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Abstract

The interest in creating knowledge graphs of entity relations has been steadily growing
since 2012 [Inc04], due to the many applications in research and businesses. They can be
especially useful during early phases of research or monitoring a market or competitor for
trends over time.
To create such knowledge graphs, an end-to-end pipeline that starts with PDF documents
as input and ends with a complete knowledge graph as output is crucial. These pipelines
however, are complex systems consisting of many individual models. In this project we
are exploring each part of the pipeline to convert a document into a knowledge graph,
finding best models for the problem definition and fitting them into one pipeline with a
special focus on analyzing environmental research papers.

Our pipeline consists of five main parts, where each part was first developed independently
and then everything was merged in one code base. The first part is abstract extraction,
where the summary of the paper is extracted in order to retain the most important in-
formation, while making the next steps faster and easier to train, due to the reduced size
of data. Next, coreference resolution is used in order to capture more relations spanning
over multiple sentences and later enabling combinations of relationships in the knowledge
graph. For example, an abbreviation of an entity, like UBA for Umweltbundesamt should
refer to the same entity, therefore we replace the abbreviation with the actual name in
the text. Afterwards the entities are extracted with a combination of a self-developed
rule-based approach, mainly focusing on subjects and objects with their respective modi-
fiers, and a pre-trained transformer-based model from the spaCy library. For each pair of
entities in a sentence an unsupervised model called SelfORE classifies their relation into a
cluster. Even though the model is unsupervised, i.e. no labels are needed during training
and consequently the output only produces cluster ID’s for each sample, we apply two
di↵erent techniques to recover labels for the relationships from the training data. These
techniques use the most frequent n-grams between entities in a cluster and the root words
in these sentences, respectively. The results from the entity and relationship extraction
are visualized in a knowledge graph by the last module of the pipeline.

This pipeline is an easy to use prototype showing the great potential of these end-to-
end frameworks. The modularity of the pipeline also enables a quick deployment of
di↵erent models in the respective pipeline module, i.e. focusing on multilingual support
for relationship classification or a deep learning approach to abstract generation.
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1 Introduction

Natural Language Processing (NLP) is a branch of Artificial Intelligence that focuses on
the ability of computers to understand spoken and written human language [Lut21].
It is widely used in everyday life, for example in spam detection, auto correction, chatbots,
translation, speech recognition and so on. Its applications are available in almost every
language and in this day and age Natural Language Processing is essential.
NLP has existed for over decades, starting in the late 1940s, and has been tremendously
growing in recent years. It started out with complex sets of hand-written rules that were
replaced in the late 1980s by statistical models [Lou20].
Human language is full of ambiguities like homonyms, sarcasm, metaphors, sayings etc.
The complexity lies in understanding its full meaning, with human’s intent and sentiment.
Even for humans it is hard to get an accurate understanding of these anomalies when
learning a new language, let alone for a software written by programmers [IBM20].
Our project focuses on a certain branch of NLP called knowledge graphs (KG). In the
case of this project, these graphs visualize the relations between entities in a text, making
them understandable for humans at a glance. They make information more accessible
for the user without the need of reading an entire document. They can either give an
idea of the contents of a single document or be used to analyze a number of documents
about a certain topic. For example, one could filter out only entities that are useful for
one’s research and their connections to other entities. Looking for frequent relations then
gives a first idea of how the entities interact and which ones are important. Another
important benefit of a knowledge graph is that it makes text documents understandable
to a computer, making them more accessible for automatic analysis and processing. This
opens the door to access a huge amount of data, only available in text form, benefiting
corporations in gathering information and analyzing situations more e�ciently and more
precisely.
The objective of this project is to investigate relationships between entities extracted from
scientific papers of the German Environment Agency. This is done by building an NLP
model that consists of several steps. To visualize these relationships, a knowledge graph
is built, where the nodes represent the entities and the edges the relationships between
them. The aim is to have the most important information of the text documents at a
glance.
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2 Pipeline and Data

2.1 Outline

Due to the nature of the problem it was possible to structure the project as a pipeline.
An overview of the pipeline can be seen in Figure 1. The first chapters explain the
theoretical background of each part of the pipeline, which is followed in Chapter 6 by a
detailed explanation of how these parts were assembled into a model. The current chapter
describes the input and justifies why abstract extraction is used. The main components
of the pipeline are discussed in Chapter 3, which consists of coreference resolution and
entity extraction, and in Chapter 4, where the relationship extraction module is explained.
What a knowledge graph consists of is then explained in Chapter 5.

