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1 Introduction: ”Motivation” in Psychology and CS

As humans we are not only capable of interacting with our environment, but we can
also choose which of a nearly infinite pool of actions we want to perform. The question
why we choose specific actions, instead of others can be answered with the concept of
motivation. Motivation can be summarized as the active orientation of our current state
of being towards a positively assessed goal state, or away from a negatively assessed
event [1]. This means that there are two essential components to choosing a certain
action: (1) a punishment and reward system, that gives feedback on whether the action
consequence was positive or negative for us. This helps us build an experience base and
make better decisions next time. And (2) the value that we attribute to a certain action
consequence, combined with our expectancy that this consequence will actually occur
[2], in order to maximise the probability that we will achieve the best possible outcome.
These evaluations are dependent on the interaction of personal and situational factors,
i.e. our personal motives and goals that we want to achieve with our actions, as well as
the situation which provides certain opportunities and incentives [3].
This base model of motivation can be regarded as the direct inspiration of reinforcement
learning (RL) in computer science. Reinforcement learning tries to allow a computer
program to learn how to behave within a given environment. This learning process is based
on the provision of positive or negative rewards for certain actions. The goal of the agent is
to achieve the highest cumulative reward in the end [4]. Like in the aforementioned model
of motivation, the actor, or agent, is fed situational information from the environment
and tries to choose an action strategy (or “policy”) that promises the greatest long-term
reward, which ultimately implies goal completion (for a more detailed explanation see
chapter 3.1).
However, there are some restrictions to this simplified model of motivation. As the reward
ultimately comes from the completion of the goal, the actions are merely tools for the
achievement of the pre-specified goal-state [1]. This means that learned strategies are
inflexible and rather exclusive to this one scenario, as they are only known within this
scenario.
Contrary to that there are actions that we perform daily, where the performance of the
action itself is the goal, for example playing the piano. We trigger the action without being
told by anybody to do so. This is an example of motivation existing along a spectrum from
intrinsic (performing an action for the sake of itself) to extrinsic motivation (performing
an action purely for the positive action outcome/the nonappearance of a negative action
outcome) [3].
Furthermore, there is a capability that humans have, which is essential for making sense of
the world around us. That is our intrinsic motivation to explore the world, even if there are
no immediate practical benefits: curiosity. The basic neurological reward system, which
is central for motivational processes as mentioned before, can be placed in very specific
anatomical areas in the brain. Neuroimaging studies have found that the same areas that
are part of this reward system are activated when we receive or anticipate information
that we are curious about [5]. This means that information-seeking is neurophysiologically
rewarded like any other motivated process [5].
To summarize, in the context of learning it is curiosity and intrinsic motivation that
give us rewards for exploring our environment and our agency within this environment.
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This concerns not only skills that we acquire [1] but also knowledge about interactions
between the actor and the environment [3] and, to go one step further, dynamics within
the environment. Humans do this constantly and autonomously, without relying on an
explicit goal, leading to a life-long development and adaptation. Gaining such knowledge
allows the flexible use of learned skills and information in different settings. It enables the
actor to make experiences that can be useful to complete future goals in a more efficient
and effective manner.
While the crucial impact of intrinsic motivation is well understood within the study of
’natural intelligence’, in the context of artificial intelligence (AI), possible concepts and
applications of intrinsic motivation are yet to be fully explored. However, there are known
problems within RL research that stand out as potential candidates that could benefit
from applications of intrinsic motivation (c.f. Eppe et al. 2020 [6]), one example being
the sparse-reward-problem: As the complexity of the reinforcement learning environment
grows, the event of “accidentally” achieving a goal state becomes increasingly unlikely.
This in turn results in extremely scarce or even absent rewards, providing insufficient
information to update the policy and severely dampening the efficiency of the agent
[7]. Overcoming this problem requires an adaptation, rendering the agent capable of
successful exploration [7], while still being able to fulfil the goal efficiently. As such, the
sparse-reward-problem poses as a prime candidate to apply intrinsic motivation.
Getting a sense of achievement for gaining information about how to interact with the
environment and affordances of objects, instead of the reward being provided extrinsically
(which can be rare or even absent) is crucial for our ability to act.
But if curiosity and intrinsic motivation have such an existential meaning in natural
intelligence, why wouldn’t the correspondence in AI be of similar importance?

2 Project Outline

2.1 Project Motivation

Despite a great interest in moving digital agents from extrinsically motivated learning (as
is the case in traditional reinforcement learning) to a more intrinsically motivated form
due to the reasons previously discussed, concepts of curiosity and intrinsic motivation
exist only sporadically and are still severely underrepresented to date [6].
With artificial intelligence having become integrated in all aspects of human existence this
issue has a nearly unlimited scope in our society. In our daily life we most consciously
interact with AI in the form of chatbots. One only has to think about the navigation
systems in our cars or the automated voices in support hotlines to realize how naturally
integrated they have become in our lives.
However, it is chatbots like Amazon’s Alexa or Apple’s Siri that make the major difference,
as they not only work off one order, but support us in a variety of diverse every-day tasks
across a long time. For this reason, it is especially crucial for them to be able to adapt to
user-preferences and understand what the user needs throughout the day. An important
point within this ability is to be able to tackle certain tasks that are necessary without
being implicitly told to do so, as this would solve problems for the user before they even
occur. Maybe you do not want to go to work by bike today because it’s raining, and
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your chatbot has already searched for the right transit connection and set your alarm
accordingly? Maybe you always drink a cappuccino at 4 p.m. and the chatbot learns to
order it for you, so that it always arrives on time?
These are abilities that are still lacking in modern chatbots and that could be augmented
into a vast range of different directions. Following a bionic approach and emulating natural
intelligence could lift AI onto a new level. Once such approaches could be developed and
tested in one setting they could be adapted into any other setting AI has to offer.

2.2 Project Goals and Requirements

In order to see whether such approaches are feasible and useful, the aim of this project was
to develop a chatbot that supports the user in fulfilling his task and carries on coherent
conversations, and then augment it with an Intrinsic Motivation Complex (IMC). The
IMC should fulfil the following requirements:

1. Ability to trigger actions itself

2. Continuous skill expansion

According to a certain school of psychology, motivation can be illustrated as a person
moving within a force field, with positive and negative forces pushing or pulling this
person towards a goal state, depending on the quantifiable need to achieve this goal state
(c.f. [8]). As these forces can be expressed in mathematical formulae (depending on
the intrinsic tension/need of the person to achieve and the distance from the goal state,
c.f. Lewin’s theory, summarized by Beckmann and Heckhausen [8]) an initial idea for
the project contemplated to make use of this. However, this led to the question how
the concept of needs could be translated into artificial actors. To answer this question
we drew from Maslow’s hierarchy of needs [9]. It posits that there are five sets of goals
that are arranged in a hierarchy, whereas those lower in the hierarchy are regarded as
more existential (e.g. food, safety) and prerequisites to achieve the higher goals (e.g.
esteem, self-actualization). Once the goals of one hierarchical level are fulfilled, the action
orientation of the individual switches to the next level of goals. An adaptation of such
a concept for artificial intelligences could place basic requirements like battery charge on
the lowest, user goal fulfilment at the medium and exploration and learning at the highest
level of a needs hierarchy. This could enable the agent to learn to self-trigger and adapt
actions in order to advance from one level to the next, as these needs are of intrinsic
value to the agent without explicit solutions to the problems. It would also provide a task
prioritization system that lies in the nature of the architecture. However, at this point
two questions arose: is this a feasible and really efficient concept to implement in AI to
fulfil our project goals? And is it ethical to develop AI agents capable of learning with
needs. As we answered both questions with “no” we sought other options to achieve our
project goals and returned to more basic motivation and machine learning concepts:
We came to the conclusion that the first requirement could be solved using the concept
of intrinsic motivation generally: if something is “of intrinsic worth” to the agent (i.e. it
provides a high reward within an RL framework) and there are not explicit solutions to
the problem, this is reason enough for the agent to trigger a corresponding action, even if
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it is not explicitly being told to do so. Well designed RL punishment and reward systems
can teach the agent to do so only in appropriate situations.
The second requirement can be solved with curiosity specifically. Rewarding the agent not
only for goal completion, but also for the exploration of the environment and its dynamics
allows him to develop a more holistic experience base and therefore act more efficiently in
the future. However, this cannot get into the way of the completion of the task at hand.
According to the reward system’s dynamics in the human brain both requirements should
be able to be fulfilled using similar reward dynamics in reinforcement learning agents.

