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Research



Motivation



Technical progress in machine learning and NLP led to progress in ACEs 
like voice assistants and chat bots

4
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Broad spectrum of feasible input hinders ACEs from going into deeper
conversations
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Turn on/off wifi.

Call person X.

Open app X.
Set an alarm. Flip a coin.What’s the time in X?What’s the weather in X?

What are today’s news?

Convert X into Y.Calculate X-Y*Z.
Recommend a good restaurant.

How do you say X in French?

Navigate me to the nearest gas station. What’s the status on flight X?

Send a message to person X.

Read my newest e-mail.Take a note.

When is mother’s day?

Play the new album of X.

What are good Indian dishes?

Do you love me?

What are today’s news?

Open them.

What about yesterday?
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Our ACE is should be able to go into depth by analyzing short and long
term history of the conversation
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Problem Statement:
• Hotel environment
• ACE is supposed to process classical hotel services such as delivering of drinks, food, towels etc
• Enable in depth conversation in order to increase customer satisfaction in terms of convenient use 

of ACE as well as recommended products
• System should not be run on a cloud

Assumptions:
• Voice to text and text to voice components are given
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Research



Parsers gramamtically analyze input and work with databases of words
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“I would like to order two beers please” State of the art parsers
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Machine-learning models usually cover the enitre pipeline and are often
cloud based
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Input Trained NLU 
model

Training data

Understand 
input

Take action 
& output

Trained NLG 
model

Training data
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The Rasa machine-learning framework is more suitable for our project
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Parser + WordNet Machine-learning model (Rasa)

+ Use of existing parsers like Stanford 
NLP or spaCy

+ WordNet largest database of its kind
+ No need for training data

- Extension of WordNet (by brand 
names) might be complicated

- Only interpretation of input, output 
generation not included

+ Covers entire pipeline (including output 
generation)

+ Entire pipeline is customizable
+ Model can be trained to our specific 

environment
+ Gives confidence score for intents and 

entities

- Training data necessary

Motivation Research Data Generation Language 
Understanding Recommendations Dialogue Mgmt Outlook



Data generation



Intents contain the basic message of a sentence and entities specify the
values
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What’s the weather in Munich today?

What’s the weather in ENTITY today? Munich

Intent: Get weather Entity: Location, Entity value: Munich
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We gathered three types for a seamless conversation and robust intent
classification
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Intents

Main intents:
• Order drink
• Change order
• Order food
• Get recommendations

Entities

• Drink
• Food
• Location
• Amount
• Size
• Temperature
• Topping
• Sugar amount

General intents:
• Get weather
• Book restaurant
• Rate book
• Play music
• Search creative work
• Search screening 

event
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Conversational intents:
• Cancel order
• Good
• Bad
• Hello
• Goodbye
• Thanks
• Confirm
• Negate
• How are you



Placeholders in bare-bone sentences are replaced by entity values in a 
nested procedure
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1. I would like to order a ENTITY please

2. Pick an arbitrary number of elements of this list:

Entity mapping list:

a à AMOUNT
ENTITY à SIZE ENTITY
ENTITY à TEMPERATURE ENTITY
ENTITY à DRINK and AMOUNT DRINK2
ENTITY à ENTITY to LOCATION
ENTITY à ENTITY with TOPPING

.

.

.à
Arbitrary sample:

a à AMOUNT
ENTITY à SIZE ENTITY
ENTITY à ENTITY to LOCATION

3. Substitute placeholders with variables:
à I would like to order AMOUNT SIZE ENTITY to 
LOCATION please

4. Substitute variables with values:
à I would like to order 3 large water to my room 
please
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We extended the data generation script to create more realistic and robust 
data
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1. Adding noise to generated sentences in order to train a more robust model
• First approach to add a random string of characters between two words
• Second approach to add a real word as noise
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2.    Combine entities based on joint probabilities
• E.g. Coffee with milk and sugar instead of lemon



Natural Language Understanding



High level architecture of Rasa‘s framework
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NLU

NLG
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The spaCy pipeline fits our situations the best
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• Uses pre-trained vectorizer to analyze input
• Rule of thumb: use if less than 1000 labelled 

examples available

Advantage:
• Assume our training data contains wine as a 

drink, but not champagne
• Input of hotel guest: “I would like to order 

champagne”
• Since champagne and wine have similar 

vectors, the model is more likely to identify 
champagne as a drink, even though it never 
appeared in the training data

• Word vectorization is trained by training data
• Rule of thumb: use if more than 1000 labelled 

examples available

Advantage:
• Assume the task of the ACE is to differentiate 

accounting reports from others
• The word “balance” is usually closely related to 

words like “symmetry” if vectorized
• If ”balance” appears often together with “cash” 

or similar financial words in the training data, 
word vectorization will reflect this relation
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We extended the NLU pipeline to improve entity detection and machine-

readability
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spaCy NLP

spaCy tokenizer

Intent and entity featurizer

NER CRF

NER Synonyms

Intent classifier

WordNet Synonyms

Stanford entity extractor

spaCy pipeline

Custom components

spaCy language initializer (e.g. language, case 

sensitivity)

Groups strings of characters to tokens

Compares input to training data for similarity

Entity recognition by conditional random fields

Maps entities to synonyms (e.g. NYC à New 

York City)

Combines results of previous components to 

classify the intent

Maps entities to synonyms based on our 

environment

Fall back option to extract accusative object as 

entity if nothing was detected
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Synonym detection makes our system more machine-readable
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My room My suite My apartment