Figure 1: Diagram of the pipeline

2.2 Data

The text documents used as input are scientific papers in PDF format from the German
Environment Agency (Umweltbundesamt), which are written in English as well as in
German language. Their lengths vary from three to 40 pages.
The four papers used as examples in this report are scientific opinion papers called ”The
Revision of the REACH Authorisation and Restriction System” [Ros+22], ”The Zero Pol-
lution Action Plan as a chance for a cross-regulatory approach to pollution prevention
and reduction” [Con+21], ”Obsolescence - Political strategies for improved durability of
products” [Age17] and ”Auswirkungen des Klimawandels auf die Verbreitung Krankheit-
serreger bertragender Tiere (exotische Stechmcken)” [TLJ20].

2.3 Abstract Extraction

Since the summary or abstract of a paper contains its most important information, a
knowledge graph of only these paragraphs will su�ce to get a good overview of the paper,
while keeping the graph clear. The input of the model can in theory be any PDF. However,
due to the predefined structure of scientific papers, which usually have a summary or
abstract in the beginning pages, fine-tuning a model to these properties will give more
comprehensive results. I.e. a PDF with a clearly labelled abstract works best, due to the
rule-based approach needed here.
The heuristics applied to PDFs are limited to very little high-level information, due to
the formatting of PDFs. The available information are the text, font size, formatting such
as bold and italic and position information for each letter. As will be shown in Chapter
6, even with this little information, one can build a model that consistently finds the
abstract in a scientific paper.
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3 Entity Extraction

To be able to extract relationships, it is first necessary to find entities where such a relation
is likely to occur. In linguistics, entities are real world objects such as people, places etc
with a proper name. Looking at the relation between any two entities in a sentence is
computationally infeasible, especially since many entities consist of more than a single
word.

3.1 Coreference Resolution

The first step of entity extraction is coreference resolution, an NLP technique needed
when two or more expressions refer to the same entity. For example, in the sentence
”The German Environment Agency promises it will proceed with its plans soon.”, ”The
German Environment Agency” and ”it” refer to the same underlying entity. Coreference
resolution finds all the entities with the same meaning, clusters them together and replaces
each with their reference entities. By performing coreference resolution long-range depen-
dencies in the text can be handled and any duplicate edges in the knowledge graph are
avoided. For example in Figure 2 an edge between ”The German Environment Agency”
and ”Zero Pollution Action Plan” will represent the same relationship as an edge between
”UBA” and ”Zero Pollution Action Plan” and therefore ”UBA” is a redundant node in
the knowledge graph and should be replaced by ”The German Environment Agency”.

Figure 2: Coreference resolution example

3.2 Named-Entity-Recognition (NER)

The next step is to actually extract the relevant entities. Most of the relationships of
interest are between entities that correspond to organizations, companies, countries or
similar, so-called named entities. There are many open source models available trying
to extract named entities from a text. These models are called named entity recognition
(NER) models.
Many NER models are similar to an iterated dilated convolutional neural network struc-
ture. Here, a small stack of dilated convolutional neural networks is applied recurrently
to broaden the context of a token and prevent overfitting [Str+17].
In recent years, BERT-based NERs have been developed, that tend to have a better
performance. BERT [Dev+18] is a transformer-based model that is trained on a huge
text corpus using masked language modeling combined with next sentence prediction.
It achieves state-of-the-art performance on many NLP tasks by simply fine-tuning the
pre-trained model for the downstream tasks [Mat19].
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3.3 Rule-Based Approach

Another approach to extract entities is rule-based entity extraction, which is an NLP
technique that uses predefined rules to identify entities that follow a certain pattern
[Gom21]. These rule-based approaches only work on sentence level and not on paragraph
or document level. For the extraction of single word entities, one could apply Part-of-
speech-Tagging (POS).
POS tagging is a popular NLP process, that assigns a tag to each word in the text based
on the type of word (part of speech). The tags that are assigned are based on the definition
of the word and the context in which the word is used. Extracting entities that consist of
multiple words is more complicated, so in this case sentence dependency parsing is used,
since Part-of-speech-Tagging alone would not su�ce.
Dependency parsing is the process of analyzing the grammatical structure of a sentence
and finding the type of dependencies (relationships) between di↵erent words in the sen-
tence. The result of dependency parsing is a dependency tree where on the nodes we have
head words and words, that modify those heads. The relationship between them acts as
the edge attribute.
More details on how to extract entities using dependency trees are explained in Chapter
6.
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4 Relationship Extraction

The goal of relationship extraction is to classify the relation of entities in a sentence, such
as

Entities: The German Environment Agency, The Zero Pollution Action Plan
Relationship: welcomes

With the entities extracted in Chapter 3, the next step is to assign a relation to every
pair of entities in a sentence. There are di↵erent ways of modelling this problem.