2.3 Outline

In order to develop a prototype IMC, we chose an example use case for an agent with such
an augmentation that was close to an everyday user and (for now) limited to one setting.
This example use case is that of a bar tender chatbot. In the future this project can be
used as the basis to extend the IMC to more complex and diverse use cases, arguably
having a chance to contribute to change in all RL agents.
In the following report, we explain the theoretical details of reinforcement learning and
deep learning in more detail. Subsequently we describe our implementations of baseline
agents which we developed to be extended with an IMC. Then we introduce the concepts
and implementations of our solutions for intrinsic motivation, which subdivide in a mood-
model, which is used for the self-trigger-requirement of the agent and a curiosity-model,
which is used for the continuous-learning-requirement. Furthermore, we report on findings
gained from experiments we conducted to prove the efficacy of our implementations,
conclude on the feasibility of an IMC as we tried to build it and give an outlook to future
research based on our work.
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3 Theoretical Background

The basic concepts of reinforcement learning as a separate branch of machine learning is
briefly described in the following pages.

3.1 The Reinforcement Learning Problem

Reinforcement learning (RL) is an approach to solving the task of learning. This is to be
achieved through interaction with the environment with the intent to achieve a goal. The
learner and decision maker is called the agent. This agent interacts with an environment
through a clearly defined interface. The agent learns from the feedback of its actions that
the environment presents [10]. The agent may have no knowledge of the inner workings of
the environment. The naming convention is similar to control theory where a controller
(agent) makes changes to a control system or plant (environment) via control signals
(actions) [11].
The agent and the environment interact continually at discrete time steps t. At each time
step the agent gets as an input the state of the system (consisting of the environment and
the agent) st ∈ S, where S is a set of existing states. Based on the state st the agent
selects an action at ∈ A(st). A(st) being a set of legal actions in that state. Based on
this action at the agent interacts with the environment, transitioning the the system into
a new state s(t+1), which is then fed again as an input to the agent. The transition from
one state into another is accompanied by a reward r(t+1) ∈ R, which is a usually a scalar
value. The number of time steps can be finite or infinite. An infinite number of time
steps form a continuous learning task. A finite number of time steps make up a learning
or training episode, which is what has been chosen for this project. The overall objective
is to learn a policy π(st) to choose actions, which maximise the reward over time (or over
the duration of a training episode) [11]. π(st, at) is the probability of choosing action at
in the state st.
The aim of reinforcement learning is to improve the policy of the agent as a result of the
feedback the agent receives from the environment in form of the reward rt [11].

Figure 1: Agent environment interaction

In order to determine whether an action was directed towards the aforementioned goal,
the reward rt ∈ R is given encoding the success. The goal is to maximise the reward
for the entire episode, this means that not the immediate reward is relevant but the
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accumulated reward over time. Using a reward to formalise the objective of the task is
one of the distinctive traits of reinforcement learning [12].
Ideally no knowledge on how a problem it to be solved should be imparted into the
reward signal but only indications of what should be accomplished so the search space
for an ideal solution is not limited and to the agent is not constrained. Reinforcement
learning environments are usually formalised as a markov decision process (MDP) [13].

3.2 Credit Assignment Problem

The credit assignment problem describes the fact that rewards for actions are usually
extremely delayed. An agent has to learn not to take the action that gives the immediate
highest reward but go through a number of states with almost no or zero reward in order
to get to more relevant and thus more rewarding states in the future. As a consequence
the reward signal is weakened over the number of steps taken [10]. For a finite number of
steps T a common way to overcome this problem is to use a discounted reward function:

Rt =
∞∑
k=0

γkrt+k (1)

t being the steps and k the number of times a certain reward is obtained. This states,
that the strength by which an action is encouraged or discouraged is the weighted sum
of all rewards of one episode. Rt is the total discounted reward that can be expected if
a certain action a ∈ A(st) is chosen. rt is the reward for the action at time step t. γ is
a parameter between 0 < γ < 1 called the discount rate. Hereby, the later rewards
are exponentially less important. The larger γ is chosen, the further into the future are
rewards taken into account [14, 15].

3.3 Exploration – Exploitation Dilemma

In order to maximise the reward over time, the agent has to explore the environment.
This means the agent has to explore as many states as possible in order to “know”, how
being in a specific state will influence the overall reward. In an environment with very
large or even an infinite set of possible states, exploring every state can take a very long
time. Therefore, a rule has to be formalised how the agent will transfer from exploring
the environment to exploiting the policy it has found. If a reinforcement algorithm is
initialised randomly, the actions chosen in the beginning will be random. Here, the agent
performs a sort of “built-in” exploration. However, once the agent has found a policy
giving it a maximum reward, it will continually use this policy, shifting to exploiting the
policy. The maximum reward found, may however not be the maximum achievable reward
in the environment. This exploration is called greedy and settles on the first policy found
[11].
There are different ways to formalise how the agent should shift from exploration to
exploitation. One of them is a ε – greedy exploration. Here the agent will pick the
best action according to its policy but with a (1 − ε) chance will pick a random action.
Usually ε is annealed over time to privilege exploitation over exploration, after sufficient
exploration of the environment [13].
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3.4 Q-Function and Bellman equation

A common method for solving reinforcement learning tasks is based on what is called
the Q-function. At each time step the agent interacts with an environment, it chooses
an action which moves it from its current state into a new state. Additionally, the agent
receives a reward. The agent tries to choose the actions that will yield it the maximum
reward for an episode. In order to choose the action in each state that yields the maximum
expected reward at the end of an episode an optimal value action function Q∗(s, a) is
introduced. The Q-value function at state st and action at (see eq. 2 and eq. 3) is the
expected cumulative reward from taking action at in state st and then following the policy
π. The symbol Q stands for quality since it represents how advantageous a certain action
is in a certain state [16].

Q(s, a) = max
π

E [Rt | st = s, at = a, π] (2)

With eq. 1 this results in:

Q(s, a) = max
π

E

[∑
k=0

γkrt+k | st = s, at = a, π

]
(3)

The policy π for choosing an optimal action to a state, is chosen as the following:

π(s) = argmaxaQ(s, a) (4)

Since the Q-function is usually randomly initialised (Q∗ is unknown at the beginning), the
optimal action values for the Q-function have to be found. This is possible because the
defined optimal action value function obeys an identity known as the Bellman equation
[16, 10]:

Q∗ (st, at) = E
[
rt+1 + γmax

a
Q∗ (st+1, at+1)

]
(5)

The basic idea is that the maximum possible reward (this is under optimal policy) for
the current state and action is obtained, plus the maximum discounted future reward
of the next state. Essentially the bellman equation establishes a link between present
and future states. In order to find the optimal actions in each state, the Q-function is
iteratively approximated using the Bellman equation. This is often referred to as Q-
learning [11, 10, 17]:

Qi+1 (st, at) = Qi (st, at) + α

[
rt+1 + γmax

at+1

Qi (st+1, at+1)−Qi (st, at)

]
, (6)

where i is the update iteration and α a factor known as the step size. It has been shown
that an algorithm performing such value iteration will converge to an optimal policy [18].

Qi → Q∗ as i→∞ (7)

Updating Q(s, a) using maxa Q[st+1, a] is only an estimation at first, but performing
such an update often enough will lead to the convergence of the Q-Function to represent
the true Q-Value [16].
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3.5 Deep Reinforcement Learning

The theoretical background of artificial neural networks is assumed to be known and will
thus not be explained in detail in this report. The following chapter describes how NNs are
integrated into the reinforcement framework. The Q-learning approach has the objective
of determining optimal action values to maximise the overall reward [11, 12].
In practice the reinforcement learning approach described in Chapter 3.4 is impractical
[16] because the Q-values are evaluated for each state action pair, which is infeasible for
a very large state-action space [15].
Instead, a function approximator is used to evaluate the Q-values. This can be a linear
or a nonlinear function approximator such as a NN.
The implementation of a NN as a function approximator for the Q-learning approach was
pioneered and implemented by DeepMind [19]. The Q-network is, like a standard NN,
trained by minimising a loss L through an iterative process based on Q-learning with the
underlying Bellman equation:

Ln = E

[(
rt+1 + γmax

at+1

Q (st+1, at+1,; θn−1)−Q (st, at; θn)

)2
]

(8)

Q (st, at) is the prediction calculated from the input state st, which is a multihead output
for each action. The actual action at is then received as the optimal policy by:

at = π(st) = argmax
at

Q∗ (st, at; θn) (9)

In equation 8 rt+1 + γmaxat+1Q
∗(st+1, at+1; θn−1) is the target value yi - the ground truth

in supervised learning. Minimizing this loss means that the Q-value function learned by
the network iteratively approaches the target yi, which is the calculated optimal Q*-value
function approximating the Bellman equation 5.
This target value is obtained by executing the actions at chosen from Q(st, at; θn) in the
environment, getting state st+1 and the reward rt+1 and running st+1 through the so called
target Q-network getting Q∗(st+1, at+1; θn−1). In contrast to the label, which was seen as
the unchangeable ground truth in supervised learning, the target Q-network is dependent
on the weights of the Q-network [16, 15], but its weights θn−1 are always lacking one step
behind the weights θn of the actual Q-network in order to increase stability.

