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• Deliver an accurate model & human 

interpretable representation

• Build a prototype for a real-world use case
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Goal of the project

• Deliver a business model for a 

customer

• Employ and implement eXplainable AI

• Apply methods and approaches

learned in theory into practice

• Work on a real-world data science

project from start to finish



• AI methods are used for business

applications

• Blackbox model → highly

accurate, but not very

interpretable

• Lack of transparency and trust
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?

»Interpretability is the degree to which a human can understand the 

cause of a decision« (Miller, 2017)

Goal: explain black box model output

• Gain insight on how the model 

works

• Detect biases

• In this project: LIME and SHAP,  

methods for feature influence



6Tuna Acisu, Soh Yee Lee, Almut Scheerer | TUM Data Innovation Lab  

Project Plan
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Industrial Hydrogen Compressor Dataset

• Real world dataset: Sensor data from turbine and compressor

• More than 80 different sensors measuring e.g. pressure, temperature

• Measurement only taken at certain deviation from baseline

• Data collected over 19 years, between 0.13 million and 5.1 million

measurements per sensor

• Event: Valve breakage, leads to machine downtime

• Very imbalanced dataset, very few events (<1%)
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Understanding the data

Inside the compressor: Cylinders and Valves

Cylinder

Output flow

Input flow

Temperature sensors

Compressed gas
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Industrial Hydrogen compressor dataset: Events

Can we see patterns in the data? 

• Differences in temperature go up before valve breaks



• Two inputs to filter: 𝑥𝑘 (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) and 𝑑𝑘 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙

• Filter tries to find 𝑑𝑘 in 𝑥𝑘 → 𝑦𝑘
• Residual signal: 𝑟𝑘 = 𝑥𝑘 − 𝑦𝑘
• 𝑥𝑘 raw valve measurements, 𝑑𝑘 outside temperature, 𝑟𝑘 filtered valve measurements

→ use adaptive filtering to remove influence from outside temperature!
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Removal of outside influence - adaptive filtering

• Temperature sensors are crucial features

• But: fluctuation from outside temperature affect measurements
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Removal of influence - adaptive filtering

outside valve

outside 1.0 0.47

valve 0.47 1.0

Correlation before filtering

outside valve filtered 

signal

outside 1.0 0.47 0.01

valve 0.47 1.0 0.09

filtered 

signal

0.01 0.09 1.0

Correlation after filtering



Machine downtime

• Derive interval, mathematically and domain knowledge from client 
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Important Data Preprocessing Summary

Sync time 
interval

Feature 
engineering

Remove 
shutdown 

period

Aggregate 
features per 

day

Append events 
& "Manual" 
oversample

Train model

Temperature 

sensor 

reading
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Important Data Preprocessing Summary (1)

Challenges Solutions

Messy Repair Data

- Unknown broken valves

- Unknown start time of abnormality

- Maintenance or real breakage?

Manual labeling

Extremely imbalanced dataset • Cost-sensitive learning

• Manually "oversample"

S
ta

rt

R
e
p

a
ir



Train
45%

Validation
30%

Test
25%

• Predict daily valve breakage abnormally as a whole ⇒ 1

• Apply XAI methods to find abnormal sensors

Train / Validation / Test Split
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Problem Definition

Include all 

failed sensors
Holdout

Cross Validation Overfitting

Breakage 1 Day 1 Day 2 Day 3



NN Architecture

Feature Engineering

(1) "Paired" (2) "Cleaned"
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Modeling 

Cylinder

Input (low temp)

Output (high temp)

Cylinder
Input (low temp)

Output (high temp)

Input 

features

L2:

50 nodes

Output:

sigmoid

L1:

50 nodes



• Experimented with more than 1000 models.

• Best 100 epochs with early stopping for valve breakage periods.
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Result
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Goal: Explain a prediction by learning a linear model locally around it

Model uses the paired temperature features

Explanations are created using discretized features (in quantiles)
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Local Interpretable Model-Agnostic 

Explanations (LIME)

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). “Why should i trust you” Explaining the predictions of any classifier. Proceedings of the 

22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144)
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LIME – Results 

Day 1

Day 2

LIME 

score

sensor 

quantile



• checked all events:

⇒ not all top explanations match the affected valve pair(s)

• this linear approximation is not good
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LIME – Results 

⇒ tried another method, SHAP



Goal: Explain a prediction by the Shapley Value

Shapley Value

• In Game Theory: Method for fair allocation of output among the members 

of a coalition

• Here: each feature value = player in a game; prediction = payout

• Use approximation method: KernelSHAP
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SHapley Additive exPlanations (SHAP) 

Φ𝑖 𝑣 = 

𝑆⊆𝑁\{𝑖}

𝑆 ! 𝑛 − 𝑆 − 1 !

𝑛!
(𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 )
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Explanation for one day

Day: 1, Model prediction: 0, Reality: 0

Day: 2, Model prediction: 1, Reality: 1

Day: 3, Model prediction: 1, Reality: 1

sensor 

value

Shapley Values

probability for 

abnormal
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Interval of one month

Conclusion: It is possible to identify the affected valve pair(s) by SHAP
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• Hands-on approach to a real-world data analysis task

• No data analysis task is the same

• Many innovative ideas are needed

• Even Neural Networks are interpretable & verifiable

• Project group work can be challenging

• A happy client is very rewarding
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Learning Points
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Thank you for your attention!
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