Classification model Simply put, the input is a sentence with two marked entities,
and the goal is to classify their relation into one of the predefined relation classes. Train-
ing data is available with di↵erent numbers of relation classes. For example, the T-REx
dataset [Els+18] has 642 di↵erent relations, where the TypeRE dataset [Fer20] only in-
cludes 28 di↵erent relations.

Clustering model Instead of using predefined relation classes, the sentences can also
be clustered into ones with similar properties. For example, it could be useful to not
distinguish between ”brother of ” and ”sister of ”, but denote this relation as ”sibling of ”.
Clustering methods could be tuned, such that these properties are fulfilled. Since there
are no relation labels available, one has to revert to other techniques to create labels from
the training data.

In the following chapter di↵erent approaches to the relationship extraction problem are
described.

4.1 Rule-based Model

The sentence to which the entities belong usually contains some information of the rela-
tionship. A simple approach is therefore to try to extract this information from the words
in the sentence. One can define fitting heuristics, based on POS tagging and dependency
trees described in Chapter 3.3. These heuristics have the advantage of being easy to un-
derstand and explainable. However, generalizing them to a large text corpus is a di�cult
task and requires a lot of hand-crafting of rules.

4.2 Transformer Model

Transformer models are nowadays widely available through packages like Huggingface
[Wol+19]. Using a simple classification layer on top of the hidden state outputs of the
model and training it on labelled data has been proven to work well for relationship
extraction, e.g. in [Yan+21], where the model achieved an F1-score of 0.8959 on a clinical
dataset. There are also more sophisticated architectures, which are designed for specific
sub-problems, like document level relationship extraction, e.g. in [XCZ21].
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4.3 Self-supervised Model: SelfORE

Unsupervised or more specifically self-supervised models have the benefit of being more
flexible in terms of input data and in this case also the output dimension. Since the
domain of scientific papers is not well-studied in the area of NLP and relation extraction,
this approach would benefit from more data that is specific to the problem and also gener-
alizes easily to other applications, i.e. internal documents of companies, since unlabelled
training data is su�cient.
This specific self-supervised model uses soft-assignment based on KMeans clusters to
create pseudo-labels in order to train a classification feed-forward neural network. The
complete model, called SelfORE, consists of three modules and was proposed in [Hu+20].
As seen in Figure 3 the transformer model (here: BERT [Dev+18]) creates hidden states
used in adaptive clustering and the classification module. Then, the adaptive clustering
algorithm creates pseudo-labels, that are used in the training loop of the classification
module to train it and the transformer via backpropagation. Naturally, the focus here is
the adaptive clustering module, due to its novelty.

Adaptive clustering The goal of adaptive clustering is to assign each sample, with
their respective hidden state H = {h1, h2, · · · , hN}, to a cluster label. This label will
eventually be used in the training of the classification module. However, in traditional
clustering techniques, the number of clusters have to be predefined. In the setting of this
problem the number of clusters is not always given, especially in the case of unlabelled
training data. Therefore, only semantically meaningful clusters should be assigned and
the model has to be insensitive to the initialized number of clusters, i.e. the output di-
mension.
Adaptive clustering consists of an encoder network, which projects the hidden states
hi 2 RhR to a latent representation z 2 RhAC and soft-assignment to K cluster centroids
learned by KMeans. In detail, KMeans is first applied to the latent representation to
find K initial centroids {µk 2 RhAC}Kk=1. Afterwards, a similarity measure based on the
Student’s t-distribution is calculated for the latent representations {zn}Nn=1 and the cen-
troids. The loss function LAC is the KL divergence between the similarity measure and an
auxiliary distribution, which emphasizes high confidence assignments. The pseudo-labels
are then assigned by finding the cluster with the highest probability for each sample.
Training is only performed for the encoder part of the network (the transformer parame-
ters are not a↵ected). One training loop of the full model starts by training the adaptive
clustering module until the cluster assignments do not change significantly anymore. Af-
terwards, normal training of the transformer and classification module is performed for a
set number of epochs.