Differentiating the loss function 8 with respect to the weights θ of the Q-network produces
a gradient and leads to the following expression [11, 16]:

∇θLi = E

[(
rt+1 + γmax

at+1

Q (st+1, at+1; θn−1)−Q (st, at; θn)

)
∇θnQ (st, at; θn)

]
(10)

The deep Q-learning approach is an off policy learning approach. The network does not
learn a policy. The network only learns the Q-value for each action, state pair as described
in previous chapters 3.3 and [16, 15]. The term off-policy means that the Q-function is
updated independently from the current episode with samples, which have been saved



3 THEORETICAL BACKGROUND 11

in a replay buffer throughout the exploration and are now sampled with the assumption
that they are independently identically distributed (iid). These samples include the state
st, the action at, the next state st+1 and the reward rt.

To calculate the Q-values of the actions the agent has at its disposal, a näıve form of
constructing the model would be to use the state and an action as input to the neural
network to produce a Q-value for that state and that action. However, if the agent has
several actions to choose from, a separate forward pass of the network is required for each
Q-value. This produces a computing cost that scales linearly with the number of actions.
To avoid this, the architecture is changed to have one output per possible action. Each
output represents the Q-value of one action with the state as the only input to the network.

Figure 2: Left: classic Q-learning with one Q-values per calculation; right: Q-network
with one Q-value per output
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4 Baseline Agents

Our chosen use case for this work is a goal-driven bartender agent. The task each approach
has to fulfill for the baseline is to serve the user a drink throughout the conversation,
which matches constraints such as drink type or size, given by the user. We have three
approaches in total, the first one is based purely on intents, while the second and the
third operate on a natural language level.

4.1 Intent Based Agent

The intent based agent is a value-based reinforcement learning agent. The problem state-
ment is the following: At the beginning of a conversation - a so called episode - the user
picks a goal from a goal data base of the following form : {′request slots′ : {′SIZE ′ :
′UNK ′}, ′inform slots′ : {′TEMP ′ : ′cold′, ′DRINK ′ : ′water′}}.
The goal has so called request and inform slots filled with attribute slots, which themselves
are filled with values. The request slots indicate which information has to be informed
by the agent throughout the conversation and the inform slots indicate which constraints
the user poses for his drink. Throughout one episode the agent and the user then interact
in steps via so called utterances of the form shown in figure 3.

Figure 3: General action utterance of either the agent or the user

The intent indicates the purpose of the conversation, while the request and the inform
slots again indicate which information is requested or informed. As figure 3 shows, the
user has 6 intents in total, and the agent has 4. The slots domain has a size of 3 with
the drink type, the temperature of the drink and its size. Each slot has a value set (e.g.
{small,medium, large, Jumbo} for the SIZE slot), which is filled in case the slot is part
of the request slots.
The overall goal of the conversation (one episode) for the agent is to inform all the
unknown values from the goal’s request slots and to find out all the constraints at the
same time, to search for a drink in the database matching all the slots values. Once the
agent has found a drink, he will inform it to the user, who indicates whether the search has
been a success or not. Ideally the agent then closes the conversation, which is the end of
an episode and gets a high positive reward. If the agent doesn’t close the conversation, it
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continues until a maximum step number of an episode (turns in a conversation) is reached
and the user simulator closes the conversation automatically.
The overall agent’s experience collection process for the DQN training is conducted in a
so called gym, which can be seen in figure 4. The architecture of this process follows the
approach from [20].

Figure 4: Gym: Place, where the agent can explore its state action space and learns its
policy

As a first step the agent starts with a state s(t), that encodes information about the
history of the conversation. Based on this state, the DQN agent (see 4.1.2) chooses
an action aa(t) (corresponding to an utterance) the agent wants to take based on its
current policy. This agent action aa(t) is then forwarded to the user simulator (see 4.1.1),
which in the reinforcement context is the environment the agent interacts with. The
user simulator reacts with a rule based user utterance au(t) to the agent action and also
outputs a SUCCESS variable indicating, whether a drink has already been found. The
SUCCESS variable is then forwarded to the score function, where the reward for the agent
is computed.
The user utterance au(t) on the other hand is forwarded to an EMC (error model con-
troller) infusing an error to the user utterance with a certain probability, improving the
training stability. This action au∗(t) is then forwarded to the state tracker (see 4.1.3).
The state tracker first updates its own history of the conversation, which it keeps track
of and then uses this history information to compute the state s(t+ 1) of the agent.
This state s(t+ 1) is then together with the state s(t), the agent action aa(t), the reward
r(t), and the done variable (indicating whether one conversation round (episode) is fin-
ished) forwarded to the replay buffer, which is the memory of the agent, from which the
DQN agent learns its policy. The state s(t + 1) is again forwarded to the DQN agent,
which closes one experience loop or step in an episode.
In the following the most important components, the user simulator, the DQN agent, the
state tracker and the error model controller (EMC) will be explained in more detail.

4.1.1 User Simulator and Error Model Controller

The user simulator (see 4.1.1) is the environment the agent interacts with at each step in
order to get a reward for certain actions.
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Figure 5: User simulator with its different states keeping track of the conversation: ex-
ample of a user inform utterance to a drink request agent utterance

The user simulator acts based on internal states, which represent the user’s memory. As
explained in 4.1 at the beginning of a conversation the user chooses a random goal from
a goal database. The request and inform slots of this goal are then saved in the rest slots
state, indicating which slots still have to be informed or requested by the user throughout
a conversation. The history slots state indicates, which slots have already been informed
throughout an episode by either the user or the agent. Whenever the user simulator
receives an utterance from the agent aa(t) with certain intent and inform and request
slots, it chooses a rule based answer to this certain action. This answer depends on the
agent action’s intent, its request and inform slots. If the agent as in 4.1.1 for example
requests for a DRINK slot, which is still in the rest slots state (meaning it hasn’t been
informed throughout the conversation yet), the user picks this slot. Since the slot value
is filled with an actual value and not with an unknown, the action will have an inform
intent. Once the user has chosen an intent and a slot from the rest slots, this information
is filled in the request slots, inform slots and intent states forming the utterance of a user.
This utterance is then passed on to the agent. As the DRINK slot will be informed by
the user, it gets passed to the history slots state.
Once all rest slots are empty the user requests the drink itself. The respective slots of the
drink, being proposed from the agent have then to match all the history slots to fulfill the
goal.
Whether a matching drink is found is checked by the user only at the end of an episode,
expressed through a positive or a negative SUCCESS value, which is then fed into the
score function, computing the reward of the agent as in eq. 11. Nevertheless there is
one exception for the case that the user closes the conversation itself, which happens if a
maximum number of steps is reached. In this case the SUCCESS value will always be set
to negative - independently of whether a drink has been found. This enforces the agent to
close the conversation itself as early as possible. Throughout the rest of the conversation
the SUCCESS value fed into the value function is always zero, which leads only to a fixed
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negative reward of 1 for each additional step during the conversation, penalizing long and
inefficient conversations (see eq. 11).

rextrinsic =


−wfail ·max round if SUCCESS = −1

+wsuccess ·max round if SUCCESS = +1

rstep if SUCCESS = 0

(11)

For completeness, the parameters wfail, wsuccess and rstep shall be understood as hy-
perparameter, since they will be considered as hyperparameter in subsequent chapters.
However, at the baseline agent we kept them static at: wfail = 1, wsuccess = 2 and
rstep = −1.
The error model controller (EMC), introduces a certain randomness to the user answers
by switching either the slot value, the slot itself or the overall intent with a certain
probability, that can be chosen individually as a hyperparameter (see table 2).