My room

Room no 153
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Recommender System



The recommender system needs to be customizable to hotels‘ needs
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Reminder / Environment:

• ACE should go more into depth than competitors 

• Recommender system should be easily customizable for hotels with different needs

• Recreational hotels usually have guests for up several days, maybe even weeks but low frequency

• Business hotels usually have guests for one or a few days only, but with higher frequency of the 

same guest

à Use as much information as possible
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Recommendations are based on three different contexts
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Meta-data context:
Age: Underaged, adult, senior
Time of day: Morning, daytime, evening
Nutrition habits: Alcoholic, non alcoholic

Entity context:
Recommendation for combination of entities (drink-drink, drink-temperature)

History context:
Incorporation of past interactions of customers
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Recommendations are filtered, context by context
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Context-free 
recommendation

Final 
recommendation

Meta-data 
context

Historical 
context

. . .

filter filter

How contextual post-filtering works:

Recommendation 
over entire hotel

=

One context at a time



Recommendations are based on three different contexts 
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Meta-data context:
• Finite, discrete information
• Dense data
→ Simple relative frequency

Entity context:
• Correlations between entities
• Item-item collaborative filtering
→ Cosine similarity

History context:
• Considers all past interactions
• Collaborative filtering with implicit feedback data
→ Weighted matrix factorization

Cold start problem:
• Manually curate meta-data contexts
• Estimate item-item correlations with websearch
• Sample customers from clusters of entities
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Dialogue Management



High level architecture of Rasa‘s framework
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NLU

NLG
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We use Rasa Core to have a real conversation and consolidate
components
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Motivation:

• To consolidate outputs of all the components (Rasa NLU, customer history, recommendations)
• To curate a conversation between the user and the bot

Other Requirements:

• Open source framework
• Keeps the context of the conversation 
• Developed with zero or less training data
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Rasa Core pipeline completes the NLP framework
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Rasa Core is an open source machine learning framework used for dialogue management in the 

development of conversational softwares

1. The input message is received and

passed to an Interpreter (Intent & Entities Extraction)

2. Trackers keep track of the state of conversation for 

a single user

3. Policy receives the current state of the tracker

4. Policy decides about the next action

5. Chosen Action is logged in tracker

6. Response sent to the user
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Rasa Core allows us to add features that differentiate our prototype from 
normal ACEs
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1. Slot Filling

• Used for collecting multiple pieces of information in a row

I. Required Slots are detected
II. Mapped to entities or text

2.    Co-referencing
• Used for short term history and context (More details on the next slide)

3.    Recommendations
• Takes in the context of the conservation and recommends accordingly

III.    Slot Validation
IV.    Slot Setting
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Co-referencing ensures a natural conversation
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1. ”I would like to get a coke”
à Intent: order drink, entity: drink, entity value: coke Main entity: drink - existing

Main entity: restaurant name - missing
2. “Actually, make it two”
à Intent: book restaurant, entity: time, entity value: two

3. Check if time difference between both inputs is 
sufficiently low 

4. Check for similar entities
à a = Amount, two = rating

5. Change flow of dialogue
à “I would like to get two coke”
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Demo



Outlook



We developed an ACE that operates on little data and increases
customers convenience

Summary:
• Developed a framework for artificial conversational entity for a resort environment 

1. Data Generation and Optimization
2. Automatic Synonyms Detection for ambiguous entities
3. Recommender System based on customers personal and general preferences
4. Dialogue Management 
5. Co-referencing

• Operates on little yet sufficient sample data

Outlook: 
• Integrating speech-to-text and text-to-speech components
• Gathering more input data from customers, improving the model with reinforcement learning
• Extending it to other service domains 
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Q&A

1. Motivation
• Breadth vs. depth
• Problem statement & assumptions
2. Research
• Parsers
• Machine-learning models
3. Data Generation
• Intents & entities
• Data generation script & extensions
4. Natural Language Understanding
• High-level architecture
• Pipelines
• Custom components
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5. Recommender System
• Data in different contexts
• Post filtering
6. Dialogue Management
• High-level architecture
• Rasa Core pipeline
• Rasa Core features
• Co-referencing
7. Outlook



Backup



Performance measuring of training data
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Intent recognition Entity recognition



Metadata Context
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• Finite, discrete information about customer, e.g. male and female for gender context

• Continuous contexts can be discretized: time becomes morning, noon, evening etc.

• Few possible values means dense data

→ Simply consider relative frequency: How often is entity ordered in the morning vs. in the evening

→ Cold start problem removed by manually curating data



Entity Context
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• Item-item collaborative filtering

• Many algorithms exist: Cosine similarity as a baseline

• But: Coldstart problem

• Idea: Use web search engine to estimate correlations



History Context
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• Based on all past interaction with the system

• Collaborative filtering with implicit feedback data

→ Weighted matrix factorization:

Remove cold start problem: sample customers from random clusters of similar entities

Items

Customers



System Integration
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Obtain final recommendation through weighted average of baseline and contexts:

• Recommendations can be as general as necessary

• Cold start problem can be avoided for specific contexts

• Recommendations can be adapted to the hotel's needs

Use cases:

• Allow customer to ask for recommendations

• Automatically recommend when high enough confidence is reached

• Present customer with filtered list of available items instead of exhaustive list

• Improve ACE itself: improved default slot filling


