TUM Data Innovation Lab X Steering Lab

Development of an intrinsic motivation complex for an artificial conversational entity

Project Lead: Dr. Ricardo Acevedo Cabra

Scientific Lead: M.Sc. Olena Schüssler

TUM Co-Mentor: Cristina Cipriani

Team: Shreyash Agerwal, Emanuel Deisler, Oğuz Gültepe, Katharina Hermann, Lennart C. Neumann, Nina Schmid, Nicolas Seppich

Agenda

- Project Motivation and Overview
- 2. Scientific Concepts
- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

xperiments

Conclusion

HOW YOUR CHATBOT LOOKS LIKE

e cha	tbot.py ×
	<pre>def extremely_intelligent_chatbot(phrase):</pre>
	if phrase == 'hello':
	return 'Hi, how are you?'
	elif phrase == "i'm fine, and you?":
	return "i'm good"
	elif phrase == 'what are you doing?':
	return "nothing because i'm the most intelligent chatbot in the world"
	else:
	return "i'm sorry. i don't understood. can you repeat, please?"

HOW YOUR COMPETITIONS GRAIBUTS LOOK LIKE

Project Motivation

Today's chatbots ...

- have to be triggered explicitly
- do not adapt autonomously to user needs

Goal: Intrinsic motivation complex for an artificial conversational entity

from: https://devrant.com/search?term=chatbots

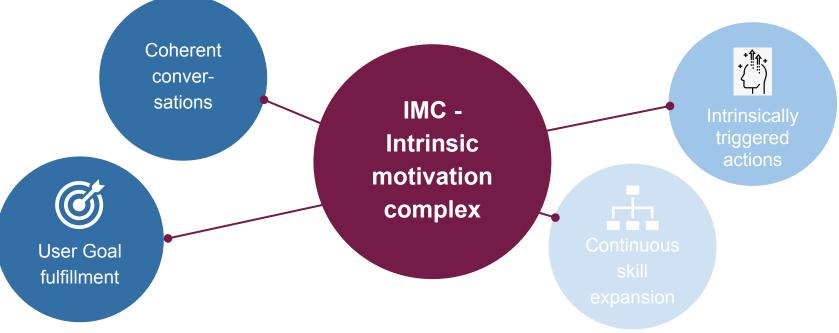
Intrinsic Motivation Complex | Final Presentation

STEERING LAB

Project Overview

Overall Objectives

Intrinsic motivation complex for an artificial conversational assistant



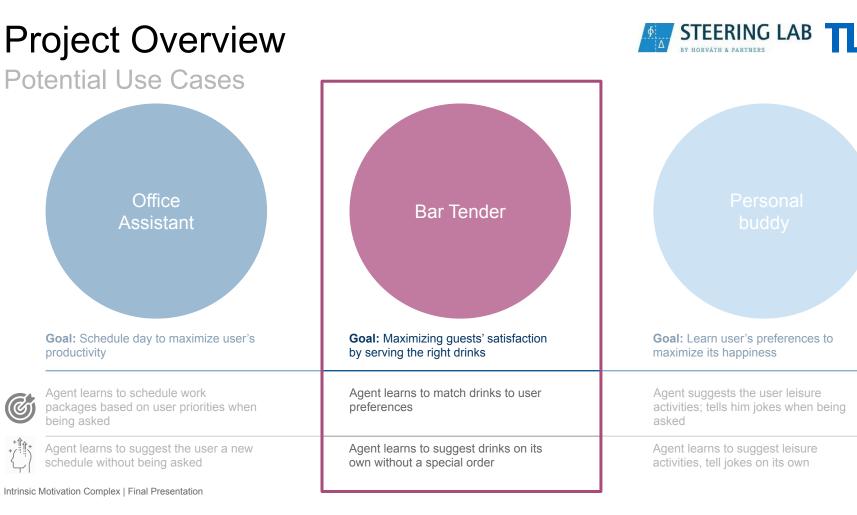
Motivation

Baselines

Intrinsic Motivatio

Experimer

Conclusion

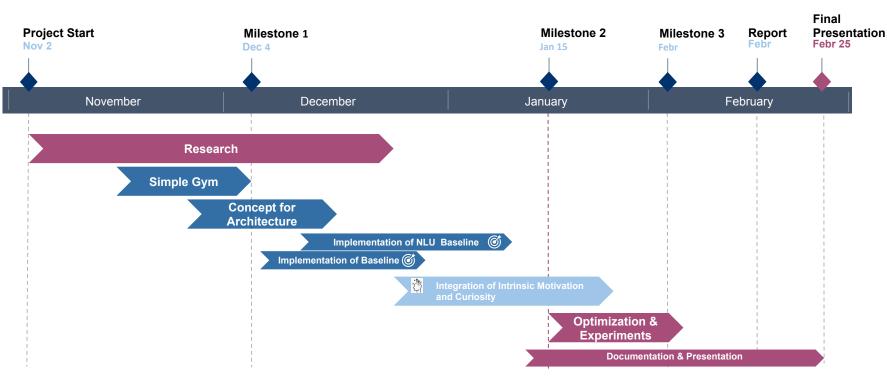


Conclusion

STEERING LAB

Project Overview

Project Outline



Agenda

Project Motivation and Overview

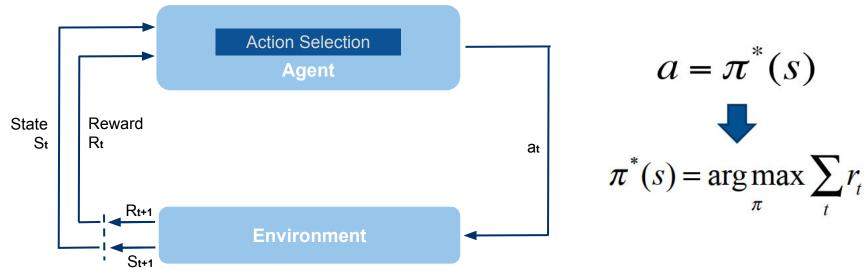
- 2. Scientific Concepts
- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

Scientific Concepts

Reinforcement Learning

STEERING LAB

Reinforcement learning (RL) is an area of machine learning, concerned with how software agents should take actions in an environment to maximize a reward. The agent learns its behavior based on feedback from the environment.