4.1.2 DQN Agent

The DQN agent is the core of the RL chatbot. It is the part, which we try to optimize
with the training process in our gym environment. The agent has a warm-up and an
actual training phase. In the warm-up phase, the agent chooses its actions in a rule based
fashion, with which it already collects experiences, which it can save in the replay buffer to
initialize the training. As the training starts, the agent, which is in fact a neural network,
gets as an input the state st as elaborated in 4.1. This network computes as an output
the Q-value function of that state and each possible action Q(s(t), aa(t)|θn) as shown in
figure 6 and mentioned in 3.5. The actual agent action aa(t) is then chosen among all
possible actions as the action, which maximizes the Q-value (see eq.9).
Improving the policy of the agent network for choosing an appropriate action aa(t) to a
certain input state in our case means that the neural network learns the optimal Q-value
function Q(s(t), aa|θn). To find the optimum we want to minimize the Loss function 8,
described in chapter 3.5), which for our concrete problem is the following:

Ln(θ) =
1

2

batch size∑
i=1

(yi −Q(si(t), aai(t)|θn))2 (12)

with

yi = Q∗(si(t), aai(t)|θn) =
batch size∑

i=1

(ri + γ max
aa(t+1)

Q(si(t+ 1), aa(t+ 1)|θn−1)) (13)

This loss is an approximation of the Q-Iteration as described in the theoretical background
section of chapter 3.5. Having a deeper look at the DQN agent, we see that the network
itself is rather simple, which makes the agent very efficient to train. The details about
the architecture can be seen in table 4.
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Figure 6: The DQN agent with its action selection Q-value neural network

4.1.3 State Tracker

The state tracker is tightly coupled with the DQN agent and part of the chatbot itself.
The state tracker gets as an input the user action au(t + 1). As shown in 7, with this
action it first updates the dialogue history, which stores the last agent and user actions
as well as all previous inform slots with its values. Secondly the state tracker computes
the current state s(t) based on the last user and agent action in the dialogue history.
This state is a one hot encoded vector, encoding and concatenating the following infor-
mation: intent of last utterance, last slot informed, last slot requested by both user and
agent, already filled slots, the current round number and a representation of database
query results matching the current filled slot values.
This state s(t) is then fed into the DQN, from which the state tracker gets back the agent
action output aa(t). The reason why the output is fed back to the state tracker is, that
the agent chooses the action with its intent and its inform or request slot, but in case of
an inform or find drink action, it still has to fill the values for the slots by querying the
database. This happens in the third step of the state tracker, where the agent searches for
all database entries matching the current constraints and either return it for find drink
or for inform fill in the slot value, for which there are still the most entries. The state
tracker than returns the filled agent action aa(t) and updates the dialogue history with
it before it passes it on to the user again.

4.1.4 Training and Results

The training took about 1-2h using a normal CPU, realized more or less coherent conver-
sations and yielded a maximal success rate for finding a drink of 98%.

4.2 Multicomponent Agent

The intent based baseline model has an explicit mapping of utterances to the intents.
Hence, it lacks natural language understanding (NLU) capability. Next to the intent
based agent, two baseline agents that allow for natural language understanding were



4 BASELINE AGENTS 17

Figure 7: The state tracker with its three components to pre and post-process user and
agent actions respectively to supplement the DQN agent

developed. One of them, the multicomponent agent, follows a reinforcement learning
approach, and the other one, the end-to-end agent, is in the first stage being trained with
supervised learning. The pipeline for both the models is inspired from [21]. Zhao et al [21]
proposed a goal-oriented chatbot that can be trained end to end and combines the NLU,
state tracker and dialog policy into one component. This helps in alleviating mainly two
problems existing in the architectures which have each component separately.

• Credit Assignment problem: It’s often difficult to identify the faulty component
in the pipeline which is affecting the performance.

• Process Interdependence: Whenever one module (e.g. NLU) is retrained with
new data, all the others (e.g. state tracker) that depend on it become sub-optimal
since they were trained on the output distributions of the older version of the module.

Figure 8: Conventional pipeline of an spoken dialog system (SDS). The proposed model
replaces the modules in the dotted-line box with one end-to-end model.

This section presents the concept and results of the multicomponent agent.
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4.2.1 General Concept

The general idea is an agent that interacts with the environment using two types of actions:
verbal actions and hypothesis actions. Verbal actions are agent utterances, hypothesis
actions represent the filling of a slot with a value. The environment consists of a user and
a database (DB). Based on the agent action the user can return both an utterance and a
reward to the agent. This concept (displayed in figure 9) is an adaption of reinforcement
learning.

Figure 9: Multicomponent Agent: General Concept

The agent’s task is to have a coherent conversation and to fill the two existing slots
drink and size correctly. There exist four types of user utterances: greet, thanks,
inform{\size”} and inform{\drink”} producing utterances to greet, thank, inform the
agent of the user goal’s size slot and inform the agent of the user goal’s drink slot re-
spectively. Example utterances for each of the categories are: ‘hey there’, ‘I appreci-
ate it’, ‘make it medium’ and ‘I would like to have a coke’. The agent’s verbal action
can belong to one of four types: utter greet, utter ask DRINK, utter ask SIZE and
utter confirm order. Those verbal actions allow the agent to either greet, ask the user
for the drink type, ask the user for the drink size or to confirm the order while stating
the agent’s current believe about what kind of drink in which size to order. ‘Hey! Can I
do anything for you?’, ‘What drink do you want?’, ‘What size do you prefer?’ and ‘Good
choice. I will bring you a large frappe in just a second.’ are example agent utterances for
each of those categories. An overview of those three pipeline components can be found in
figure 10.

Figure 10: Overview of Pipeline Components

4.2.2 Pipeline

The multicomponent agent consists of one LSTM and three deep Q-Networks. The LSTM
functions as state tracker and each of the DQNs corresponds to either a verbal action or
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to one of the two hypothesis actions, i.e. the agent action to fill the drink slot or the size
slot with a value. The LSTM gets two inputs: The agent’s slot values for drink and size
whose tuple has the initial value of (0,0) and the user utterance combined with the user
intent. During each of the agent actions only one of the three DQNs is being activated
and the rest of them are masked. The action masking is based on the user intent and
encoded as a deterministic mapping. To train the model efficiently a user simulation has
been created. The training data consists of a set of stories, drinks and sizes. At the
beginning of a new training conversation a story and a user goal consisting of a specific
drink and size are randomly chosen. Thereafter the conversation flow is determined by
the story. The general model structure is depicted in figure 11.

Figure 11: Pipeline of the Multicomponent Agent

When the story starts with a user utterance of the category inform drink, e.g. ‘I want to
order a frappe’ then the agent’s initial slot values (0,0) as well as this utterance are fed
into the LSTM. Due to the user intent inform drink the drink slot DQN is activated and
the others are masked. With a optimally behaving agent the word ‘frappe’ is the output
of this DQN and the agent’s slot value is updated to (‘frappe’, 0). Afterwards this tuple
together with the previous user action is fed into the LSTM and the verbal action DQN
is the one being unmasked. The network returns the agent action utter ask size and the
agent therefore asks the user for the drink size. As a next step of the story the user’s
intent is set to inform size and the current agent’s slot values as well as a user utterance
like ‘medium, please’ are passed to the LSTM. The size slot DQN is unmasked, the value
‘medium’ is added to the size slot and after another conversation step the verbal action
utter confirm order is activated through the now unmasked verbal action DQN. The
conversation episode ends and if both agent’s slot values correspond to the slot values of
the user goal the agent gets a positive reward and otherwise a negative reward. If in any
step of the conversation the agent fills a slot wrongly then the user simulation ensures
that the conversation terminates and returns a negative reward.

4.2.3 Training and Results

The training takes about one to two hours using a regular CPU. Independent of training
time, small implementation changes like a simplified database containing only a single
story and fewer drinks and utterances the agent could not get over a success rate of over
15%. In figure 12 one can see two typical episodes containing agent errors. In the first
episode the agent does not infer the information about the drink size correctly and in
the second episode the agent does not choose the right verbal action, which, in this case,
would be utter confirm order.
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Figure 12: Episode Examples for a Conversation of the Multicomponent Agent

Since all attempts to improve the agent performance failed to produce significantly better
results, a second concept for a baseline agent allowing for natural language understanding
was conducted.

4.3 End-to-end Agent

For our third baseline implementation, we train an end-to-end natural language under-
standing conversational agent in a supervised manner. We define our state to be con-
sisting of the conversational state and the slots’ state, denoting the observed dialog and
the already filled slots, respectively. We furthermore define agent actions in three sub-
sets: utter actions, drink slot actions and size slot actions, consisting of 5, 50 and 3
elements, respectively. The utter actions are the actions related to the conversation, con-
sisting of utter greet, utter ask DRINK, utter ask SIZE, utter confirm order and
utter pass turn. The slot actions consist of each possible drink and size. The agent
selects an action at every action turn, which is decoupled from the conversational turn.
This allows the agent to take multiple actions on a single conversational turn. When the
agent selects the action utter pass turn, the conversational turn is passed to the user.

4.3.1 Data Generation

In order to train our agent in a supervised manner, we first generate data simulating real
conversations. This is done in two steps: Forming templates and generating data points.
In the template forming stage, we go over the possible conversational stories provided to
us by our mentor at Horváth (see fig.13) and form empty templates that correspond to
the stories. A template consists of the conversational state, slot’s state and the correct
agent action at every point in the story. We form six templates in this stage, which are
then used for template filling.
During the template filling stage, we sample from a total of 50 drink types and 3 drink
sizes to fill the templates. We also sample for each utterance a natural language phrase
from a pool of corresponding phrases. Filling the templates for every possible combination
of drinks, sizes and utterances results in ∼ 29, 000, 000 data points. We shuffle these data
points and split them into a training set and a test set, where the training set includes
∼ 90% of the data and the test set includes ∼ 10%.
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Figure 13: A sample story

In order to facilitate data preprocessing and efficient data loading, we extend the Keras

Sequence class into our own ConvoSequence class. This class converts conversational
input into a Numpy array, and the slots’ state input into a concatenation of 2 one hot
encoded vectors of size 50 and 3. These vectors denote whether one of the 50 drink types
or one of the 3 drink sizes are selected. The action output is also converted into a one
hot vector of 58 dimensions, denoting the 5 utterance actions, 50 drink slot filling actions
and 3 size slot filling actions.

