to drive the car and will confuse the model during 

training. The image received from Unity:  

 

Figure 18- Image from Unity (160*320*3) 

 

4.2.3.2 Data-preprocessing 

The trees, mountains and the front part of the car are not required by model and is cropped. Image 

after cropping: 

 

Figure 19- Cropped Image (75*320*3) 

 

To take into consideration all the scenarios possible, the images are flipped horizontally. This helps the 

model learn for an unbiased data set of steering angles.  

The images are then normalized. The images can be normalized about the 0 axes and in each of the R, 

G and B matrix. The easiest way to do this is to divide each value of matrix by 225. Keras also provides 

a way to do this using the ‘samplewise_std_normalization=False’, of the ImageDataGenerator function. 

Below is the range of all the parameters used in the model:  
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• Steering Angle: [ -1, 1] (negative values for left steering angle and positive values for right 

steering angle) 

• Throttle/Speed: [0, 1] 

• Brake: [0, 1]  

• Speed: [0, 31] 

 

Below is the sample of steering angle, throttle, brake and speed: 

 

Table 4- Data Sample 

 

 

As the speed has a large range, it will affect the model more than any other parameter. To normalize 

this value, the mean and standard deviation of each of the samples of the ground truth is calculated, 

and then (sample data - mean) / standard deviation formula is used to normalize the data. The 

steering angle is also normalized. After normalization of the data, all the data is in the range [0, 1]. The 

same normalization is also done for the real-time data received from Unity during the autonomous 

mode. This data is then scaled back to original level before being sent back to unity to drive the car. 

4.2.3.3 CNN Details 

• Size of Images used for training: 75 * 320 * 3 

• The training set consists of 14252 images and its respective ground truth. 

• The validation set consists of 1583 images and its respective ground truth. 

• The testing set consists of 1759 images and its respective ground truth. 

• Loss used for this model: mean_squared_error 

• Metrics used for this model: mean absolute error 

• Optimizer used for this model: Adam 

• Batch size to train the model: 32 

• Number of epoch to train the model: 100 
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4.2.3.4 Convolution Layers Details 

To feed the image and speed as input, first the image is fed in the layer 1 of the network, then after 

convolution, max-pooling and flattening layers, a Merge layer is used to input the speed. As the model 

is no longer Sequential, the functional API layers of keras are used. 

To train the model, each of the output parameters is considered independent of the other, by 

considering three arrays as output. And an external weight is applied to each of the output 

parameters. This weight is added to the loss function and the parameter with more weight is given 

more importance. For this model, the external weight of 2 for Steering angle, 5 for Throttle, and 1 for 

Brake was added. 

 

Table 5- Convolution Layers Summary 

Layer (type) Output Shape Parameter # Connected to 

main_input (InputLayer) (None, 75, 320, 3) 0 
 

conv2d_185 (Conv2D) (None, 75, 320, 12) 336 main_input[0][0] 

max_pooling2d_185 
(MaxPooling2D) 

(None, 37, 160, 12) 0 conv2d_185[0][0]                    

conv2d_186 (Conv2D) (None, 35, 158, 24)  2616 max_pooling2d_185[0][0] 

max_pooling2d_186 
(MaxPooling2D) 

(None, 17, 79, 24)  0 conv2d_186[0][0]                    

conv2d_187 (Conv2D) (None, 75, 320, 12) 6944 max_pooling2d_186 

max_pooling2d_187 
(MaxPooling2D) 

(None, 8, 39, 32) 0 conv2d_187[0][0]                    

conv2d_188 (Conv2D) (None, 4, 35, 64)  512645 max_pooling2d_187[0][0] 

max_pooling2d_188 
(MaxPooling2D) 

(None, 2, 17, 64)  0 conv2d_188[0][0]                    

flatten_64 (Flatten) (None, 2176 0 max_pooling2d_188[0][0] 

speed_input (InputLayer)   (None, 1)  0 
 

concatenate_44 (Concatenate)  (None, 2177) 0 
speed_input[0][0], 
flatten_64[0][0] 

dropout_127 (Dropout) (None, 2177)  0 concatenate_44[0][0]  

dense_150 (Dense)  (None, 64)  139392 dropout_128[0][0] 

dropout_128 (Dropout)  (None, 64)  0 dense_150[0][0] 

dense_151 (Dense)  (None, 1)   65 dropout_128[0][0] 

dense_152 (Dense)  (None, 1)   65 dropout_128[0][0] 

dense_153 (Dense)  (None, 1)   65 dropout_128[0][0] 

Total Parameters: 200,747 
   

Trainable Parameters: 200,747 
   

Non-trainable Parameters: 0 
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4.2.3.5 Network Results 

The network gives the following graphs:  

 

Figure 20- Loss of Model 

 

 

Figure 21- Loss of Steering Angle 

 

