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Abstract

Satellite Navigation is on track to potentially revolutionise railway management systems.
Global Navigation Satellite Systems (GNSS) refers to any satellite-based positioning
system that provides location and time information on Earth. Examples include GPS
and GALILEO. Currently, train positions are monitored by Eurobalises, inertial systems
and odometers. These localise the trains into fixed blocks of the railway tracks. Object
localisation using GNSS can be used to continuously report accurate train positions,
allowing moving blocks to be used for future rail management. Due to the critical nature
of train management, GNSS data must meet high standards of accuracy, availability,
integrity, and robustness against signal blockages, multipath and interference. Such
interference can stem from other radiofrequency transmitters or malicious jamming and
spoofing.

The data for this analysis was obtained from the Swiss Federal Railways (SBB) and
collected during measurement campaigns over Switzerland’s entire standard gauge network.
No reliant labels were present within the data, but these are necessary to use Supervised
Machine Learning methods. Thus, to conduct a feasible analysis to indicate jamming or
spoofing, the data was grouped into categories defined artificially from existing features.
Afterwards, the data was examined with Machine Learning methods to identify and flag
faults caused by interference. The most promising classical AI methods were Support
Vector Machines, XGBoost and Random Forest. These performed similarly across three
different subsets of the available features. This allowed the investigation of the influence of
different jamming parameters and the time-dependencies within the data. For the future
progress of the project, experiments evaluating the artificially created labels and gathering
data within a controlled environment or with truly reliable information on jamming events
is crucial. This data should then be used to test the AI method’s actual performance.
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1 Introduction

Currently, train management is based on fixed track sections occupied by the trains. In
the future, the goal is to use the exact and continuous location of each train instead. This
would transform rail management from a fixed block to a moving block operation as a
part of the European Train Control System (ETCS).[10] The location of each train can be
measured using Global Navigation Satellite Systems (GNSS). However, due to the safety
criticality of rail management, this positional data needs to comply with high quality
criteria regarding reliability, availability, maintainability, and safety. Especially signal
interference of different kinds is a challenge when relying on GNSS. If the train is shielded
by environmental obstructions such as tunnels, bridges, large buildings, or mountains, the
satellite signals might not reach the train antenna. The satellite signals might also be
reflected and reach the antenna multiple times with a delay, creating multipath events.
The correct computation of one’s location can additionally be deliberately prevented by
jamming or spoofing. During such an event, the GNSS signal is intentionally overshadowed,
making either the GNSS signal non-receivable (jamming) or the receiver is fooled into
computing a wrong location (spoofing).[10]
Due to the promising possibilities of using GNSS for rail management, the “European
Global Navigation Satellite System based Map Assisted Train Localisation for ERTMS”
(EGNSS MATE) was launched. This project is jointly conducted by the Swiss Federal
Railways (SBB), the Industrieanlagen-Betriebsgesellschaft mbH (iABG) and the German
Aerospace Center (DLR). Within the scope of this research project, SBB operates a
measuring train to collect data to evaluate the reliability of GNSS, based on the
aforementioned quality criteria. This measuring train commutes the entire SBB standard
gauge network for a year and has multiple GNSS receivers. Some analysis of this data
was reported by R. Ehrler et al. in [10].

1.1 Problem definition and goals of the project

The dataset collected and maintained by SBB contains a vast amount of real-world data
and has yet to be fully analysed. The long-term goal is to estimate the reliability
of GNSS data in different environments, extract the most likely areas of intentional
GNSS interference and use these to classify the individual railway tracks depending on
the estimated possibility of using GNSS for train management. Additional measures
such as Eurobalises can be used at tracks classified as less reliable to ensure safe train
localisation. As one contribution to this larger goal, our project aimed at data cleansing
and first analyses using Machine Learning methods. During data cleansing, the goal was
to extract features characterising malfunctions. Due to time constraints, the focus was
on jamming events, leaving spoofing events for future analysis. During the analysis, we
aimed to classify patterns perceived in the GNSS data based on the different causes. As no
label is collected, directly applying Supervised Machine Learning models was impossible.
Therefore, the first milestone of this project was to create artificial labels. These classify
the data at each timestep, depending on whether the ’train receives a clear signal’, the
’train is at a standstill’, the ’train drives through a tunnel’, ’environmental objects disturb
the signal’, or ’a jamming attack causes interferences’. Further, we aim to use Machine
Learning models to learn and rebuild these labels. While developing these models, we
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additionally aim to investigate the importance of the different features further, expanding
our knowledge of the possibilities of classifying GNSS data.