4.3.2 Agent Network

The agent network consists of two inputs and three outputs. These correspond to the
conversational input, slots input, and utter actions, drink actions and size actions, re-
spectively. The inputs are processed to create meaningful input representations, which
are then concatenated and passed to the policy networks to produce the outputs. The
outputs from the policy networks are further passed through a softmax layer to form a
probability distribution. The model summary can be seen in Fig. 14.
Conversational input Conversation input is initially passed through a vectorization layer
which removes accents and punctuation, and converts the text to a sequence of integer
indices. The resulting indices are passed through an embedding layer that projects the
words onto a 300 dimensional embedding space. We initialise the embedding layer using
pre-trained glove embeddings and then fine tune on our own data. Finally, the embedding
representations are passed through an LSTM layer with a hidden state size of 300 to form
our conversation representations.
Slots Input Slots states are provided as one hot encoded vectors of 53 dimensions. This
input is then passed through a 100 dimensional dense layer with ReLU activation to form
the slots representation.
Concatenation Layer The conversation and slots representations are concatenated into a
400 dimensional vector that is fed into the policy networks.
Policy Networks The policy network passes the concatenated state representation through
two dense layers. For each network, the initial layer has a size of 200. The second layer
has a size corresponding to the action space: 5, 50 and 3 for conversational policy, drink
policy and size policy, respectively. All layers have ReLU activation.
Softmax Output The output of the three policy networks are passed through a softmax
layer to form an action probability distribution.
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Figure 14: Model Summary of the End-to-end Agent

4.3.3 Training and Testing

We train our agent end-to-end on the training set with 10 cores and a batch size of 4096.
We optimise our network using an adam optimiser based on categorical cross entropy loss.
Since the dataset consists of all possible conversational points, we train our agent only for
a single epoch. We report categorical cross entropy, categorical accuracy, precision and
recall on the test set.

4.3.4 Results

The training takes roughly five hours on an lrz.xlarge instance. This process is done
in two steps to mitigate memory issues that arise due to a memory leak in Keras imple-
mentation. The results on the test set are as follows (rounded to 3 digits after comma):

• Categorical Cross Entropy: 1.011

• Categorical Accuracy: 0.753

• Precision: 1.0

• Recall : 0.751

The sizable difference between the precision and the recall points towards a low number of
false positives and a high number of false negatives. Considering the huge and imbalanced
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action space for our model, where many actions are infrequently selected - such as the
slot filling actions - and a few actions are very frequently selected - such as the utterance
actions, particularly utter pass turn which occurs at every conversational turn -, these
results indicate that the model is conservative when it comes to selecting low frequency
actions, preferring to select the high frequency actions in case of uncertainty. This be-
haviour results in high average precision and low average recall since a single action has
a minimal effect (around ∼ 1.7%) on the macro-average. As such, high precision and low
recall of the infrequent actions dominate the results.
In order to try and mitigate this issue, we have removed the most frequent action
utter pass turn from the action space, treating an utterance as implicitly passing the
turn, and trained the network again. However, we observed no significant improvements
on the test metrics, indicating that the agent was still prone to selecting the high frequency
actions in case of uncertainty.
Another way to mitigate this issue could be to train the model on a stratified dataset
where the action frequencies are balanced. However, we do not explore this approach due
to time constraints.

4.4 Selection of one Baseline Approach

The key characteristics of the three approaches can be compared in table 1. The intent
based agent and the end-to-end agent both yield good results, especially considering the
latter models complexity due to the incorporation of the natural language understanding
capability. Going forward, however, we only consider the intent based agent due to its bet-
ter performance and ease of extendability. While the exclusion of NLU introduces some
limitations, we believe that the model’s simplicity will allow us to focus on the imple-
mentation of an intrinsic motivation complex. Furthermore, extension into NLU remains
possible, for example though incorporation of another model able to map utterances to
user intents and slot values.

criteria intent based ap-
proach

multi component
approach

end-to-end ap-
proach

training method reinforcement learn-
ing

reinforcement learn-
ing

supervised learning

allows for NLU not yet yes yes
performance of
base model

very good (success
rate of 98%)

not sufficient good (accuracy of
75%)

easy extendabil-
ity

yes yes moderate

necessary train-
ing ressources

1-2h of training
(with a normal
CPU)

1-2h of training
(with a normal
CPU)

5h of training (using
the LRZ cloud)

Table 1: Comparison of baseline concepts
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5 Concepts for Intrinsic Motivation

One of the major goals for this project was to build an agent, which acts based on an
intrinsic motivation. Therefore, for the the second part of the project the focus has
been on finding approaches to extend the baseline agents, such that the agent acts in
an intrinsically motivated fashion by triggering the user throughout the conversation for
example. As we have selected the intent based approach from all baseline approaches, the
concepts for intrinsic motivation are based on this baseline agent.

5.1 Mood-model Based Intrinsic Motivation

5.1.1 Overall Concept

One of our approaches for the intrinsic motivation was to define the motivation of the
agent to fulfill the goal of finding a drink as an extrinsic motivation (as his job as a
barkeeper) and to describe the intrinsic motivation as the endeavor of the agent to make
the user happy. Therefore we approached the intrinsic motivation by introducing a mood
model, describing the user’s mood at each step of the conversation.
While we have first thought of incorporating the user mood in the state s(t), which will be
passed to the agent, ultimately we decided against this approach and here is why: Passing
on the user mood to the agent as a part of the state would mean, that the agent would
be aware of the user mood at each step of the conversation. Thinking of a chatbot in real
life, this would require a way to identify the user mood at each step of the conversation,
either with face recognition or by extracting the user mood with a sentiment analysis
from the answer he provides. As many answers from the user are rather neutral in such
a conversation, this is a hard problem.
To circumvent this problem we have therefore chosen a different approach, which focuses
purely on the reward, which the agent gets as a feedback for each of his actions aa(t).
The core of this idea was to extend our reward formulation by distinguishing between
an extrinsic and an intrinsic reward (see eq. 16), also stated as a common method in a
survey for intrinsic motivation in RL [22] The intrinsic reward is then based on the mood
model, which will be explained in further detail in the next section. By encoding the
user mood in the reward, which is just used for training the DQN agent, we will not pass
the user mood directly to the agent but rather indirectly. With this approach the agent
will develop an intrinsic motivation to make the user happy during the training phase.
As he has learned intrinsically how to behave in order to make a user happy by kind of
anticipating but not knowing his mood, he doesn’t have to extract the real user mood in
the deployment phase, which is a significant advantage.

5.1.2 User Mood

The basis for the mood model developed in this project has been the PAD emotional
state model of Russell. PAD refers to the 3 dimensions of this model - pleasure, arousal
and dominance. [23] We have adapted this model for our mood model by reducing it to
a two dimensional model keeping the pleasure and arousal dimension. As seen in figure
15 the arousal dimension corresponds to the user’s goal desire for our use case, meaning
how thirsty he or she is, and the pleasure is the user’s happiness. In our mood model the
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user gets from one mood state emt to another state emt+1 in a discrete fashion like in
a finite state machine. In total a user can have six different states. In the beginning of
a conversation the user gets randomly assigned to one of the six mood states. During a
conversation transitions are only possible on the pleasure dimension, but not on the goal
desire dimension, since realistically a real user will not get from a thirsty state to a not
thirsty state and the other way around during the length of one conversation.

Figure 15: User mood model inspired by the PAD state model of Russell for the user
utterance inform

The transitions for how a user changes from one mood state emt to the next one emt+1 are
defined individually for each user action and the corresponding agent actions as shown in
figure 15 for the example of the user action inform. Each user action has its own mood
model, with all the agent actions being the transitions from one state to another. Each
state has a transition for each agent action.
The intrinsic reward function is based on these transitions between the mood states as
the following:

rtransition(emt+1|emt) = rtransition(transitionemt emt+1) =

neg neg neg neu neg pos
neu neg neu neu neg pos
pos neg pos neu pos pos


(14)

Beyond the pure transitions the intrinsic reward also depends on where the user is on the
goal desire dimension (see eq. 15). For a low goal desire it gets an additional positive
reward rgoaldesire for each additional step, enforcing longer conversations, as the agent
should learn to engage with the user longer, whenever he is not thirsty.

rmood = rtransition(emt+1|emt) +

{
0 if goal desire = high

rgoaldesire if goal desire = low
= rintrinsic (15)
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The overall reward with intrinsic (see eq. 15) and extrinsic reward (see eq. 11) can be
computed as a weighted sum:

r = βreward · rintrinsic + (1− βreward) · rextrinsic (16)

The exact values of the rewards as well as the weighting factors of intrinsic and extrinsic
reward have to be adjusted by experimentation and are therefore part of the hyperpa-
rameter tuning in chapter 6.