 

Figure 22- Loss of Throttle 
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Figure 23- Loss of Brake 

 

 

Figure 24- Steering Angle, Predicted vs. Actual 

 

 

Figure 25- Throttle, Predicted vs. Actual 
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Figure 26- Brake, Predicted vs. Actual 

 

From the graphs, we see the CNN’s predictions are good. When tested in the simulator, the car drives 

well and stays in the lane for a good period.  
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5 Interface Implementation 

In order to steer the car autonomously using the generated model, communication links should be 

established between the Udacity framework and the autonomous car model. Therefore, a Python script 

is written to act as an interface between the simulator and the model. As mentioned before, the model 

is designed such that it receives as input the images from the central camera mounted on the car, and 

the speed of the car. As output, it returns an array of three values required to control the car, meaning 

the steering angle, the acceleration throttle and the brake. The model needs to communicate with the 

simulator as fast as possible and reliable. Otherwise, any delay in communication would cause a 

malfunctioning of the whole system. In this regard and to generate a real-time bidirectional 

communication between the model and the simulator, the socket-IO package is used for both C# and 

Python platforms. Socket-IO library is originally written in JavaScript and is suitable for real-time 

applications [4]. It has two sides: a client-side which is written for this project in Python and sends the 

request as a client to the server and a server-side which is written in C# and is implemented in the 

simulator. This server accepts the request from the client (the model in this project) and establishes the 

connection. This process is illustrated with more details in Figure 27. 

 

 

 

 

 

 

 

 

 

 

Figure 27- Server (Simulator) - Client (Model) Pair 

 

As illustrated in Figure 27, the simulator acts as a server and the model as a client. The Python script 

sends the request to the server (Simulator) using the socket number which is defined on the server 

side (4567 in this project) and waits for the response. In case that the request is accepted from the 

simulator, a server/client pair is formed and the data is transmitted as depicted in the figure. A 

screenshot from the result of this process is shown in Figure 28. 

 

Steering angle: 0.43815607 

Throttle: 0.18083918 

Brake: 0.13778026 

Simulator (C#) 

As 

Server 

Model (Python) 

As 

Client 

Speed: 0.4847171 
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Figure 28- Interface Output 

 

In Figure 28, the WSGI server is generated which is the standard Python approach for running web 

applications [7]. As it can be seen, it uses the same socket number (4567) which is defined on the 

server side in the simulator. Next, the connection is accepted from the simulator side on the IP address 

127.0.0.1 and the server sends the session ID (sid) to the client that can be seen in front of the 

“connect” term in Figure 28. In the next lines, the controlling values received from the simulator are 

printed, meaning the steering angle, the throttle and the speed of the car. The images are also saved 

to a predefined address for later uses and data validation. Afterwards, the values are sent to the model 

and the predicted values are printed out in the following line, naming the new steering angle, throttle 

and the brake event magnitude. These controlling values are transmitted back to the simulator via the 

established link and the changes are implemented to the car behaviour by the C# code.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Client Request 

Server Response 

Communicated data  
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6 Results 

6.1 Project Demo 

The result of the project is illustrated by the following demo which shows the car in the simulated 

environment steered by the trained model. It is also possible to see the interaction of the model and 

the simulator from the IDE window in Figure 29. The demo is available under the following YouTube 

link:  https://youtu.be/cXLwQQm_yLo  

 

Figure 29- Project Demo 

 

6.2 Outlook 

As it can be seen in the attached demo, the model steers the car to stay on the road for a long period 

of time. It can happen that the car goes out of the road and because the speed is low and the height 

of the road and sidewalk is different, the car gets stuck in the corner of the road. There would be a 

great improvement in the autonomous driving of the car by overcoming this problem. Some 

suggestions to improve is to find the right amount of weight to be added to the throttle so that the 

speed of the car increases, but at the same time, this weight doesn’t overshadow the learning of the 

other parameters used to drive the car. The best way to find the right weight is to try with various 

weights and analyze the output seen in the simulator. The network is trained with data of the car 

returning from the side of the lane back to the centre of the lane, another suggestion is to train it with 

more such data to get the best-trained model. Furthermore, we could also change the simulation to 

have the same height for the road and sidewalk so the car does not get stuck. It is also recommended 

to train the car with the new generated environment from section 4 to see how the model would 

behave in a new environment. 

One interesting point of observation is the ground truth received from the simulator is time-correlated. 

In the model, this data is shuffled so the model is not trained in the same order, the continuity of the 

data is lost. The model is still able to drive the car autonomously based on the learning of its position 

on the road and the throttle, brake and steering angle at that point. The model can be improved by 

implementing a recurrent neural network, so the data can be fed in the same order it is received and 

the output of the previous unit will be considered as an input for the next unit. 

https://youtu.be/cXLwQQm_yLo
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