Modern reinforcement learning (Sutton and Barto)

STEERING LAB

Conclusion

Scientific Concepts

Reinforcement Learning

Classical conditioning (Pavlov, 1960): associates rewards to **events**

Value func:

 $V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$

Instrumental conditioning (Thorndike, 1927; Skinner, 1965): associates rewards to **behaviours.** Action value func: $Q_i(s_t, a_t) \leftarrow Q_i(s_t, a_t) + \alpha [r_t + \gamma max_{a_{t+1}}Q_i(s_{t+1}, a_{t+1}) - Q_i(s_t, a_t)]$

Bellman equation: $Q^*(s_t, a_t) = E[r_{t+1} + \gamma max_a Q^*(s_{t+1}, a_{t+1})]$

STEERING LAB

Conclusior

Scientific Concepts

Intrinsic motivation in Psychology

Definition by the American Psychological Association:

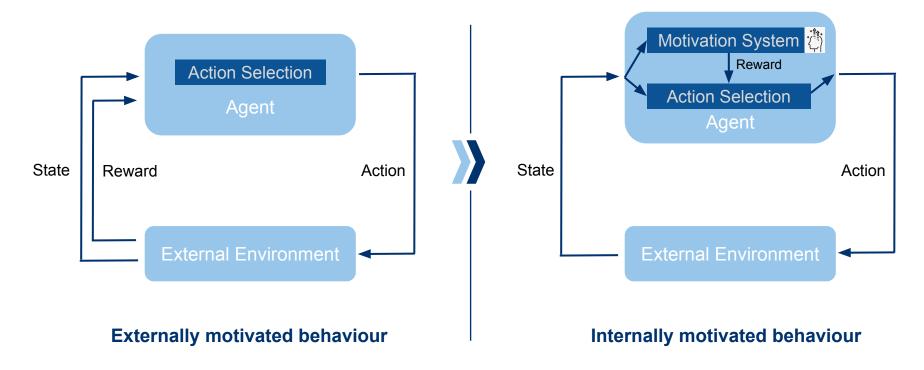
"An incentive to engage in a specific **activity** that **derives** from **pleasure in the activity itself** (e.g., a genuine interest in a subject studied) rather than because of any external benefits that might be obtained (e.g. money, course credits)."

STEERING LAB

Conclusion

Scientific Concepts

Intrinsic motivation in Reinforcement Learning



Scientific Concepts

Intrinsic motivation in Reinforcement Learning

Empowered Agents:

Maximize the mutual information between the **expected outcome of the agent's actions** and the **consequences of its actions** (Gregor et. al. Variational Intrinsic Control (2016)

Curiosity driven learning:

Intrinsic **reward** is equal to the **error** of our agent to **predict the next state** given the current state and **action taken** (Pathak et al Curiosity driven learning 2017)

Conclusion

Scientific Concepts

Advantages and Challenges

Advantages

- Tackling of **sparse rewards** or non-existing rewards problem
- Possibility to incrementally learn skills independently of the agent's main task

Challenges for the project

- ✓ Finding a good policy and motivational system
- ✓ Prioritizing tasks
- ✓ Optimizing for complex or rapid-changing observations
- ✓ Implementing a good user simulation

Andrew et al. Policy invariance under reward transformations: Theory and application to reward shaping. (1999) Aubret et al. A survey on intrinsic motivation in reinforcement learning. (2019)

Agenda

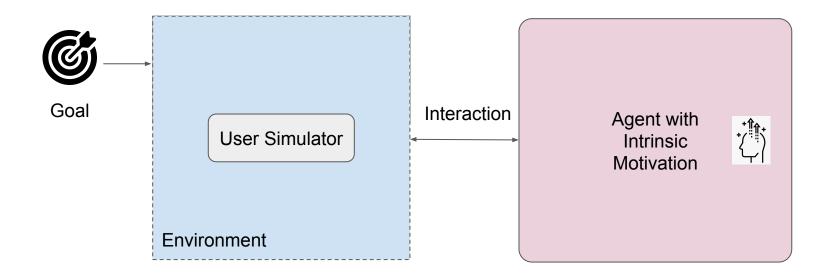
Project Motivation and Overview

2. Scientific Concepts

- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

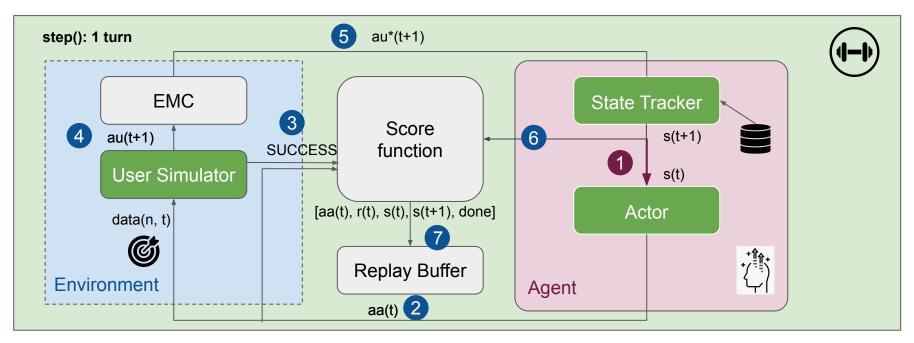
Baseline

Intrinsic motivated RL agent interacting with a user simulator having specific goals in a discrete world of intents



Baseline

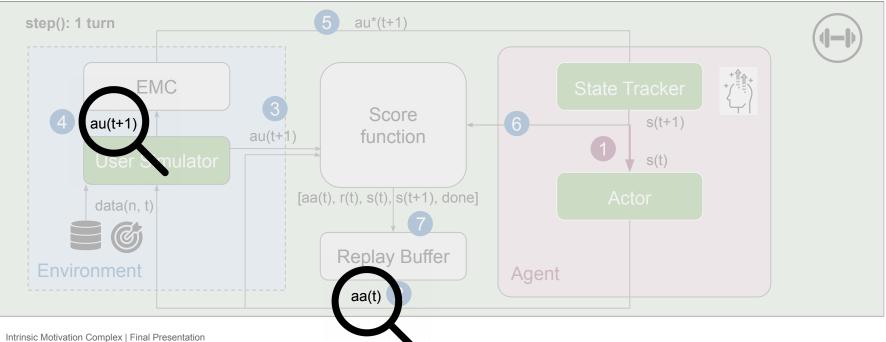
Experience Collection Step



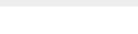
STEERING LAB

Baseline

User & Agent Actions



User & Agent Actions



Action Form: {'intent': 'INTENT', 'inform_slots': '{'Slot1':'Value1', ..}', 'request_slots':{'Slot1': 'UNK', ..}