Pre-Training of Encoder The encoder layers integrated in the adaptive clustering
module are initialized with an auto-encoder, which is trained before the first iteration of
the training loop for the whole model. This ensures that information is preserved after
the dimensionality reduction.
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Figure 3: SelfORE structure [Hu+20]

Weak-Supervision In order to take advantage of available labelled training data, the
model can be extended to be first trained in a supervised mode. This could be done in
order to ensure that the transformer and classification module indeed learn important se-
mantic relations between entities, rather than random ones. Therefore, we can substitute
the KMeans algorithm in the adaptive clustering step with the true labels, encoded as
one-hot vectors. During this ”warm-up” step, the transformer parameters can be frozen
even in the training of the classification module.

Inference In deployment, the classification module produces cluster labels for each
sample by choosing the cluster with the highest probability ci = argmaxk2K li. If using
weak-supervision, one could simply take the labels from the labelled training data. How-
ever, this mitigates the positive aspects of using an unsupervised model, that it is more
flexible in terms of relations. Another approach is to use all samples classified into a
cluster during training, to create a description of the relation. Using the text between the
entities in each sentence, which most likely contains some description of the relation, the
most frequent n-gram, can provide a reasonable description. Therefore, after the model
is trained, the training data can be used to generate these labels for each relation cluster,
by finding the most frequent n-gram in the text between entities for each cluster.
Experiments in [Hu+20] have shown that these n-grams can provide valuable information
for the user.

4.4 Discussion

Choice of Model The relationship extraction module has to satisfy a wide range of
characteristics, directly related to the problem statement:

• Inference speed & simplicity In general, the speed of inference should be rea-
sonable, such that users do not have to wait for results for hours. In fast-paced work
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schedules it is often important to have access to information as quickly as possible.
Hence, a long inference time would be counterproductive to the goal of this project.
The model could either run locally on a laptop or in the cloud on a GPU, the first
being the simpler option.

• Adaptation to new relations The range of relations in environmental studies,
but also in general, is vast and cannot be quantified exactly. Relations defined in
some publicly available datasets, like TypeRE, might not cover all relations specific
to the problem. Therefore, the relationship extraction module should be able to
adapt or be adapted quickly to new relation classes in training data.

• Business impact The results of the model should focus on being useful in a business
case, i.e. give valuable and unbiased information to the user. Therefore, the relations
have to be as precise and understandable as possible to an untrained user.

These metrics will be useful to decide on which model fits the purpose of this project the
best and how some possible downsides could be approached for the model to have more
impact.

Choice of Transformer In most relationship extraction models discussed above, a
transformer is used to extract information from the input text, therefore the choice of
transformer has a huge impact on the final performance of the model. This also allows to
optimize for di↵erent metrics:

• Speed of inference This metric could be especially important for deployment, if
the model is run on laptops or even mobile hardware. Inference for big models could
take from a few seconds to minutes. When analyzing multiple documents this could
lead to inference times of hours, mitigating the advantages of such model in the
workplace.

• Language agnostic models In the case of a multilingual work environment, which
is the case in many international corporations, documents in di↵erent languages
could be interesting to the user. Therefore, a multilingual model would give great
improvements on the inference side and the implementation side. Another approach
would be to first classify the language of a document, and then applying di↵erent
models based on this prediction, one for each language. This needs more testing,
training and research on the implementation side however, making the creation of
such models more labour intensive.

• Precision If only the precision of the inference plays a role, one could in theory
use the biggest language models. However, there is no research on which models
perform the best in the di↵erent relationship extraction models discussed here. The
default choice in most research papers is the BERT transformer model [Dev+18].