1.2 Global Navigation Satellite Services

The Global Navigation Satellite System describes a constellation of satellites used to
determine the location of receivers on Earth. GNSS encompasses various satellite navigation
systems from different organisations. These include GPS (Global Positioning System),
which is operated by the USA; GLONASS (Global Navigation Satellite System), operated
by Russia; Galileo, operated by Europe; and BeiDou, which is operated by China. Each
consists of at least 24 satellites circling the Earth at a specific distance.

Figure 1: Visualisation of jamming and spoofing

1.2.1 Positioning and interference

The satellites transmit, among other data, their current position and time stamps. Receivers
on earth then can use this data to compute their own current position. Theoretically,
four signals are enough to compute the location and time at any GNSS receiver on Earth.
However, more satellites can be used to increase accuracy and mitigate interference.
Signal disturbances occur frequently in satellite communication and have various forms.
Environmental obstructions due to objects such as tunnels, bridges or high buildings are
a common cause. Other radiofrequency transmitters such as radars, TV transmitters
and mobile communication base stations can account for unintentional interferences.
Additionally, malicious jamming and spoofing, as intentional attacks, may affect the
channels.
Jamming describes the intentional interference or disruption of signals. A jammer emits
interference signals stronger than the satellite signals. This leads to a rise in the noise
floor, covering the true satellite signals.
Spoofing is characterised by the emulation of fake signals to confuse or mislead a GNSS
receiver. An example of spoofing is the “Record and Replay” method. The spoofer records
a GNSS signal and emits it with a time delay. This method is comparatively easy to detect,
but more complex spoofing methods, which use rather expensive and sophisticated tools,
pose a severe threat.
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1.3 Theoretical background

The dataset used consists of sequential data, e.g., it contains one value of each feature for
every timestep. Therefore, this data can be classified by only considering the respective
features at each timestamp. This enables the use of non-time-dependent algorithms.
Alternatively, the sequential nature of the data can be exploited, incorporating the change
in features between the timesteps. This allows the use of time-dependent algorithms. Non-
time-dependent algorithms generally offer better interpretability of features and can be
trained and validated faster. However, they do not incorporate sequential information.
We experimented with the following algorithms:
Support Vector Machines classify data by finding the largest possible margin between
different classes. While a SVM naturally only distincts between two classes, it can be
expanded to multi-class usage by introducing one-vs.-one- or one-vs.-many-techniques. By
transforming the input data using a kernel, non-linear decision boundaries are possible. Its
advantages include dealing with outliers through soft-margin SVM, and that its decision
reasons are visually interpretable for low-dimensional data. Its disadvantage is that it
generally works best in cases of binary classification. (c.f. [4])
Logistic Regression uses the softmax function to convert a regression score into the
probability of belonging to each class. Like SVM, one-vs.-one- or one-vs.-many-techniques
are necessary to expand the usage from a general binary classification to a multi-class
distinction. Its advantages are that its estimates are comparatively reliable, and the
trained model weights imply feature importance. Its disadvantages are that the model
expects a linear decision boundary and generally works best in cases of binary classification.
(see for example [3] p.119)
XGBoost combines weak decision trees, built sequentially to correct previous errors, into
a strong predictive model. One of its advantages is regularisation, an inherent advantage
of ensemble models. It also has faster convergence and efficient computation compared to
other algorithms. Its disadvantages include a lack of explainability and the challenge of
interpreting results and understanding the model’s inner workings. It also struggles with
handling high cardinality in categorical features. (c.f. [7])
Random Forest ensembles many Decision Trees and uses a majority vote to classify the
datapoints. Its advantages are that the decisions of individual trees are easily understandable,
and the model can handle multiple classes. Its disadvantage is that it tends to overfit.
(c.f. [1])

Time-dependent algorithms can incorporate sequential information and work well with
complex data structures. However, they are challenging to train and tune, and their
results tend to be less interpretable.
Transformers are one of the most frequently used forms of time-dependent algorithms.
Their main idea is that the attention mechanism learns the importance of features and
timesteps. Its main advantage is that the training is parallelisable and effectively captures
global dependencies. However, its disadvantages are that it requires a large amount of
data to train and is challenging to interpret.[8]
The core idea of Convolutional Neural Networks is that it uses convolutional layers
to find timely distributed patterns in the data and pooling layers for dimensionality
reduction. Its main advantage is that it is better at learning patterns in the data,