= purpose of an action

user_intents: order_drinks, inform, request, reject, thanks, goodbye

agent_intents:

utter_request, utter_inform, find_drink, utter_goodbye

= variables from domain

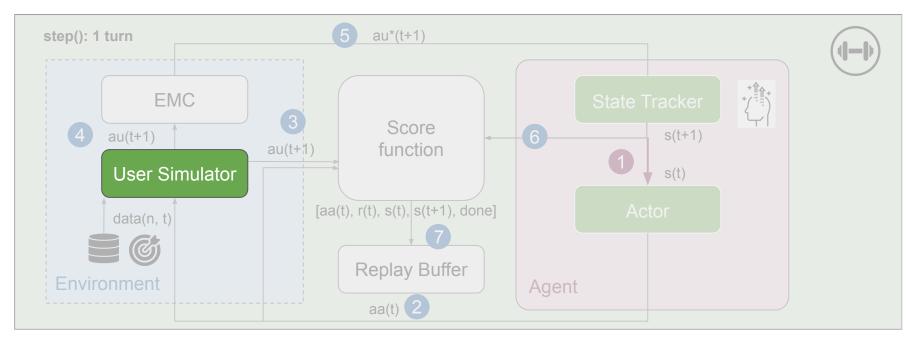
inform slots: Values to be informed e.g. size of an drink

request slots: Additional values requested, e.g. which size is available

Slot Domain: {DRINK, TEMP, SIZE}

Baseline

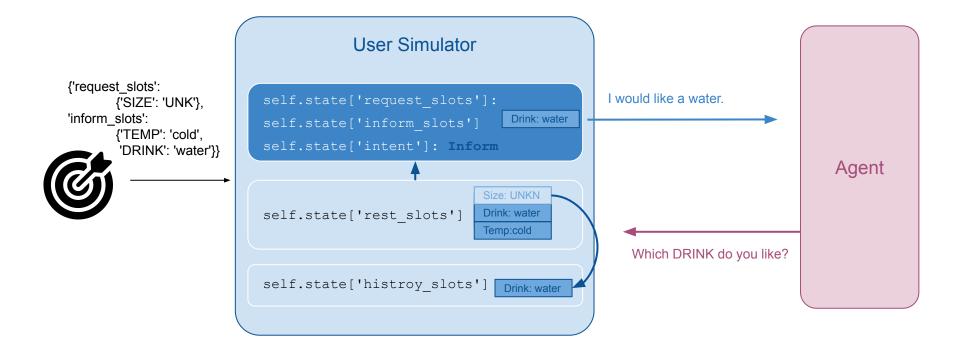
Gym: Place, where the agent can explore its state action space and learns, implemented in 3 functions



Conclusion

Baseline

User Simulator



STEERING LAB

Results for Baseline

Baseline Example Conversation

Episode 23 ***
User Goal: {'request_slots': { <mark>'drinknumber': 'UNK'}</mark> , 'diaact': 'request', 'inform_slots': {'DRINK': 'cola', 'SIZE': 'small'}}
InitialUserUtterance: {'intent' 'order_drinks', 'request_slots': {}, 'inform_slots': {}, 'round': 0, 'speaker': 'User'}
Agent Action: {'intent': 'utter_request', 'inform_slots': {}, 'request_slot\$': {'DRINK': 'UNK'}, 'round': 1, 'speaker': 'Agent'}
User Response: {'intent': 'inform', 'request_slots': {}, 'inform_slots':['DRINK': 'cola']} Agent Action: {'intent': 'utter_inform], 'inform_slots'[{'SIZE': 'small'], 'request_slots': {}, 'round': 2, 'speaker': 'Agent'}
User Response: {'intent': 'request', 'request_slots' {{'drinknumber': 'UNK'}, 'inform_slots': {}}
Agent Action: {'intent: 'find_drink', 'jnform_slots': {'DRINK': 'cola', 'SIZE': 'small', 'drinknumber': '0'}, 'request_slots': {}, 'round': 3, 'speaker': 'Agent'}
User Response: {'intent': 'thanks', 'request_slots': {}, 'inform_slots': {}} Agent Action: {'intent': 'utter_goodbye', 'inform_slots': {}, 'request_slots': {}, 'round': 4, 'speaker': 'Agent'}
User Response: {'intent'['goodbye'] 'request_slots': {}, 'inform_slots': {}}
Episode: 23 Success: True Reward: 6

Example:

- 2 slots scenario: DRINK and SIZE
- No Rendering

Result:

- Learns simple conversation
- Works with 98% success rate

Agenda

Project Motivation and Overview

2. Scientific Concepts

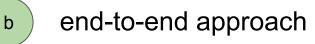
- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

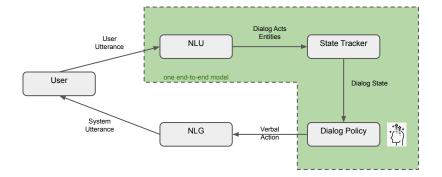
STEERING LAB

End-to-end pipeline of a task-oriented and intrinsic spoken dialog system

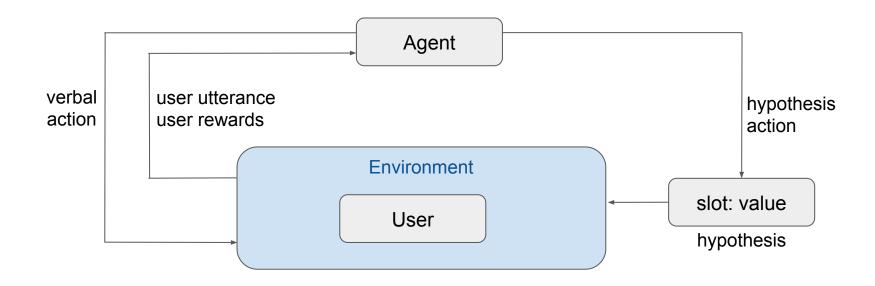
NLU approaches

multicomponent approach

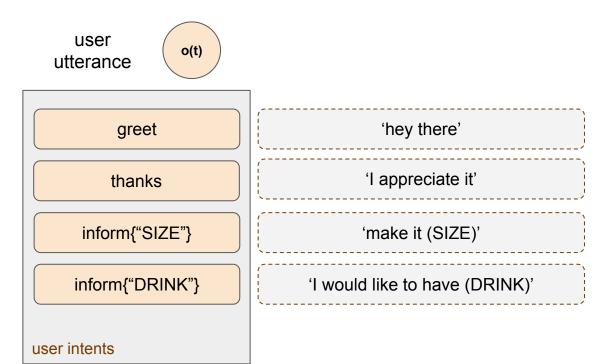




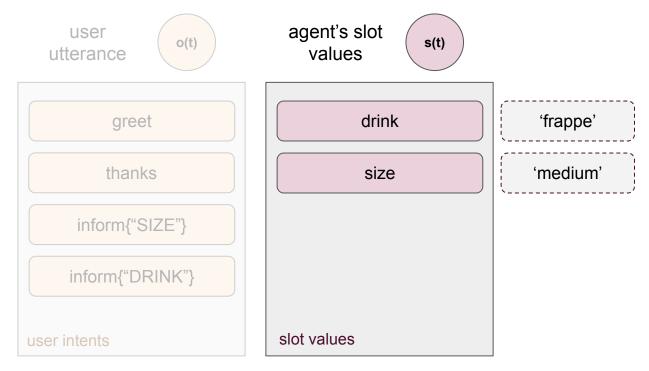
End-to-end pipeline of a task-oriented spoken dialog system