.
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5 Knowledge Graph

A knowledge graph is a network that consists of two main components: nodes and edges.
It models the underlying relations between the entities, where the nodes represent the
entities and the edges represent the relationship between those entities.
The edges can be directed, which characterizes an asymmetric relationship between two
entities, or undirected, which characterizes a symmetric relationship. Moreover, it is pos-
sible for a node to have multiple edges, and in case there exists no edge between two
nodes, it means that there is no relationship between them. Hence, it only displays the
interconnected entities. An example of a (part of a) directed knowledge graph can be
found in Figure 4.
A knowledge graph can be heterogeneous or homogeneous. In a homogeneous graph, all
entities and all relationships are of the same type, which is for example the case in a social
network graph while in a heterogeneous graph, the entities and relationships can be of
di↵erent types.[Kam20]
Knowledge graphs can be created from di↵erent types of text: from a paragraph, a whole
text document or even from several text documents at once, etc. It all depends on the use
case. One might be interested in comparing the di↵erent knowledge graphs of individual
text documents, or perhaps in relationships between multiple text documents. Moreover,
one could focus and filter on entities that are considered particularly important or that
are of the same type, and there are many other possibilities.
Knowledge graphs come in di↵erent shapes and sizes. For example, the Google knowledge
graph consists of millions of entries. [Inc21]
Since a knowledge graph visualizes the entity pairs and their relations, it makes it easy to
get an overview of a text document, without having to read the whole document. It puts
the data in a context that is interpretable and easily understandable and therefore makes
it simple to share with others. Generating a similar output by hand would not be feasible,
which is why it is of great advantage to create a knowledge graph using NLP techniques.
These graphs are useful not only for humans, but also for computers, as they make the
text documents understandable for them as well, which simplifies automatic analysis and
processing.

Figure 4: Knowledge graph example
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6 Prototype

In Chapters 2, 3 and 4 the theory behind the main parts of the end-to-end pipeline were
explored. The main challenge consists of integrating these parts into one model, that
consistently gives good visual results. Due to the large number of parts in the pipeline,
each of them has to be carefully tuned, to give useful outputs for the next part. In
this chapter this process is described in detail, giving an overview of the whole pipeline,
discussing the training involved for di↵erent models and how the final graph is created.
The results of the end-to-end pipeline are discussed at the end of the chapter.

6.1 Current Models

Abstract Extraction As discussed in Chapter 2.3, the di�culty of extracting the ab-
stracts or summaries from the given text documents, lies in the fact that these are in PDF
format. To tackle this problem, we use several steps of heuristics that we defined based
on sample data.
In a first step, we count the number of letters for each font size in the document. With
this distribution, the font size with the most letters, is defined as the font-size of the
paragraphs. From this point, larger font sizes are defined as headings and smaller sizes as
sub-paragraphs with the possibility to have multiple sizes in each category, e.g. Heading
1, Heading 2, etc. With this information we are then able to distinguish between the font
size of the main text and the rest of the text, like titles and footnotes (see Figure 5). The
next step is to search for key words, like ”Abstract” or ”Summary” for the English papers
and ”Abstrakt” or ”Einleitung” for the ones in German language, in the headings that
were extracted. If we search in the whole document there will be cases where these key
words appear in paragraphs or table of contents.
The paragraphs following the header with a key word until the next heading is then taken
as the summary. However, there are cases where the model only extracts part of the
summary, therefore we set a minimum character count for the abstract. If this is not met
at first, the next paragraph is also added to the output.

With this simple model, we are able to extract every abstract in the data available.
In cases where there are no abstracts, a simple fallback rule is used, where either all
paragraphs from the first page are used, or the whole document, if it has fewer than two
pages.

Coreference Resolution The coreference resolution model is applied on the abstracts
extracted from the scientific papers. We use AllenNLP’s BERT-based large coreference
predictor, which returns the text after replacing every entity with its referenced entity.

Entity Extraction In the entity extraction step, the processed string is split into sen-
tences, since the models used here only work on a sentence level. We use the sentence
tokenizer from the NLTK library. To each of the sentences, two di↵erent types of models
are applied: a deep learning model and a rule-based model.
To extract the named entities, we use deep learning models from the spaCy library; one
for the papers in English language and one for the papers in German language. We use
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Figure 5: Part of the front page of a PDF. We are filtering headings by considering the
most frequent font size

the spaCy transformer model to extract named entities in the English text, while in the
German case we opted for a multilayer CNN model, since the German transformer model
did not perform well. In addition to organizations, countries, and similar entities, spaCy
NER models also extract dates and cardinal numbers, entities that are unlikely to have
meaningful relationships and are therefore removed from our entity list. One example of
the extracted entities is given in Figure 6. Here, one can see that the NER model extracts
many important entities where a relationship is likely. In the very first line the entities
”The European Green Deal’s” and ”the Chemicals Strategy for Sustainability” are being
extracted which is very promising since the model is trained on web data and applied on
scientific data.