5.1.3 Additional Extensions to the Baseline Intent Based Agent

To adapt the user simulator and the agent to our concept of intrinsic motivation we have
made several changes. As a first step we have added two new user utterances nothing
and nothelpful and three new agent utterances joke, trigger user and nothing to the
original utterances from figure 3. The description of all intents can be in table 2 These
new actions allow to have moments of silence in a conversation and give the agent the
possibility to trigger the user or tell a joke on its own.
Beyond that we have made additional changes to the user simulator. User answers have
been modified to be also dependent on the user’s goal desire mood and have been changed
to be more stochastic and no longer only rule based. This makes the user simulator more
complex, which is good for the agent to learn a more robust behavior. Furthermore we
have changed the termination condition of an episode. As explained in 4.1.1 so far the
user has closed the conversation after a maximum number of steps and whenever this
happened, the agent has received a negative reward - independently of whether he had
found a drink before. This behavior enforced the agent to close the conversation right
after he had found a drink - leading to a very efficient conversation. However with the
additional intrinsic goal of making the user happy, we still want to fulfill our goal of
finding the drink, but we also want to lead a conversation, which makes the user happy
beyond the drink finding. Therefore we have changed the termination condition such that
the user is still closing the conversation after a maximum number of steps, but that the
agent still gets a positive reward, when he has found a drink throughout the conversation.
Additionally to that, the user now also closes the conversation, whenever he is in a negative
mood for the third time giving a high negative reward even when a drink has been found.
This increases the importance for the agent to keep the user in a positive mood.

5.2 Curiosity-driven Intrinsic Motivation

5.2.1 Motivation

A huge difficulty in reinforcement learning scenarios is the efficient exploration of state-
action pairs through interactions with the environment by the agent and a good trade off
between exploration and exploitation as mentioned in section 3.3. A common used method
is ε - greedy exploration, where the agent selects a random action with a probability of
e. With a probability of 1 − ε the agent selects the actions that maximizes its Q-value
function as explained in 4.1.2. In order to converge to an optimal value, ε has to converge
to zero with increasing number of episodes assuming enough knowledge is collected over



5 CONCEPTS FOR INTRINSIC MOTIVATION 27

time. This strategy is quite inefficient and often does not lead to the desired goal, as it
neither takes the difficulty of a certain skill into account nor the order in which skills are
learned. Methods of intrinsic motivation such as curiosity can tackle this issue.
Developmental psychologists describe curiosity as a form of intrinsic motivation that is
the primary driver in the early stages of development in humans [24]: especially babies
appear to employ goal-less exploration to learn skills that will be useful later on in life.
As we employed ε-greedy exploration for the intent based baseline 4.1, we concluded that
the implementation of a curiosity driven learning/exploration approach is advantageous
for our training. It also aligns with the overall goal of our project to construct an intrinsic
motivated agent and would even work with the intrinsic mood concept presented in 5.1.

5.2.2 Implementation

We chose to implement the curiosity-driven exploration by self-supervised prediction ap-
proach by Pathak et al. [7] as it is one of the most influential approaches and the concept
is well described. The general idea is the following:

Figure 16: Schematic architecture of the intrinsic curiosity module

Consider an agent that gets its state s(t) from the state tracker, takes an action based
on its current policy π and transitions to the next state s(t + 1) based on its interaction
with the environment E. This process is depicted in figure 16 on the left side. The idea is
to incentivize the agent with a reward rct describing how informative this transition was.
We will call this incentive reward from now on curiosity reward. It is calculated by the
intrinsic curiosity module (ICM). The schematic architecture of the ICM is depicted in
16 on the right side. Generally the ICM consists of two neural networks - the action
net and the forward net. The action net in return consists of two networks: a feature
network that embeds a state vector into feature representation φ(s(t)) or φ(s(t+ 1)) and
an inverse net that calculates the inverse dynamics of the agent by predicting the action
a(t) that connects s(t) and s(t + 1) based on the feature representation of φ(s(t)) and
φ(s(t+ 1)). The forward net predicts the feature representation φ̂(s(t+ 1)) by exploiting
the current action a(t) and the state feature representation φ(s(t)) calculated by the
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feature net. Details about the architectures of the neural networks can be found in table
4. The curiosity reward is then calculated by:

rct = ||φ̂(s(t+ 1))− φ(s(t+ 1))||2 (17)

The reason why the concept is called curiosity-driven exploration by self-supervised pre-
diction lays in the fact that both networks, the action network and and forward network
can be trained efficiently with samples obtained by interactions between the agent and
the environment. That means that both network can be trained with the same samples
(s(t), a(t), r(t), s(t + 1) as the agent. The action network is trained by predicting the
action â(t) = g(s(t), s(t+ 1); θaction) and by minimizing the loss by minimizing the multi
class cross entropy of the output layer of the inverse net:

min
θaction

Laction(â(t), a(t)) (18)

We point out that the feature net is implemented as a siamese network architecture, which
ensures that the network shares the same weights for both inputs s(t) and s(t+ 1).
The forward network is trained by predicting the feature representation φ̂(s(t)) =
f(a(t), φ(s(t)); θforward) and by minimizing the loss:

min
θforward

Laction(φ̂(s(t)), φ(s(t)). (19)

As for the formulation of the curiosity reward rct , the loss is calculated by taking the
mean squared error between the prediction and the ground truth. This leads us to the
combined optimization problem of the entire training process additionally incorporating
the optimization of the DQN Agent:

min
θaction,θforward,θagent

−Ln(roverall(λ)) + βcuriosity · Lforward + (1− βcuriosity) · Laction (20)

The speciality about this optimization problem is its antagonistic nature. While the
agent is trained to maximize its overall reward roverall(λ) including the curiosity reward,
the forward net tries to minimize the curiosity reward. That means the agent will favor
actions with high prediction error, which will be higher in areas where the agent has spent
less time or anytime at all, or in areas of more complex tasks. With time evolving, the
forward net incorporates already experienced interactions with the environment and the
curiosity decreases. The action net is needed to construct a feature space φ that encodes
only those features of the state and therefore of the environment, which can be influenced
by the agent.
Due to the antagonistic nature of this concept the training becomes more complicated,
as neither the agent nor the forward net should dominate the curiosity reward/loss. Ad-
ditional to that more hyperparameters are introduced such as lambda and βcuriosity and
the specific architectures of the action net and forward net implemented as multilayer
perceptrons.
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The reward formulation of the overall reward roverall described in eq. 16 is extended with
the curiosity reward rc as follows:

rintrinsic = αreward · rmood + (1− αreward) · λ · rcuriosity (21)

roverall = βreward · rintrinsic + (1− βreward) · rextrinsic, (22)

where αreward ∈ [0, 1], βreward ∈ [0, 1] and λ ∈ R+
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6 Experiments

6.1 Metrics

To evaluate the model’s performance during different experiments we first had to construct
a suitable metric. According to [25] there are two main aspects to be evaluated when using
task-oriented dialogue systems: task success and dialogue efficiency. Two metrics to assess
the task success and one metric for the dialogue efficiency have been used. Additionally
a combination of the success and intrinsic mood reward has been used to evaluate the
model performance. An overview of these four metrics is given in figure 17. In order to
combine all four metrics into one number a quality metric has been developed.

Figure 17: Overview of the Metrics

6.1.1 Task Success

In order to measure the task success we have used two metrics: success rate and average
mood. The agent acts successfully if the user is happy and the user goal is fulfilled. The
success rate describes the fraction of conversation in which the agent managed to find the
correct drink:

Msuccess =
| conversations in which the user′s goal is met |

| all conversations |
(23)

This metric was already used for the baseline agent and could reach a value of 98%.
Average mood describes the average mood of the user simulator over all conversation
steps, where 0, 0.5 and 1 correspond to a negative, neutral and positive mood respectively.

Mmood =
Σmax round
i=1 mooduser(i)

max round
(24)

where

mooduser =


0 if mood is negative

0.5 if mood is neutral

1 if mood is positive

(25)

.
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6.1.2 Dialogue Efficiency

With the aim of measuring the efficiency of a dialogue one has to differentiate between
the goal desires of a user. If the goal desire is high and the agent takes every agent action
(differentiating between different request and inform slots) at most once the conversation
is considered to be efficient. If the goal desire is low and the agent will take every agent
action at most once apart from utter nothing and joke, which it can take arbitrarily often,
the conversation is considered to be efficient. This ensures that the user is not confronted
with repeating requests or informs, but can still have a long conversation with the agent if
the user’s goal desire is low. The formula for measuring the efficiency of the conversation
is

Meff =


|unique agent actions|
|agent actions| , if goal desire = high

|unique agent actions|
|agent actions∗| , if goal desire = low

(26)

where |agent actions∗| corresponds to the number of actions taken by the agent counting
the actions utter nothing and joke only once.