5 STEERING LAB



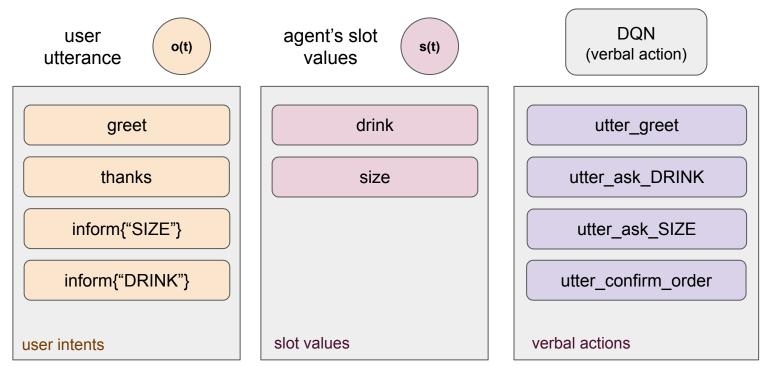
STEERING LAB



STEERING LAB

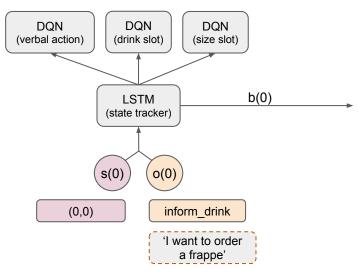
STEERING LAB

NLU: Multicomponent Approach



Motivation

NLU: Multicomponent Approach



Motivation

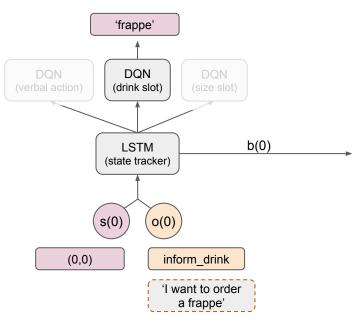
Baselines

Intrinsic Motivatio

Experimen

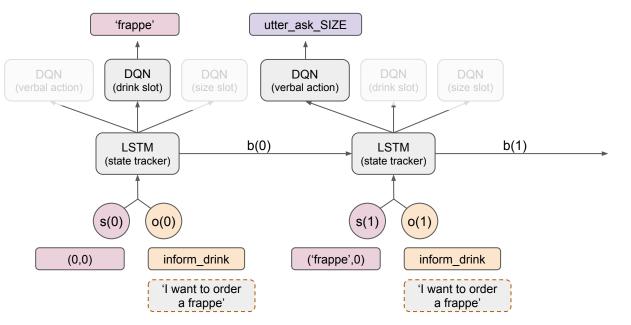
Conclusion

NLU: Multicomponent Approach

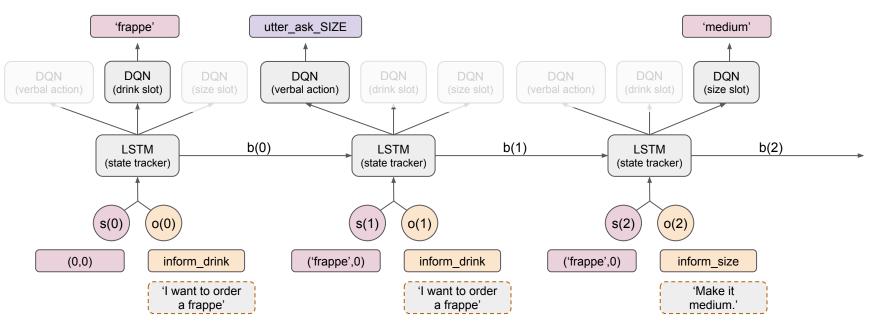


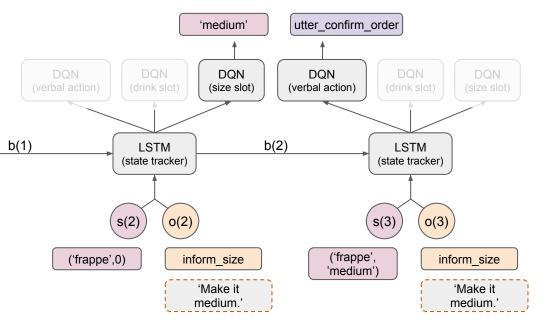
Conclusion

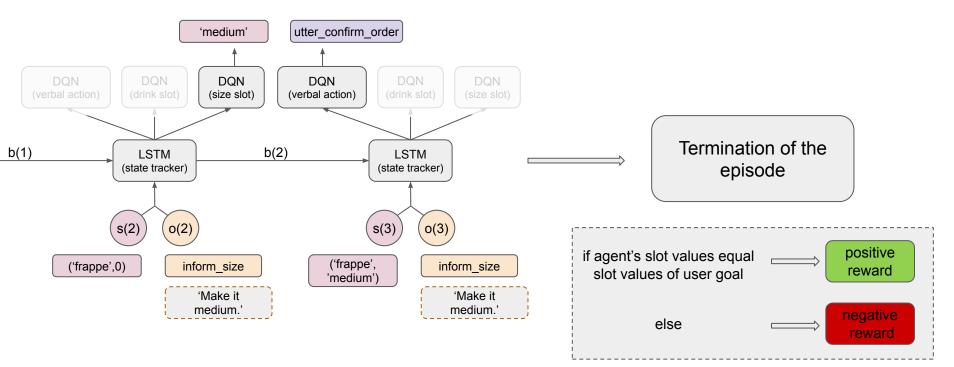
NLU: Multicomponent Approach



STEERING LAB







Motivation

NLU: Multicomponent Approach

Results

Best result: 15% episode success rate (for a simplified database containing a single story, 20 drinks and 10 verbal utterances)

Longer training, small implementation changes, etc. did not improve that result any further.