Figure 6: Named entities extracted by the spaCy transformer model

Since we would like to have as many relevant entities as possible and the deep learning
approach only extracts the named entities, we decide to give a closer look at rule-based
approaches for entity extraction. The first step is to produce dependency trees with the
dependency parser from the spaCy library. After careful analysis of the dependency trees
of various sentences, we formulate the following entity extraction rule:
”Extract the subject and all objects along with their modifiers, compound

words and punctuation marks between them.” [Jos19]
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We implement this rule into Python by using conditional statements. For the German
model we follow a similar approach, but since the grammar di↵ers, we slightly change
the rules of which entities to extract. Figure 7 shows entities extracted using rule-based
approach.

Figure 7: Entities extracted by rule-based approach

We observe that neither the deep learning model nor the rule-based approach were able
to extract all the entities on their own. For this reason we decide to combine the list of
entities extracted from both the models to generate the final entity list. However, it is not
possible to blindly combine the two lists, as some entities may be repeated in both methods
and need to be identified and included only once. Apart from handling matching entities,
we must also handle entities that are almost similar. For example, ”German Environment
Agency” and ”The German Environment Agency” should be considered as one and the
same entity and not as two separate entities. To solve this problem, we develop a text
similarity function using Sequence Matcher that gives the probability of how similar two
texts are. Sequence Matcher counts the total number of n-grams that are similar in 2
strings by varying ”n” from 0 to length of smaller string. It than return the ratio of number
of similar n-grams to total possible n-grams between 2 strings. We discard any entity that
has a similarity probability greater than 0.7 with any of the existing entities in the list.
The results of combining the deep learning approach with our rule-based approach can
be seen in Figure 8a. The rule-based approach added some more entities like ”ambition”
in the first line or ”Buildingblocks” in the last line of the first paragraph. In Figure
8b a German example of the extracted entities is given. Here, our model also extracts
important entities like ”Aedes albopictus” which is a mosquito or ”Etablierungsrisiko der
Asiatischen Tigermcke” as well as German states and cities.
Since our model is looking for relations inside a sentence, we can omit sentences with
less than two entities. For the remaining sentences we create a text file, where each line
consists of a sentence with two marked entities. This is necessary since our model can
only examine the relationship between two entities at a time. For example, if there are
four entities in a sentence, the sentence will be repeated six times with two di↵erent
entity pairs marked each time. A snippet of a text file can be found in Figure 9 below.
In each line the considered entities are marked with start and end markers [E1]...[/E1]
and [E2]...[/E2], respectively. As explained before, the first sentence is given six times
as there are four entities: ”The European Green Deal’s”, ”the Chemicals Strategy for
Sustainability”, ”ambition” and ”the European Union’s politics”.

Relationship Extraction For relationship extraction we use the SelfORE model de-
scribed in Chapter 4.3. It takes the text file created in the entity extraction module as
input. The output of the model is the cluster assignment for each sentence in the input
text file. The model performs best, when the number of relations is known beforehand,



6 PROTOTYPE 15

(a) English case

(b) German case

Figure 8: Combination of NER with rule-based approach. Our model finds many entities
which can further be used to extract important relationships

Figure 9: Marked entities

however if this is not the case, one can set the number of clusters to an arbitrarily high
number and due to the preference of high confidence cluster assignments, the samples will
only be assigned to a few clusters.
Since the model only outputs cluster IDs for each sample, we decided to use N-grams
to find the most likely relationship between each tuple inside a cluster. Experiments in
[Hu+20] have shown that 3-grams provide the most valuable information for the user as
shown in Figure 10, if the available data used to generate 3-grams is large enough.

Training of Models Training is needed for the classification layers of the SelfORE
model, since there do not exist pre-trained layers and the transformer models from Hug-
gingface come with a newly initialized classification layer on top of the transformer model.
For the training we chose the T-REx dataset, since the available PDF documents did not
contain enough sentences to train a model. Since the T-REx dataset consists of ⇠ 6.2 mil
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Figure 10: Results of 2 & 3-grams vs the ground truth relationship as shown in [Hu+20]

sentences, we randomly chose a small subset of 14662 sentences for training and testing.

Knowledge Graph Generation In our case, we consider a directed heterogeneous
knowledge graph. The entities are obtained by the entity extraction while the relationship
extraction acquires the associated relationships. These are then stored in a dataframe,
such that the entity pairs and their relationships are in the same row. Next, we use the
networkx library to generate a graph out of this. We generate two di↵erent graphs: one
where the relationships are determined using the N-gram approach, and another where
they are determined using the root word approach. We decide to not allow self-loops and
remove these.

6.2 Alternative Models

During the course of the project we also investigated other models that can be used for
the relation extraction module of the pipeline. In this section we discuss these additional
models and when they could be useful in deployment.