2 DATA EXPLORATION 6

independent of the patterns’ position. Additionally, it has a comparatively fast, parallelisable
training process. Its main disadvantages are that it requires a large amount of data,
struggles with long sequences, and its decision reasons are often incomprehensible.[9]
Long Short-term memory was first proposed by S. Hochreiter et al. in [2]. It improves
recurrent neural networks (RNNs) by incorporating information on the current and past
timesteps by saving contextual information in the cell state. The big advantage is its
flexibility in defining the size and number of layers, but its decision reasons are often
incomprehensible.
Time-series Clustering clusters sequential data into groups using a pre-defined similarity
metric, which judges the similarity of characteristics such as frequency, mean, and variance.
It could help judge the created labels and lead to a deeper understanding of data. However,
the length of individual sequences needs to be predefined, and it is difficult to interpret
high-dimensional data.[6]

2 Data Exploration

In this section, we first give an overview of the data and showcase its characteristics
and inner relations based on several data analysis case studies. We then based our data
processing steps on the previous analysis to prepare our Machine Learning models.

2.1 Data Overview

The Swiss Federal Railways (SBB) introduced a measurement train to assess the reliability,
availability, maintainability, and safety of the railway communication system GSM-R
using location estimates based on GNSS. This train continuously drives around Switzerland’s
standard gauge railway network and captures satellite data. The track covered from
January until the end of March 2023 is visualised in Figure 2.

Figure 2: Train route of the measurement train between January and the end of March

The measurement wagon is equipped with receivers, and the data of two was made
available to us throughout the TUM Data Innovation Lab to analyse. The first receiver
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is called iMar iNAT-RQT-4003 and can integrate satellite data and signals from inertial
systems, making the positional data extremely robust to jamming, spoofing and even
environmental obstructions like tunnels. Therefore, it can be used as a reference system
for localisation and navigation. The receiver provides detailed timestamped positional
data about the train every 0.1 seconds, including information about the Longitudes,
Latitudes and Altitudes, Velocities, Acceleration and Direction (roll, pitch and yaw) of
the train and standard deviation and biases for all of the previously mentioned.

The other receiver is a Septentrio AsteRx-U SSRC7 and is based on GNSS data only.
As a result, this receiver is more susceptible to jamming and spoofing attacks and fails
to compute a correct location in tunnels. However, it has built-in jamming and spoofing
detection mechanisms. The manufacturer has not disclosed how this internal algorithm
works. Still, the receiver can report whether it thinks it is being jammed or spoofed and
saves the satellite frequency band affected by the biggest disturbance.
The Septentrio receiver provides timestamped data every second. This includes positional
data, consisting of the current longitude, latitude and altitude, velocity of the train and
the standard deviations for all the previously mentioned features.
Furthermore, the receiver provides interference data, including the automatic gain
control for each satellite band frequency, which describes the receiver’s sensitivity. Additionally,
n jamming specifies the estimated number of satellite bands jammed by external interference,
the frequency and bandwidth of the most prevalent jamming interference and a spoofing
flag. This describes whether the receiver thinks it is currently under a spoofing attack.
Lastly, the receiver makes satellite data available, with an individual entry for each
currently observable satellite, including the name of the satellite, the satellite system it
belongs to, the duration of the connection to the satellite, the relative position, and the
distance and doppler coefficient of the satellite with respect to the receiver. The received
quality of the satellite signal is indicated by the reported signal strength-to-noise ratio
C/N0 and two boolean flags: First, whether the satellite thinks it is faulty and, secondly,
whether the satellite is currently actively used to determine the receiver’s position.

2.2 Data Analysis

In the following, we review several aspects of the provided data and present specific
instances that explain its characteristics and internal relations.