********* Episode 1676 **********************************
Initial User Utterance: i would like to have fruit cooler Agent Action: fruit cooler Agent Action: What size do you prefer? User Response: oh actually make it medium Agent Action: large
User Goal: 186 , 194
Initial User Utterance: i would like to have frapp Agent Action: frapp Agent Action: What size do you prefer?
User Response: oh actually make it large Agent Action: large Agent Action: What can I get you? :) User Response:

STEERING LAB

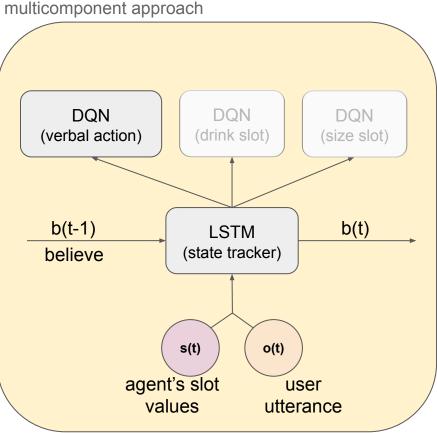
Agenda

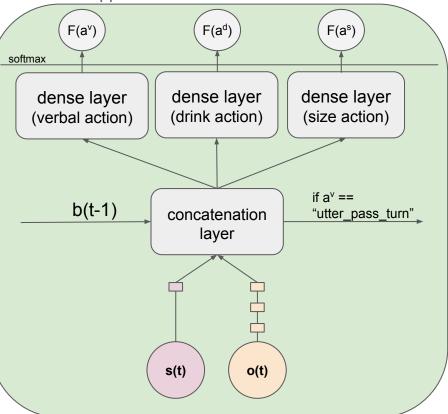
Project Motivation and Overview

2. Scientific Concepts

- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

			0	





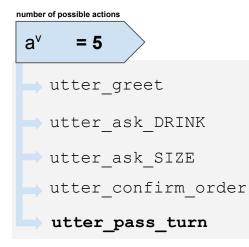
NLU: End-to-End Approach

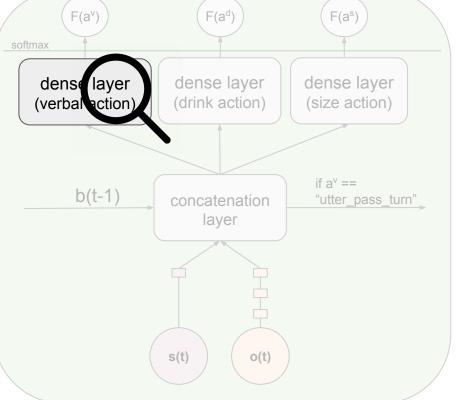
STEERING LAB

Policy networks with 2 layers:

initial layer: size 200

2nd layer: size corresponding to action space





NLU: End-to-End Approach

Supervised Training Results

training on	Irz.xlarge instance
	10 cores
	batchsize: 4096
	Adam optimiser

time needed \sim 5 hours

Categorial Cross Entropy:	1.011
Categorial Accuracy:	0.753
Precision:	1.0
Recall:	0.751

Φ	STEERING LAB	
1	BY HORVÁTH & PARTNERS	

· ···	
*	greet
	– utter_greet
	- pass_turn
*	order_drinks
	– utter_ask_DRINK
	- pass_turn
*	inform{"DRINK"}
	<pre>- slot{"DRINK"}</pre>
	– utter_ask_SIZE
	- pass_turn
*	inform{"SIZE"}
	<pre>- slot{"SIZE"}</pre>
	– utter_confirm_order

a sample story

Agenda

Project Motivation and Overview

2. Scientific Concepts

- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

Comparison of the concepts

		NLU app		
criteria	intent based approach	multicomponent approach	end-to-end approach	
allows for NLU	not yet	yes	yes	
performance of the base model	very good (success rate of 98%)	not sufficient	good (acc. of 75%)	
possibility of including	yes (already included)	probably	probably	
easy extendability	yes	yes	moderate	
necessary training resources	normal CPU -> 1-2h of training	normal CPU -> 1-2h of training	LRZ cloud -> 5h of training	

Agenda

- Project Motivation and Overview
- 2. Scientific Concepts
- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

Action Form: {'intent': 'INTENT', 'inform_slots': '{'Slot1':'Value1', ..}', 'request_slots':{'Slot1': 'UNK', ..}

Baseline Extension

Extended User & Agent Actions

= purpose of an action

user_intents: order_drinks, inform, request, reject, thanks, goodbye, 'nothing', 'not_helpful'

agent_intents: utter_request, utter_inform, find_drink, utter_goodbye, trigger_user, joke, utter_nothing' = variables from domain