Root-Based Approach After analyzing various sentences, we came to the conclusion
that the main verb of the sentence is the most likely relationship between the entities if
the sentence contains only two entities. However, if multiple entities are present in the
sentence the main verb cannot define the relationship between all the entity pairs. To
overcome this issue we extract the sub-sentence between each entity pair and define the
verb of that sentence as the most likely relationship between the given entities. To find
the verb of the sentence, we use spaCy’s large BERT-based dependency parser and take
the root word as the relationship type. The results of this approach are better than just
keeping the main verb of the whole sentence as the relationship between all entity pairs.
The result on a sample statement can be seen in Figure 11.

Figure 11: Root-based relationship example

The key advantage of this model over deep learning approaches is its explainability and
that it doesn’t need much data to produce results. We analyze its results in Chapter 6.3.
However, the scope of this model is limited, since it is not able to improve its performance
on large datasets and there are no deep connections and structures learned.
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Supervised Model for Relation Classification We looked at various supervised
models for relation classification and trained our own model by following the ideas from
[Xu+15]. The main idea is to utilise the shortest dependency path (SDP) which is the
shortest path from one node to another node in the dependency tree of a sentence. The
motivation of using the SDP between entities is based on the idea that it usually contains
necessary information to identify their relationship. The structure of our model is shown
in Figure 12.

Figure 12: Supervised model [Xu+15]

We use 4 di↵erent type of embeddings as an input to out classification model :

• Word embeddings taken from a GloVe model.

• Embeddings for hypernyms from Wordnet of each entity which are again taken from
GloVe pretrained embeddings.

• Embeddings for POS tags which are generated using LSTM units.

• LSTM embeddings for dependency relations in the SDP.

The inputs to the LSTM units are one-hot encoded vectors of POS tags/relation tags for
each word in the SDP. We concatenate all the embeddings and feed them to a k-class
classification model where k depends on the type of dataset we are using for training.
We train the model end to end i.e. both the LSTM units and the classification units are
trained together using the same forward pass, backpropagation cycle.
In our project we lacked enough labeled data that is specific to the domain of environmen-
tal research papers, therefore this approach could not be applied properly. However, if
these requirements are satisfied, this model will most likely achieve higher accuracy than
the self-supervised model used in the pipeline.

6.3 Results

For every PDF file a separate knowledge graph is generated. In Figure 13 the knowledge
graph of the paper ”The Revision of the REACH Authorisation and Restriction System” is
depicted. The model extracts some one-on-one relationships as well as larger clusters. The
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Figure 13: Root word knowledge graph

entities and their relationships seem promising. We take a closer look at three examples
in the graph.
The first example can be seen in Figure 14. The corresponding sentence to this rela-
tionship is the following: ”The availability and accessibility of data should be improved
through compliance checks of all registration dossiers and additional information require-
ments for certain hazard classes.”. We see that the intention of the sentence is very
well captured. ”data” represents ”The availability and accessibility of data”, ”improved
through” represents ”should be improved through” and ”compliance checks” represents
the rest of the sentence. Our model takes the most important information and puts them
in the graph. The entities and their relationship do not consist of too many words, which
is desirable, since it makes the graph clear and comprehensible.
In Figure 15 another example is shown. This part of the graph represents the sentence
”Building-blocks o↵er a flexible approach that can be adapted easily to di↵erent policy
options.”. The extracted relationship between ”Buildingblocks” and ”flexible approach
that” is ”o↵er”, which is again an adequate representation of the sentence. The hyphen in
”Building-blocks” gets removed by our entity extraction step and both entities originate
from the rule-based approach. This example shows that there is still room for improvement
on the rule-based entity extraction, because a better entity would be ”flexible approach”

Figure 14: The relationship ’data improved through compliance checks’ is a positive
example of the root based knowledge graph
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without the word ”that”.

Figure 15: The relationship ’o↵er’ is a positive example that we are able to extract
semantics between entities

The last example is a cluster with several entities and relationships. It contains entities
and relationships that span over two di↵erent sentences in two di↵erent paragraphs of the
summary, which was accomplished by our coreference resolution: ”This paper focuses on
the revision of the REACH authorisation and restriction system from an environmental
perspective. [...] In conclusion, the German Environment Agency proposes in this paper
a set of ambitious revisions to the REACH authorisation and restriction system, ...”.
The entity pair and their relationship [paper, focuses on, revision] are very meaningful
and we even get a relationship explaining what actually gets revised, namely ”REACH”.
Then in the second sentence ”the German Environment Agency proposes in this paper”
also gets represented well in the graph by [the German Environment Agency, proposes
in, paper]. Moreover, [the German Environment Agency, proposes in, REACH] also
somehow makes sense. We see once again, that our model does fairly well in taking the
most important information out of the sentences and visualizing this in a graph. Again,
some improvements can be made, especially since [paper, paper, REACH] does not make
that much sense.