2.2.1 The high false alarm rate of the jamming flag

The main issue with the provided data is that the jamming flag from the Septentrio
receiver is overly sensitive and appears to have a high false positive alarm rate. The
flag is set extremely frequently for a duration between one and three seconds, which is
visualised in Figure 3a . This seems unreasonable, as we expect jamming events to have
a longer duration. From the manufacturer’s perspective, a large false-positive rate makes
sense, as the typical user of such a receiver is rather interested in excluding any timepoint,
where interference may be possible. However, this poses the severe problem that we can
not fully trust the jamming flag of the receiver. This might cause unnecessary out-times,
which affects service continuity. At least, the recorded instances, where the number of
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(a) Duration of jamming events (b) Plot of jamming events where at least
two bands were marked as jammed

Figure 3: Characteristics of jamming events

jamming events is reported to contain at least two or more jammed satellite bands, look
more realistic than the shorter single-second events, as we can see in Figure 3b.

2.2.2 Behaviour during jamming interference

To evaluate the effect of jamming events on the aforementioned features, we analysed
several incidents, from which we are presenting one here. These case studies were integral
to understanding the relationship between the features more deeply.
On the 10th of February, we observed two jamming events in a small city called Baar,
one near a hospital and the other near a big road. Both events are visualised in Figure 4
and last for about 15 seconds each. The vertical lines in grey and green mark the middle
point of the interferences, and both the jamming events extend about 7 seconds to the
right and left of the line. Additionally, we marked the timepoint, when the train passes
under a bridge in orange.
In the jamming event near the hospital, marked in grey, we can observe small drops in the
mean C/N0 values of the received satellite signals of the GLONASS L2 frequency. Signals,
even from the same satellite in other frequencies, are unperturbed. On the other hand,
in the jamming event near the road, marked in green, we can observe the same effect,
but this time, the GLONASS L1 frequency band is affected, while other bands are not.
Besides those two drops, both mean C/N0 values behave quite synchronously and drop
simultaneously when the view is obstructed by buildings or similar objects. Furthermore,
the C/N0 values from the same satellites but in different non-jammed frequency bands
are unperturbed.
Thus we can generally conclude that a jamming event is happening with a high likelihood
if the mean C/N0 value drops in a subset of the satellite frequencies but not all. If the
mean C/N0 drops for all bands, we expect the perturbance to be due to environmental
effects like satellite view obstruction.
We see a drastic drop in the C/N0 of all satellites when the train passes the bridge.
This is visible in the mean C/N0 plots in Figure 4c and Figure 4d. Simultaneously, the
gain parameter, which describes the receiver’s sensitivity for each satellite frequency, is
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(a) Mapplot of the Baar incidents (b) Number of used satellites during
the jamming events

(c) Mean C/N0 of all satellite signals,
transmitted in the GLONASS L2
frequency

(d) Mean C/N0 of all satellite signals,
transmitted in the GLONASS L1
frequency

Figure 4: Characteristics of jamming events

Figure 5: Multipath event including positional drift in Winterthur

generally unaffected by the bridge. However, the data shows small drops in the gain
parameters during the jamming event.
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2.2.3 Behaviour during multipath events

Multipath describes the effect of satellite signals reflecting off surrounding walls or mountains
to the receiver, leading to a delayed signal of the satellite arriving at the receiver. As a
result, the receiving device might trust a false signal and calculate a wrong position. We
captured the data of such an event happening in Winterthur displayed in Figure 5. The
dark blue points in the plot are the positional estimate of the iMar receiver. The other
points are positional estimates of the GNSS-based receiver, colour-coded by the reported
number of jammed bands n jamming. As we can see, the train stops at a station under a
bridge, and the positional estimate drifts around the station. Interestingly, the spoofing
flag of the receiver is not triggered, while the jamming flag is reporting short, irregular, but
not concurrent, jamming attacks. The train stays in the station for about 10 minutes.
The positional estimate of the inertially supported iMar receiver is unaffected by this
multipath event.

2.2.4 Behaviour in Tunnels or during environmental effects

Generally, the GNSS-based receiver loses all satellite signals in a tunnel, as we can see
in Figure 6b. Under short tunnels, bridges or other satellite visibility obstructions, the
signal-to-noise ratio C/N0 drops heavily. However, the GNSS receiver is, depending on
the severity of the obstruction, usually able to maintain a correct positional estimate.
The gain parameter is usually unaffected by a tunnel as is the n jamming feature as seen
in Figure 6a.