inform slots: Values to be informed e.g. size of an drink

request slots: Additional values requested, e.g. which size is available

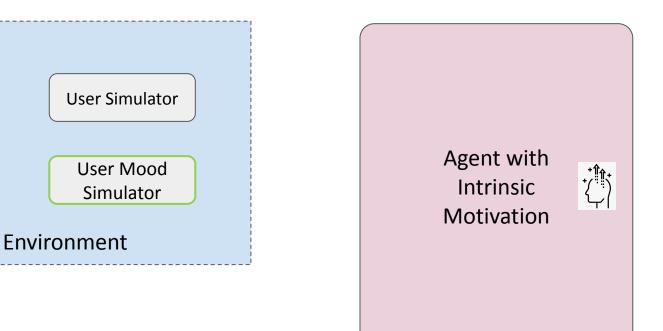
Slot Domain: {DRINK, TEMP, SIZE}

STEERING LAB

Conclusion

Concept Mood Based IM

Introduction of the User's Mood



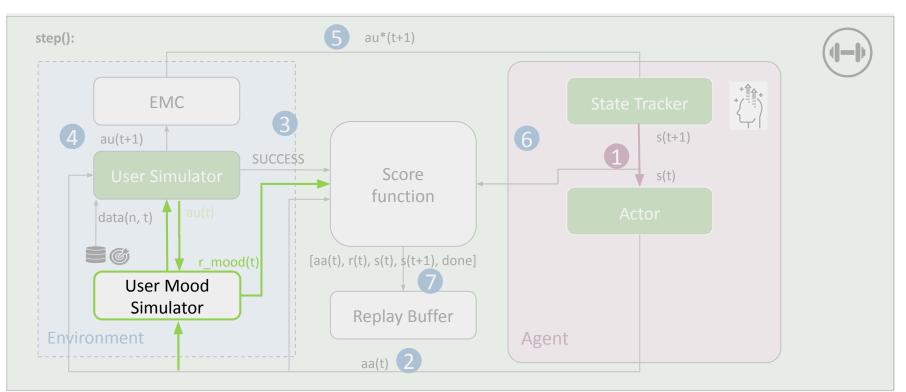
Goal

Motivation

STEERING LAB

Concept Mood Based IM

How to train the agent



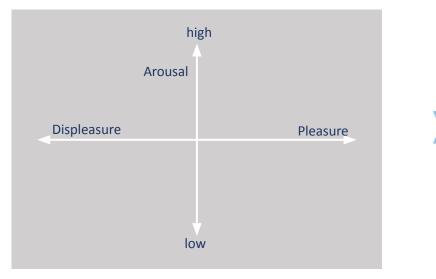
Motivation

Baselin

Conclusior

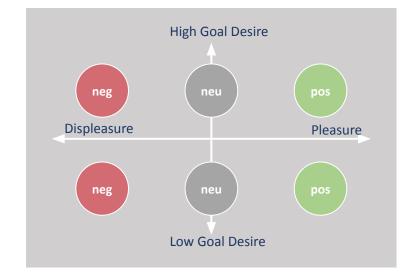
Concept Mood Based IM

User Mood Model



Simplified Two dimensional theoretical emotions model of Russell (PAD emotional state model)*

* PAD emotional state model - Wikipedia

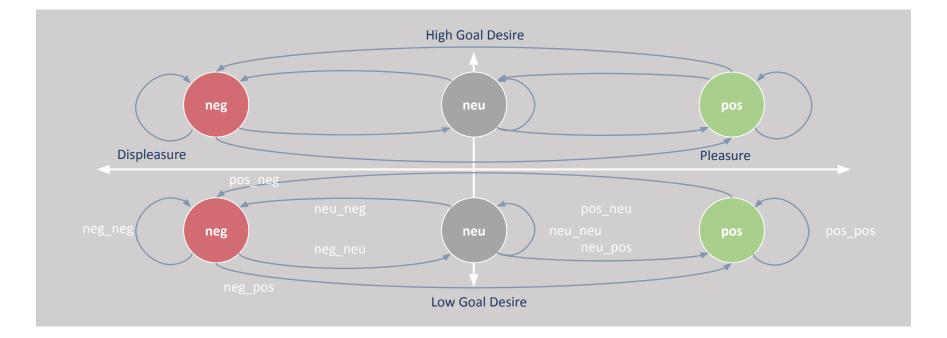


Our two dimensional Mood Graph

Which can only have transitions on one level of goal desire currently.

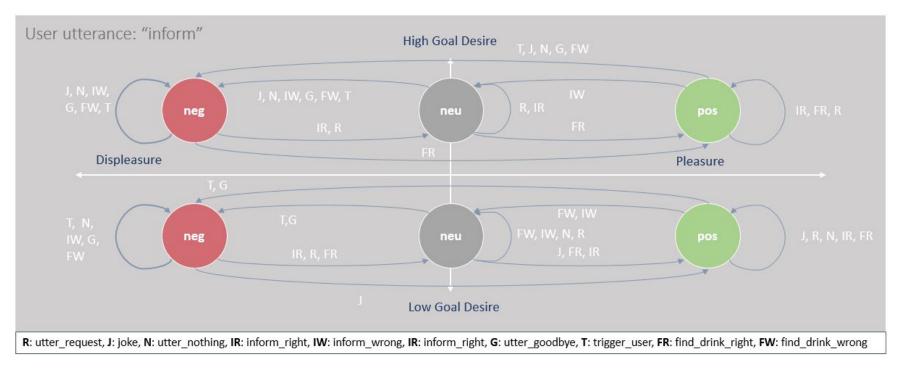
Concept Intrinsic Motivation

STEERING LAB



Concept Mood Based IM

User Mood Transition Model



Concept Mood Based IM

Intrinsic Reward - Reward Formulation

Transition Reward:

$$r_{transition}(em_{t+1}\,|\,em_t) = egin{cases} r_{neg-neg} & r_{neg-neu} & r_{neg-pos} \ r_{neu-neg} & r_{neu-neu} & r_{neu-pos} \ r_{pos-neg} & r_{pos-neu} & r_{pos-pos} \end{pmatrix}$$

Mood Reward:

$$r_{mood} \,=\, r_{transition} + \, egin{cases} 0 & if \, goaldesire \,=\, high \ r_{goaldesire} & else \end{pmatrix} = r_{inrinsic}$$

Extrinsic Reward:

 $r_{ext} = r_{step} + egin{cases} -w_{fail} & \cdot \max steps & if \ goal \ was \ not \ found \ w_{success} & \cdot \ \max steps & else \end{cases}$

Mood Reward:

 $r_{overall} \,=\, eta_{reward} \cdot r_{intrinsic} \,+ (1 - eta_{reward}) \cdot \,r_{ext}$

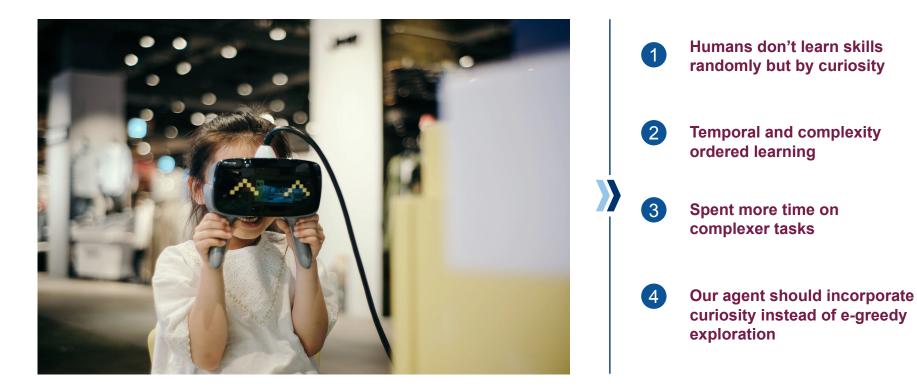
Agenda

- Project Motivation and Overview
- 2. Scientific Concepts
- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