6.1.3 Reward Metric

Since the total reward clearly depends on the specific choice of reward hyperparameters
described in 2, we introduce the reward metric Mrew, which allows for better comparability
in the hyperparameter space. We achieve this by focusing only on the goal reward rgoal
defined as:

rgoal = αreward · βreward · rmood + (1− αreward) · rext. (27)

Not considering the curiosity reward allows to only take into account the reward related
to the conversation, as the the curiosity reward is a reward that incentives the exploration
during training. Therefore, it doesn’t resemble the quality of the conversation. In order
to get Mrew, we normalize rgoal with the maximal achievable reward rgoalmax, such that:

Mrew =
rgoal

rgoalmax
(28)

rgoalmax is defined as:

rgoalmax = αreward · βreward · rtotalmaxmood + (1− αreward) · rtotalmaxext, (29)

where rtotalmaxmood is defined as:

rtotalmaxmood = (max(rtransition) + rgoaldesire) ·max round (30)

and rtotalmaxext is defined as:

rtotalmaxext = (wsuccess + rstep) ·max round, (31)

with wsuccess being the hyperparameter to weight the success if a goal is found.
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6.1.4 Quality Metric

In order to combine the four metrics described above the formula

Mquality = αmetMeff + βmetMrew + γmetMmood + δmetMsuccess (32)

is used, where αmet, βmet, γmet and δmet sum up to one and are therefore weighting factors.
Msuccess, Mmood, Meff and Mrew correspond to the success, average mood, efficiency and
reward metric, respectively. Since we consider the success of the conversation to be the
most important indicator and the rest of the metrics are equally important for evaluating
the performance of the model we set δmet to 0.4 and the other parameters to 0.2.

6.2 Hyperparameter Experiments

With the metrics described in section 6.1, we were able to perform an automatized large
scale hyperparameter search in the end. A detailed description of the most important
hyperparameters is given in table 2. The set of hyperparameters is of dimension 30, as
there are also hyperparameters that consist of multiple parameters such as rtransitions,
which consists of 9 specific values. However, a dimensionality of 30 leads to a complex
search problem. Therefore, we simplified the problem by dividing the hyper parameter set
to into four subsets. On each of the subsets we performed grid search on specified ranges
of values that we found during the implementation of concepts and their validation.
The first subset comprises 13 hyperparameters describing the values of the rewards
rtransitions, rgoal desire, rstep, wsuccess and wfail. As simplification we only considered 3
different sets for rtransition that are the most reasonable.
The second subset comprises three hyperparmeters describing the architecture of the
neural networks and the curiosity optimization problem: dqn hidden size, feature size
and βcuriosity. The third subset comprises three hyperparameters describing the
combination of different rewards used in equations 21 and 22: αreward, βreward
and λ. The last group comprises 11 hyperparameters that proved good perfor-
mance before and were not optimized: flush, learning rate, extra punishment,
batch size, max round number, warm up number, γreward, replay size, emcslot error mode,
emcslot error prob and emcintent error prob. Each individual hyperparmeter combination was
trained for 3000 episodes which took around 90 minutes on the LRZ cloud.

Figure 18: Example of diverging curiosity reward with the curiosity reward plotted against
the episode number (left) and the loss of the forward net plotted against the training cycles
(right)
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6.2.1 Intermediate Results

After the first 120 training combinations, intermediate results were analyzed. Two main
observations could be drawn: The curiosity reward is very sensitive to the hyperparam-
eters and can diverge quickly. This happened in all cases but especially for large values
of λ > 0.3 and αreward < 0.6. Such a training situation is exemplary depicted in figure
18. Translated to the RL problem, this means, that the agent learns much faster how to
maximize its curiosity reward than the forward net to minimize its prediction error based
on its ”experience”. Therefore, the training strategy of the ICM was changed. While the
agent was trained on a certain number of batches for one epoch, the ICM was trained
for two epochs on the same data. Another explanation was that the forward net was
limited by its size and depth to predict the correct feature representation of s(t + 1).
Therefore, in order to increase the capacity of the network, the depth was extended by
two additional hidden layers, and the size of the layers was increased. Both measures led
to the stablization of forward nets loss. It was observed that the reward metric was not a
metric that allows to compare the quality of different models. Despite being designed to
range between 0 and 1 for any hyperparameter combination, it doesn’t take into account
that for low values of βreward it is a lot easier for the agent to reach its maximal reward,
as the rewards for the mood are barely taken into account and are a lot more difficult to
reach. As a consequence the quality metric was adapted to not taking the reward metric
into account. With αmet = 0.3,γmet = 0.3 and δmet = 0.4. this changes equation 32 to:

Mquality = αmetMeff + γmetMmood + δmetMsuccess (33)

Figure 19: The quality metric of the the best hyperparameters and related constituents

6.3 Final Results

After performing the aforementioned adaptions further training runs were conducted for
1800 episodes and the best hyperparameters combined. The best result is depicted in
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figure 19, showing the quality metric and its constituents. The best hyperparameter
values can be found in 2.
As the metric is an abstract way to determine the quality of a conversation, we examined
the conversations of the chatbot with the best hyperparameters by hand. An excerpt of
the conversation can be found in figures 26 and 25. In figure 26, the user has a high goal
desire. The agent recognizes this and chooses the actions that lead to the goal as quickly
as possible. In figure 25, the user has a low goal desire and starts the conversation by
saying nothing. Then the agent correctly triggers the user to order a drink. He tells a joke
to make the user happy and in some situations says nothing because there is no urgency.
A joke doesn’t always lead to a positive mood, as in phases where silence is desired. In
the end, the agent finds the right drink. In summary, the agent has learned the following
skills that improve the baseline.

1. Distinguishing between high and low goal desire of the user

2. Triggering the user to interrupt silence

3. Not saying anything when silence is appreciated

4. Telling jokes to enhance the users mood

5. Finding a drink even if wrong information was given by the user

The main result of the hyper parameter tuning experiment is that we found a set of
reasonable good performing hyperparameters which allowed to realise the abilities shown
above. Since the set of all valid hyperparameters is infinitely large, it is not possible to find
the optimal configuration through exhaustive search. As such, while there might be better
performing hyperparameters, we do not further search for any superior configuration.
We find the performance of the current set of hyperparameters to be satisfactory with
regards to the goal of the experiments, which is to demonstrate the validity of the intrinsic
motivation concept.

6.4 Comparison Intrinsic Motivation Concepts

Figure 20: Overview of 4 different ablation studies

After we found a good model with the hyerparameter tuning we wanted to validate,
whether our two concepts for intrinsic motivation truly improve the chatbot and how
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they influence the agent’s behavior. For this sake we conducted four different ablation
studies (see fig. 20).

6.4.1 Comparison Metrics

The result graphs 21 show the quality metrics and its four sub metrics. Looking at the
average mood metric, which gives the best indication about the quality of the conversa-
tion regarding the user’s happiness, the experiment with only extrinsic and mood based
motivation (blue model) performs best. Secondly, for the average efficiency metric the
experiment with only extrinsic motivation (red model), and the one combining all rewards
(grey model) perform best, which means that in the others we have a lot of repetitions in
the conversation.
The success rate indicating how often the goal has been reached, shows that the ex-
periment of only intrinsic motivation and the experiment without mood based intrinsic
motivation perform worse than the other. This shows on one hand that it is very hard
for the agent to find a drink without any goal reward from the extrinsic motivation. On
the other hand it shows that combining the extrinsic goal reward with a curiosity reward
distracts the agent more from finding a goal, than having either a pure extrinsic goal
reward or an extrinsic goal reward combined with a mood reward. This can be attributed
to the fact that the curiosity reward motivates the agent to explore more, which can also
distract him to find a drink, if it is not guided well.
It can be assumed that this is the reason why the combination of all three motivation
rewards gives the best conversations overall as shown in the overall quality metric. Com-
bining all three rewards, we not only introduce this exploration behavior leading to a
more versatile conversation, but also guide the agent with the dense mood reward. The
very high extrinsic reward, then rewards the agent additionally if the goal is found in the
end, enforcing overall a versatile conversation, which still leads to a goal finding.