(a) C/N0 of selected freq. bands during the
tunnel

(b) Plot of jamming events, where at least two
bands were jammed

Figure 6: Characteristics of tunnel events

2.3 Data Processing

To use Supervised Machine Learning models, creating artificial labels and defining comparable
datasets was necessary. This preprocessing of the data will be described in the following.
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2.3.1 Creating artificial labels

To be able to use methods from the field of Supervised Machine Learning, a label is
required. Since no label is available within the existing data set, that reliably determines
jamming or spoofing, artificial labels were created from the existing parameters. All data
points were classified into Normal, Jamming, Tunnel, Environment and Stop.
For example, if the train is travelling at a speed below 11km/h, this timepoint is classified
as Stop in the data set.
All data points likely influenced by surrounding objects such as mountains, bridges or tall
buildings are classified as Environment. As described in the Section 2.1, the blockage of
the satellite signal due to surrounding objects can be detected by a drop in the average
carrier-to-noise ratio. If the mean C/N0 drops below 36dB-Hz in all satellite bands, the
datapoint is classified as Environment.
First, we evaluated the current position of the train to classify it as being in a tunnel.
Therefore, we used a tunnel dataset ([11]), including the length and the approximate
midpoint of all railway tunnels in Switzerland. As this did not include any information
regarding the orientation of the tunnel, a computationally fast matching to the travelled
railway tracks is challenging. We chose to classify any position within the shape spanned
by the L1-norm of half the distance of the respective tunnel and its centerpoint as Tunnel.
This led to far too many points being classified with Tunnel. During further development,
we chose to instead analyse satellite connections to identify tunnels. Within large tunnels,
hardly any satellite signal is observable. Therefore, we classify each datapoint, where we
lose all satellite signals, as Tunnel. This approach leads to many time points where
the train is close to the entrance or exit of a tunnel, not being classified as Tunnel.
Further analysis showed that the average of the carrier-to-noise-ratios are usually below
the threshold close to the tunnel ends, thus classifying the datapoints as environmental
interference. Therefore, the Environment label covers very diverse causes of natural
interference.
The major goal was to create a Jamming label that is as reliable as possible. One of the
two GNSS receivers in the measuring train determines the number of frequency bands
currently affected by jamming (n jamming). As described in the Section 2.1, this value
contains many false positives, as visualised in Figure 3a. Therefore, only timepoints with
a value of n jamming greater than one or a continuous duration of at least four seconds
were classified as Jamming.
All timepoints, where none of the aforementioned criteria applies, were classified as
Normal. This is the class for which reliable rail management based on GNSS localisation
would most likely be possible without further measurements.

2.3.2 Training Scenarios

All Machine Learning models presented in the following were trained and tested on the
same subset of the data for comparable analysis. This dataset was acquired during an
in-person measuring campaign of iABG. This measuring campaign took place between
the 15th and 17th of November, 2023. The last two days were used as training data, and
the first day was utilised as the test set. This setup and the respective distribution of
the labels are visible in Figure 7 and Table 1. In the following, we present three different
training scenarios, which differ mainly in the features used.
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(a) Label distribution within the
training set

(b) Label distribution within the test
set

Figure 7: Visualising the distribution of the labels of the training and test set

Label name Instances in the training set Instances in the test set

Environment (ENV) 1147 (1.23%) 457 (0.98%)
Jammed (JAMMING) 5956 (6.36%) 1816 (3.88%)
Normal (NORMAL) 30337 (32.41%) 15281 (32.67%)
Stop (STOPPED) 51812 (55.36%) 22500 (48.10%)
Tunnel (TUNNEL) 4346 (4.64%) 6721 (14.36%)
Sum of instances 93598 46775

Table 1: Label distribution in the training and test set

The full dataset As described in the Section 2.1, a multitude of interferences exist. As
we aim to classify these into their different causes, different features representing these
causes must be extracted. To allow the tracking of the train, using positional data is
inevitable. A change in the gain or carrier-to-noise ratios seemed to occur whenever the
satellites’ signals were obstructed by an environmental object or disturbed by jamming.
Averaged values of the carrier-to-noise ratios per frequency band were used to reduce the
features. Additionally, the reliability of a GNSS localisation also depends on the number
of satellites tracked. The jamming flag of the AsteRx receiver, combined with the number
of the frequency bands jammed and the respective duration, was used to select jamming
events. As visible in Figure 7 and Table 1, the number of occurrences of the individual
labels is very unbalanced. To reduce the vast number of data points labelled as Stop, the
training and testing dataset neglected the nighttime.
Neglecting the jamming label and jamming duration
In the second scenario, we are interested in predicting the same labels as above, using all
features except the number of jammed frequency bands (n jamming) and the duration of
the jamming event. Both of these were used to create the jamming label, so by dropping
them, we hope to infer more information on the relation between the other features and
a possible jamming event.
Time-sensitive dataset using the mean C/N0s and number of used satellites
Lastly, as we have observed in Section 2, jamming events are usually characterised by a
drop in certain mean C/N0 bands over multiple seconds, the number of used satellites,