STEERING LAB

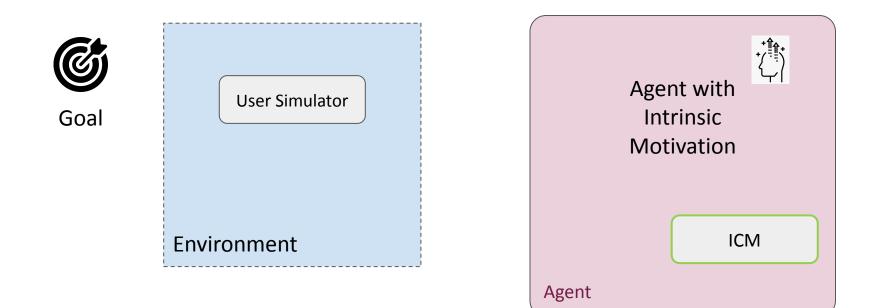
Concept Curiosity Driven IM

Motivation



Concept Curiosity Driven IM

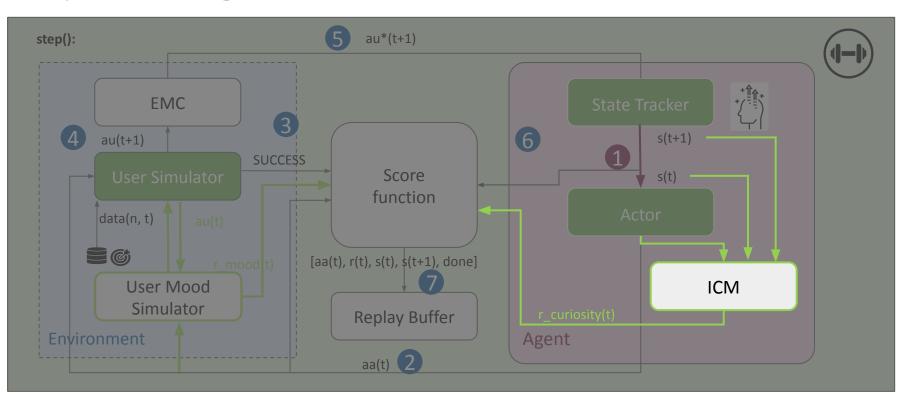
Adaption of the Agent



STEERING LAB

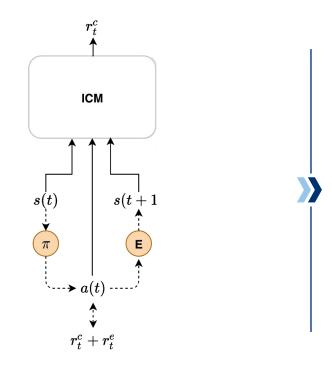
Concept Curiosity Driven IM

Adaption of the Agent



Concept Curiosity Driven IM

Implementation



Get sample s(t), a(t) and s(t+1)

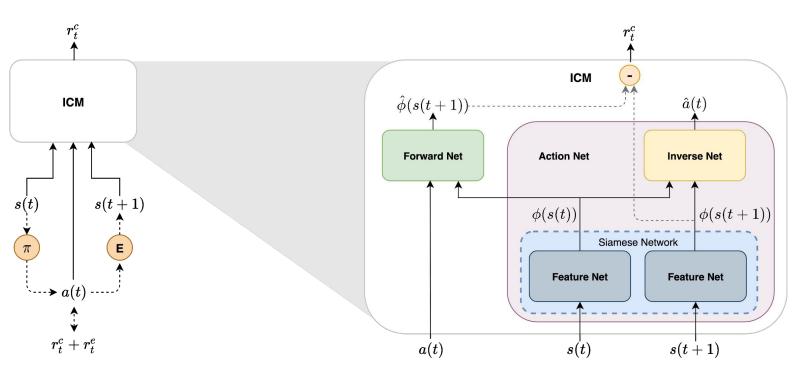
Get reward that encodes informativity of a(t) to get from s(t) to s(t+1)

STEERING LAB

BY HORVÁTH & PARTNERS

Concept Curiosity Driven IM

Implementation



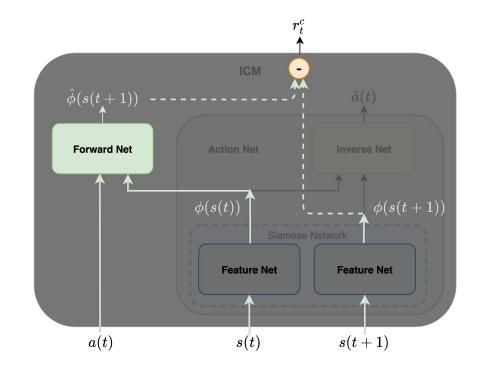
Concept Curiosity Driven IM

Implementation

$$r_c^{\,t} = ||\hat{\phi}(s(t+1)) - \phi(s(t+1))||^2$$

Loss Formulation Forward

$$L_{forward} = ||\hat{\phi} - \phi||^2$$

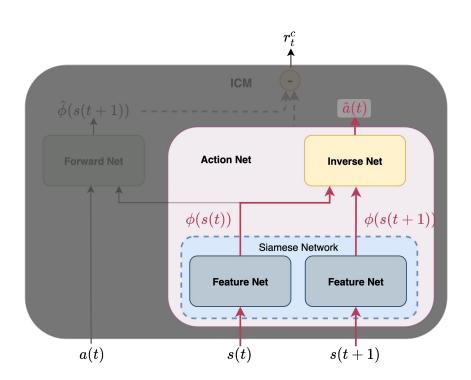


STEERING LAB

BY HORVÁTH & PARTNERS

Concept Curiosity Driven IM

Implementation

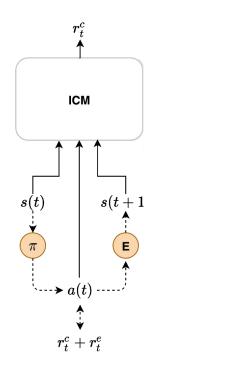


Loss Formulation Action

$$L_{action} = CCE(\hat{a}(t), a(t))$$

Concept Curiosity Driven IM

Overall Reward Formulation



Intrinisic Reward:

$$r_{intrinsic} = lpha_{reward} \cdot r_{mood} + (1 - lpha_{reward}) \cdot r_c$$

Overall Reward:

$$r_{overall} = eta_{reward} \cdot r_{intrinsic} + (1 - eta_{reward}) \cdot r_{ext}$$