Figure 21: Comparison of the Quality Metrics and its 4 submetrics for all ablation studies
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6.4.2 Analysis of Conversation Examples

After looking at the graphs, we also investigated some conversations for the different
experiments. The results of this analysis are summarized in figure 22. While for the first
experiment, we saw good metric graphs, we recognized that the agent can not distinguish
between high and goal desire anymore, which only leads to short and efficient conversations
without pauses and jokes. The second experiment shows a good distinction between
low and high goal desire, with jokes and pauses but also many repetitions. The third
experiment shows that the agent does not learn to find a goal at all as he is exploring too
much and only tells jokes and says nothing for a low goal desire, while slightly performing
better for a high goal desire. The fourth experiment shows that without a goal reward the
agent does not finish a conversation after having found a drink and often does not care
to find a drink at all leading to very long conversations mainly consisting of the agent
actions joke and utter nothing.
Therefore, the ablation study shows that excluding any of the rewards in our model leads
to worse results than having a combination of all three rewards, which validates our two
intrinsic motivation concepts.

Figure 22: Overview of the conversation quality for all ablation studies

6.5 Continuous skill expansion

To check the extendibility of our intent-based agent we examined the agent’s behavior by
introducing a new slot during test time. During training time, the agent was trained using
partially filled slots. The user goals used for training were also modified so that they only
contain information about drink names and size slots. During test time information for
the temperature slot was added to the user goals. The agent was not able to generalize
as it did not ask the user for the temperature of the drink in figure 6.7 before confirming
the drink as it did in figure 6.8. However, it was able to determine the other actions
at the expected time. Hence, its previous knowledge remained intact and unaffected on
encountering some new data. Moreover, the agent with partially filled slots optimized its
performance in about 260 episodes while for an agent trained from scratch, it took about
500 episodes to optimize.



6 EXPERIMENTS 37

Figure 23: A sample of agent’s conversation trained with partially filled slots

Figure 24: A sample of agent’s conversation trained with filled slots
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7 Conclusion and Future Work

The goal of this project was to address two issues that are present in all assistive chatbots
to date: the inability to trigger actions autonomously if necessary, and the restricted
skill expansion over time. Therefore the project aimed to develop a concept for intrinsic
motivation for a goal-oriented chatbot such that it aligns with the human notion for
intrinsic motivation.
The baseline requirements were that our chatbot is able to carry on coherent conversations
and aid the user in achieving his goals, as this is the basic purpose of such an agent. Three
baseline agents have been developed, one of which has been chosen to be extended with
intrinsic motivation modules to address the targeted issues.
The intrinsic motivation module supplements the extrinsic motivation of the agent to fulfil
the user goal with the intrinsic motivation to improve the user’s mood. To achieve this, a
mood model based on Mehrabian and Russell’s PAD emotional state model [23] has been
developed for the user, where the agent is rewarded depending on the user’s goal desire
and changes in the user’s happiness. This is implemented via an intrinsic reward function,
which is initially separate from the extrinsic reward function. This separation of extrinsic
and intrinsic goals allows the agent to learn to trigger actions independently from explicit
goals, as the implicit goal is the improvement of the user mood, which cannot be improved
without initiating an action.
The ability of the agent to continuously explore skills is implemented via a curiosity
module. It consists of two antagonistic networks, where on the one hand the agent tries
to maximize the overall reward (including a curiosity reward), while the forward net on
the other hand tries to minimize the curiosity reward, which leads to the agent favouring
more complex or unknown actions. This tug-of-war rewards both informational gain and
goal completion.
All modules (baseline, intrinsic motivation and curiosity) can be combined, by integrating
the respective reward functions into an overall reward. This can be compared to human
neurophysiology where several motivational processes share partially identical reward sys-
tems [5].
In the end the baseline agent could be supplemented with valuable abilities including
the ability to trigger the user to interrupt silence. Furthermore, our experiments could
show that the developed modules significantly increase different performance measures of
the agent, whereas a combination of all modules was shown to be the most successful.
This validates the approaches and implementations we have developed and shows them
to be a valid basis for further developments. However, we point out that our environ-
ment describes a rather specific use case and we believe that even more benefits of the
curiosity model can be seen in a more complex environment as it will help the agent in
exploration and also generalizing. The fact that we implemented the motivation modules
using reinforcement learning means, that there is great potential for flexible adaptation of
the agent to multiple different domains with varying numbers of skills. It would also be
possible to introduce a general purpose mood detection module with a natural language
understanding capability that infers the user mood directly from the user utterance and
the current state. Furthermore, based on our experiences in this project we put stress on
the importance of a well-designed user simulation as an asset in developing modules/con-
cepts which are dependent on the agent-user-interaction and to enable reliable training of
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the bot and the implemented extensions. For this reason we consider the User Simulator
a primary key to success with a DRL Chatbot. However, the task of building a good user
simulator is as difficult as coming up with a good agent if not more. Therefore we have
also implemented a second user environment, with which real users can train the agent
through manual inputs, to finetune it with more versatile and arbitrary answers, than the
rule-based user simulator’s answers.
The next steps to build on this body of work include the further optimization of the
hyperparameters and research on the extension of our concepts to a broader range of
settings. Furthermore, developments in the curiosity module to improve the agent’s ability
to generalize are possible. As we have chosen to build the prototypes of the motivation
modules based on the intent-based baseline agent, revisiting NLU approaches will help to
achieve this.
All in all, our project was successful in providing a proof of concept and lays the founda-
tions for further refinement and expansion of intrinsic motivation concepts in chatbots.
While these concepts are still in their infancy, we have contributed to the advancement of
chatbots in terms of the acquisition of new skills and the more flexible interaction with the
user and his goals. Together with future supplementations to our project this use-oriented
research can make a noticeable change in our interaction and use of chatbots.
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A Appendix

Network Layers Size

dqn agent linear + ReLU 200 x 140
linear + ReLU 140 x 100
linear + ReLU 100 x 80
linear 80 x 13

action net
feature net linear + ReLU 200 x 140

linear + ReLU 140 x 140
linear + ReLU 140 x 80

inverse net linear + ReLU 160 x 140
linear + ReLU 140 x 140
linear 140 x 13

forward net linear + ReLU + dropout
(p=0.5)

93 x 280

linear + ReLU 280 x 280
linear + ReLU 280x 280
linear 280 x 80

Table 3: Neural network architectures
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Hyperparameter Description Best Value(s)
max round maximum number of rounds per conversa-

tion
30

flush determines whether to flush the replay
buffer after a certain number of episodes

120

learning rate learning rate for the dqn agent 10−3

batch size batchsize to train the dqn agent on 64
warm up number Number of samples to get rule based ac-

tions from the agent to initially fill the re-
play buffer

2000

wfail weighting factor of extrinsic reward in case
of a negative success

−1

wsuccess weighting factor of extrinsic reward in case
of a success

2

rstep extrinsic reward for one conversation step 0
extra punishment additional punishment for the agent if the

exact same drink is found more than once
10

rtransition reward matrix based on mood transitions
with values between -10 and 10 for each
matrix entry

 −5 1 10
−7 0 10
−10 −1 10


rgoaldesire additional mood reward for every conver-

sation step in case of a low goal desire
2

βreward weighting factor to combine intrinsic and
extrinsic reward to one reward value

0.64

αreward weighting factor to combine mood and cu-
riosity reward to one intrinsic reward value

0.75

λ factor to weight curiosity reward 0.8
dqn hidden size basic size of a linear layer for the dqn agent 130
feature size size of the state encoding layer in the fea-

ture net and forward net
80

βcuriosity factor weighting the loss between forward
net and action net

0.5

γreward discount factor 0.9
replay size memory size in number of samples for the

replay buffer of the dqn agent
50000

emcslot error mode mode of the slot error (0 for replacing only
the slot value, 1 for slot and its value and
2 in order to delete the slot)

0

emcslot error prob probability with which the slot error is
caused

0.05

emcintent error prob probability with which a intent error is
caused

0

Table 2: Overview of Hyperparameters
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Intent Description Speaker

utter request Requests a value for a slot, which has currently no value agent
utter inform Informs a slot, filled with a specific value agent
find drink Proposes a drink, with all inform slots filled with values

or ’no match available’ if no drink has been found
agent

utter goodbye Closes the conversation, which triggers the user to
check, whether the goal has been reached throughout
the conversation

agent

order drinks Requests and informs certain slots in the beginning of
a conversation

user

inform Informs a slot, filled with a specific value user
request Requests a value for a slot, which has currently no value user
reject Rejects the drink, if it doesn’t match the slot values

from the goal inform slots
user

thanks Accepts the drink, if it does match the slot values from
the goal inform slots

user

goodbye Closes the conversation either after the maximum num-
ber of steps has been reached, it is in a negative mood
for the third time, or the agent closes the conversation

user

nothing Says nothing, which is equivalent to a time step without
utterance

user

trigger user Triggers the user, by asking him which drink he could
offer the user.

user

joke Makes a joke. Currently only one type of joke is imple-
mented.

agent

utter nothing Says nothing, which is equivalent to a time step without
utterance

agent

not helpful Indicates, that the agent requested or informed some-
thing wrong

user

Table 4: User and agent intents
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Figure 25: Example conversation with the best hyperparameters with a low goal desire

Figure 26: Example conversation with the best hyperparameters with a high goal desire
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