3 RESULTS 13

and possibly the gain parameter. Thus, we add the next and previous two seconds of
the mean C/N0 and the number of used satellites as additional available features for the
Machine Learning models.

3 Results

In the following, we will describe the performance of different AI algorithms. Each
method’s performance is visualised in a confusion matrix, and the accuracy is communicated
in each section as well as comparison tables.

3.1 Support Vector Machines

As mentioned in Section 1.3 Support Vector Machine is one of the typical classification
models. After cleaning, preprocessing, and splitting the dataset into training and testing
data, the model’s design is one of the important steps to have an efficient and performant
model. One important step is to choose the kernel. This is a function which transforms
the input data into a higher-dimensional space. One of the most common kernels is the

Radial Basis Function (RBF): K(xi, xj) = exp
(
−∥xi−xj∥2

2l2

)
.

This equation is presented by [4] as a stationary kernel. It is also known as the squared
exponential or Gaussian kernel, where l is a free parameter, and xi and xj are represented
as feature vectors in some input space.
The features are weighted to account for an imbalance in the labels, i.e. less occurring
labels are weighted with additional importance to improve the overall performance of the
model.
Using the full dataset leads to the best overall accuracy of 0.85, with higher accuracy for
the jamming and environmental effect labels. If the duration of jamming and n jamming
are neglected, we notice a drop in the accuracy of the jamming label to 0.69, which leads
to a drop in the overall accuracy to 0.79. Using the time-dependent dataset, the accuracy
of the jamming label drops to 0.69, leading to a drop in the overall accuracy to 0.57.

(a) Using the full dataset (b) Neglecting n jamming
and duration

(c) Using the time-sensitive
dataset

Figure 8: Confusion matrices for SVM
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3.2 Logistic Regression

Like Support Vector Machines, Logistic Regression aims to split the data using linear
decision boundaries. Just as the data can be transformed into a higher dimensional data
space when pre-processing it for the SVM using kernels, a similar method can be applied
to prepare the data into higher dimensions when working with Logistic Regression. But,
for SVMs, finding the best-suited kernel, tuning it and transforming the data is part of
the pipeline implemented in sklearn [5]. For Logistic Regression, this is not the case. This
makes finding and tuning a well-suited Logistic Regression model far more challenging.
As an accuracy of 0.69 obtained by the Logistic Regression model for the full dataset is
far below the accuracies reached by the other three approaches, we chose to neglect this
method.

Figure 9: Confusion matrix for Logistic Regression, using the full dataset

3.3 XGBoost

XGBoost aims to incrementally build an ensemble of decision trees by correcting each
tree’s errors in subsequently trained trees. While experimenting with several trees, 100
trees were a good compromise for performance. Tuning the relationship between the
number of features used and accuracy, the best results came from including all features,
i.e. not excluding any columns.
Overall, the model’s performance, using the full dataset, has an accuracy of 0.89, with
0.92 accuracy in the Jammed class. Neglecting the number of jammed frequency bands
and the jamming duration leads to a drop in the accuracy of the data points labelled as
Stopped, from 0.82 to 0.65. The overall accuracy then is 0.77. For the time-sensitive case,
the accuracy is 0.70, with the poorest subclass accuracy in the Jamming class.