Figure 16: A larger cluster with positive examples such as ’paper focuses on revision of
REACH’

The corresponding 3-gram knowledge graph can be seen in Figure 17. The entities and the
number of relationships stay the same. All but two clusters are assigned to the 3-Gram



6 PROTOTYPE 20

”0”, consisting of the words ”the”,”Chemicals” and ”Strategy”. The other relationship
”1” consists of ”nonEuropean”, ”companies” and ”should”, so both relationships do not
seem to represent a fitting relation type. This is likely due to missing training data and
one should expect better results when a larger corpus is used for generating labels, as
shown in [Hu+20].

Figure 17: 3-Gram knowledge graph

Taking a look at a graph of a German text document in Figure 18, we can see that
some relations between entities are extracted decently despite the model being trained
on an English dataset. For example, there are relations between ’Freiburg’, ’Sinsheim’,
’Heidelberg’ and ’BadenWürttemberg’, where the first three instances are all cities of
Baden-Württemberg. However, the extraction of the relation type does not seem to work
on German data as of yet, since the root word structure does not work for German
sentences. Here a di↵erent approach is needed.
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Figure 18: Root word knowledge graph for a German dataset
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7 Conclusion and Discussion

Conclusion Although each part of our pipeline is researched separately for years, there
is no end-to-end model available that takes PDFs or even text as input and returns the
knowledge graph. In this project, we developed a full end-to-end pipeline for knowledge
graph creation from a PDF file, by first defining a pipeline, with key steps needed in the
process and then carefully researching each of the parts. Our final solution is able to
create a concise and useful graph that can be used to identify topics and key points from
a document, potentially helping to save substantial amounts of time when deployed in a
business environment.
Since the main parts of the pipeline, the entity extraction model and relationship extrac-
tion model, are still an active area of research, it is especially important to use well suited
models. For entity extraction, we combine two di↵erent approaches to ensure that all im-
portant entities are identified and for relationship extraction we opt for an unsupervised
approach due to its flexibility and the lack of (labelled) training data. Using techniques
like majority n-gram annotation, we successfully created a self-supervised pipeline that
still gives useful information to the user.
In addition to identifying these models, our main contribution is to combine all parts of
the pipeline. This is crucial, in order not to lose any information during the process. Any
variances in the beginning of the pipeline multiply throughout every model and can lead
to unusable results. Fine-tuning every part was therefore an important part of our work.
It is up to future research to improve the models using more computational power and
training samples. Our early experiments have shown, that the pipeline is able to extract
information about the relation, but is too inconsistent to be deployed. We are optimistic
that with a larger training corpus and more training time, the model will find better and
finer di↵erences between the relations.

Discussion The presented pipeline is the first step into automated document analysis,
not only making masses of documents easily analyzable for humans by visualizing their
contents in a graph, but also making the data readable by a computer. We will discuss
further steps to improve our pipeline and also interesting research questions that can build
on top of it.
Due to limitation in computing power, we were only able to train and test the models on
a small subset of the available data. Our results already show the capability of the pre-
sented models, however a fully trained model will likely be more powerful and generalize
better than our current best models. For example, the relationship classification model
SelfORE could be trained on the full T-REx corpus [Els+18], which includes 6.2 million
sentences.
The original problem formulation also included the classification of relations inside para-
graphs, not only sentences. For now, we disregarded this in our pipeline, however research
shows that the transformer architecture can be used for paragraph- or even document-level
relationship extraction [HW20], [Zha+21]. Substituting these methods for the current re-
lationship extraction model could expand the scope of the pipeline to this problem.
Another idea to expand the scope of the pipeline is to analyze a large number of docu-
ments at once and extract useful statistics from the identified relations. This could be
done by analyzing each document with the presented pipeline and then summarizing the
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results or adding them to a database, in order to calculate metrics over all results, like
frequency of relations, changes in entity relations over time or semantic information be-
tween two entities.
The extracted information in the knowledge graph can also help to automatically build a
knowledge database, consisting of relations and entities for future use.
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