3.4 Random Forest

Similar to the pipeline described to design the previous models, several steps are necessary
to train a well-performing Random Forest. Splitting the data into a training and test set
was done as explained in Section 2.3. In order to find the best possible hyper-parameters,
hyper-parameter tuning was performed. As described in Section 1.3, a Random Forest
consists of many Decision Trees. Each decision tree splits the data using sequential, linear
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(a) Using the full dataset (b) Neglecting n jamming
and duration

(c) Using the time-sensitive
dataset

Figure 10: Confusion matrices for XGBoost

decision boundaries. Therefore, the number of these splits, equalling the tree depth, the
minimum number of samples that need to be grouped together per split, and the overall
number of trees used, can be chosen. The selected hyper-parameters were adjusted for
each of the three datasets.
Overall, the performance of the model using the full dataset has an accuracy of 0.93.
Neglecting the number of jammed frequency bands and the jamming duration especially
leads to a drop in the accuracy of the data points labelled as Jammed from 0.86 to 0.40.
The overall accuracy then is 0.81. Including information about the surrounding data leads
to an overall decreased accuracy of 0.68 on the test set and significantly worse results,
with about 0.33 recall for the jamming detection.

(a) Using the full dataset (b) Neglecting n jamming
and duration

(c) Using the time-sensitive
dataset

Figure 11: Confusion matrices for Random Forest

3.5 Comparison of the classical AI methods

Logistic regression proves to be significantly weaker than the other methods in identifying
jamming events, which makes it less suitable. SVM and XGBoost show good performance
at picking up jamming events, and the SVM has generalisable results across classes with
a minimum accuracy of 0.82 on all classes. The best overall performance is found in
Random Forest, but it has a lower accuracy at identifying jamming (0.86). SVM again
has high accuracy in the Jamming class when the model does not receive duration, and
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the number of jammed bands as inputs, but in general, all AI methods have noticeably
worse accuracy across classes. All methods perform poorly on the time-sensitive dataset.

Class accuracy Log. Regression Random Forest XGBoost SVM

Environment 0.71 0.68 0.67 0.98
Jammed 0.34 0.86 0.92 0.95
Normal 0.38 0.99 0.98 0.77
Stop 0.84 0.87 0.82 0.7

Tunnel 1.00 1.00 0.67 1
Overall accuracy 0.69 0.93 0.89 0.85

Table 2: Performance comparison of the selected classical AI methods on the full dataset

Class accuracy Random Forest XGBoost SVM

Environment 0.66 0.59 0.94
Jammed 0.40 0.48 0.69
Normal 0.98 0.98 0.78
Stop 0.68 0.65 0.52

Tunnel 1.00 0.83 1
Overall accuracy 0.81 0.77 0.79

Table 3: Performance comparison neglecting n jamming and duration

Class accuracy Random Forest XGBoost SVM

Environment 0.80 0.79 0.87
Jammed 0.32 0.41 0.69
Normal 0.68 0.83 0.78
Stop 0.59 0.55 0.3

Tunnel 1.00 0.99 1
Overall accuracy 0.68 0.70 0.57

Table 4: Model performance for the time-sensitive dataset

3.6 Clustering time sequences

As described before, the dataset provided by SBB did not include a reliable label, which
could have been used to train Supervised Machine Learning models. We created artificial



3 RESULTS 17

labels by defining the corresponding metrics each data point needs to fulfil to be assigned
the respective label. Time-series clustering is an alternative approach to gathering additional
information about patterns visible in the dataset. It is defined as the unsupervised
classification of time-series data so that sequences with similar patterns, based on a
defined similarity metric, are grouped together.[6] Within the project scope, time series
clustering was used to analyse whether the data instances of each of the classes show
different inherent patterns. For this, a subset of two hours (15.11.23 12 a.m. until 2 p.m.)
was selected, cut into sequences of ten seconds and split into a training and test set. The
training set was upsampled to allow the clustering algorithm to train on a balanced data
set, with each label appearing with the same frequency. During the EGNSS MATE’s
future progress, it is planned to simulate jamming and spoofing events within a test
environment. This will generate labelled data. Then, time-series clustering might be a
promising option for extracting patterns inherent in the data assigned to the different
classes.

(a) Data structures of the
individual clusters

(b) Label distribution within
the clusters during training

(c) Label distribution within
the clusters during testing

Figure 12: Exemplary usage of time-series clustering to extract patterns in the sequences
assigned to the different classes

3.7 Long Short-Term Memory

LSTM is a promising tool to use for time-series datasets. The choice of hyper-parameters
is the most important step within the training process. In this case, we implemented two
hidden layers with 50 units each and a softmax activation function.
The softmax function

σ(z) =
exp zi∑K
j=1 exp zi

for i = 1, ..., K and z = (z1, ..., zk) ∈ RK

takes an input of K real numbers and normalises them into a probability distribution
consisting of K probabilities proportional to the exponentials of the input numbers.
Therefore, the Machine Learning model outputs the probability for each datapoint to
be classified as each of the labels.
When using all features, we have a good overall accuracy of 0.94. Unfortunately, the
jamming prediction was only 0.69. For the dataset neglecting the n jamming and jamming
duration features, we notice a dramatic drop in the accuracy of the jamming label to 0.13,
which leads to a drop in the overall accuracy to 0.77.
However, we can see from Figure 13 that the model majorly mixes the jamming and
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stopping cases. Therefore, we might have a better jamming prediction accuracy with the
right weighting and more epochs.

(a) Using the full dataset (b) Neglecting n jamming and
duration

Figure 13: Confusion matrices for LSTM

4 Outlook

In the future, different approaches to analyse the data for perturbances could be evaluated.
Some ideas are presented in the following.
Instead of working with mean C/N0, one could work with the raw C/N0 values per
satellite and extract patterns. However, this amount of data may be hard to analyse,
as the positioning of each satellite and its respective degradation in signal quality needs
to be accounted. Another idea for future research could be to analyse the intensity and
position of the jammer. For this, the reported jamming bandwidth or the duration of the
jamming event, dependent on the train’s velocity, could be used. To detect spoofing, the
core strategy would be to compare the known position of the satellite with the calculated
relative position estimate of the receiver. Furthermore, if there is a visual obstruction
between the satellite and the receiver, but the signal comes through, a spoofing or
multipath incident must be present. More ideas to detect spoofing include looking for
sudden changes in the pseudoranges, the Doppler effect or the satellite signal carrier
phase.
Additionally, assessing the risk of being jammed depending on external features would be
a valuable goal. The most promising features we identified were distance to the nearest
busy road, parking lots, radio antennas, and embassies. Furthermore, an index of nearby
car traffic, the nearby population, or the presence of high buildings or mountains could
be important to assess the reliability of GNSS-based train management. The distance
between the reliable inertially assisted location estimate vs. the GNSS-only based location
can give information on the risk for multipath events. This risk rises near tunnels and
bridges. For this, a dataset provided by the Swiss Federal Council [11], which includes
the length and position of the midpoint of all Swiss rail tunnels, can be used.
Once we have a reliable way to determine whether there has been a jamming event, one
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could train a linear logistic model to estimate the risk increase of being jammed or spoofed
based on these external features.
With the problems we have due to the high false alarm rate of the jamming flag, it would be
helpful in the future to create and maintain a benchmark data set where it is certain when
we are being jammed or not. Such a dataset could be generated by simulating the effect
of a jamming event or signal disturbances of other sorts within a controlled environment.
Otherwise, an evaluation of the raw satellite data might allow a more reliable classification
of the nature of a disturbance. This dataset can then be used to train better and trusted
Machine Learning models capable of labelling new unseen data. Keeping one part of such
a benchmark dataset as a test set is always important. This allows us to assess an error
rate, and a Machine Learning model performance benchmarked on the test set can be
trusted for new unseen data.

4.1 Use Cases

Following the above-mentioned analysis, detecting interferences could be valuable for
alternative use cases. These might include a model to flag interference events, help with
security enhancement, efficient scheduling, and emergency services.
Detecting jamming and spoofing events can enhance the security of the railways by
identifying potential threats to the navigation used in train control systems. This can
improve communications too. Additionally, detecting interference can help optimise
schedules and prevent disruptions caused by unreliable information. In case of an emergency,
accurate location information is critical for effective response. Detecting and addressing
GNSS interference could improve first responders’ aid.

5 Conclusion

In summary, this project represents an important first step into the future of railway
management based on GNSS navigation. First, a deep analysis of core relations in the data
collected by the SBB measuring train was conducted, extracting data patterns pointing
to jamming events. Based on this, three different sets of features to examine the prospect
of predicting jamming events were created. After thorough pre-processing of the provided
data, several AI-based solutions for jamming detection were implemented and compared.
Against the intuition that including time-dependent data in the models would improve
the overall performance, the learned AI methods suffered from the curse of dimensionality
and dropped in performance. In the future, careful feature engineering and clean data
will be mandatory to achieve a more reliable and trustworthy result. Lastly, multiple
promising approaches were listed to further improve jamming and spoofing detection and
pave the way to a trustworthy risk assessment of GNSS-based railway management.
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