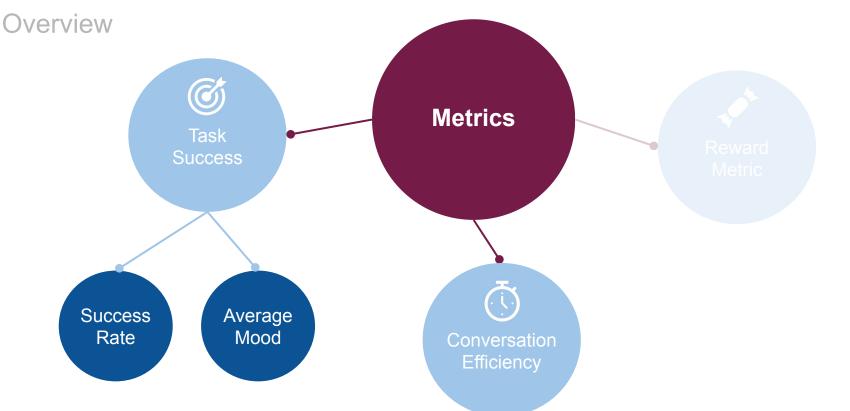
Overall Optimization

$$\min \ -L_{agent}(r_{overall}) + eta_{cur} \cdot L_{forward} + (1 - eta_{cur}) \cdot L_{action}$$

Agenda

- Project Motivation and Overview
- 2. Scientific Concepts
- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

Metrics



Motivation	Scientific Concepts	Baselines	Intrinsic Motivation	Experiments	Conclusion
Metrics Task Succe	ess			STEERING By HORVÁTH & PARTNER	
Success Ra	ate: M _{succe}	$ss = \frac{ conversation{0}{0} }{ conversation{0}{0} }$	ions in which the all conversat	e user's goal is me tions	et
Average Mo	od: M _{mood}	$ = \frac{\sum_{i=1}^{max_round} moo}{max_roun} $	$rac{d_{user}(i)}{id}$ w	here	
	$mood_{user}$	$= \begin{cases} 0 & \text{if mood is ne} \\ 0.5 & \text{if mood is ne} \\ 1 & \text{if mood is po} \end{cases}$	gative utral sitive	Task Success Success	Aetrics Reward Metric
Intrinsic Motivation Complex F	inal Presentation			Rate Mood	Conversation Efficiency 61

Metrics

$$\begin{array}{ll} \textbf{Conversation Efficiency} & M_{eff} = \begin{cases} \frac{|unique \ agent \ actions|}{|agent \ actions|}, & \text{if goal desire} = \text{high} \\ \\ \frac{|unique \ agent \ actions|}{|agent \ actions^*|}, & \text{if goal desire} = \text{low} \end{cases}$$

where |agent actions| is the number of actions taken by the agent

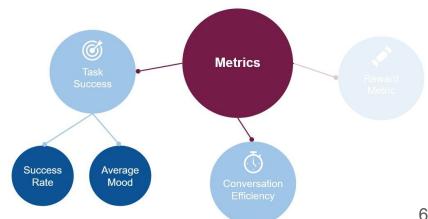
and |*agent actions**| is the number of actions taken by the agent counting the actions *joke* and *utter_nothing* only once.

Metrics

Quality Metric

$M_{quality} = \alpha_{met} M_{eff} + \gamma_{met} M_{mood} + \delta_{met} M_{success}$

weighted sum of all presented metrics



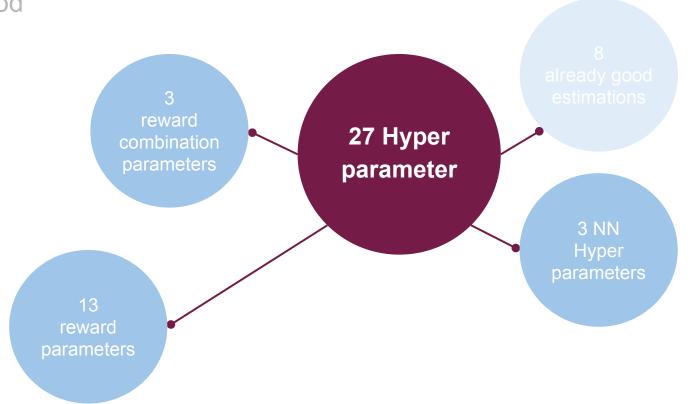
ntrinsic Motivatior

Experiments

STEERING LAB

Conclusion

Hyperparameter Tuning Method



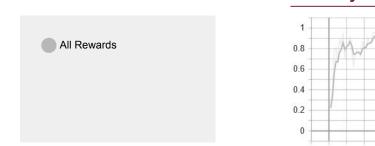
Motivation

Baselines

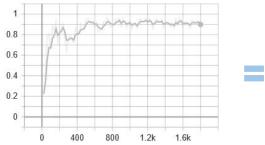
Conclusion

Validation Motivation Concepts

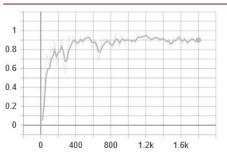
Results Metrics



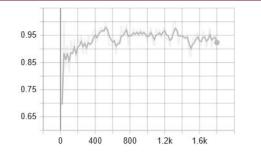
Quality metric

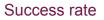


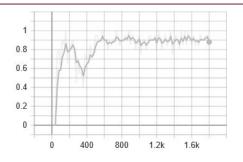
Average mood



Average efficiency







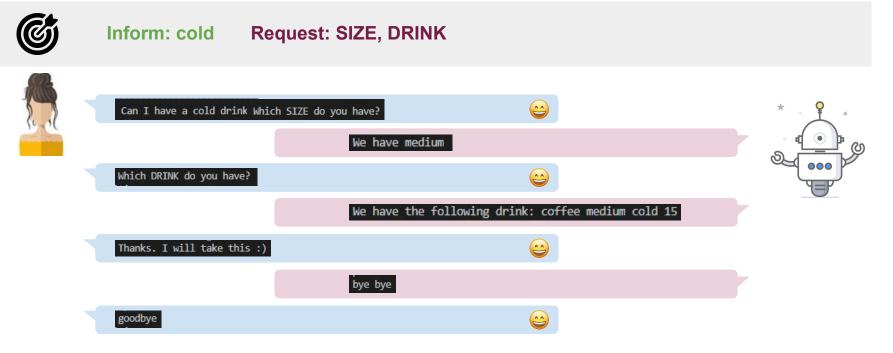
ntrinsic Motivatio

STEERING LAB

Conclusion

Hyperparameter Tuning

Example High Goal Desire



ntrinsic Motivatio

Experiments

STEERING LAB

Conclusior

Hyperparameter Tuning

Example Low Goal Desire

ntrinsic Motivatio

Experiments

Conclusior

Hyperparameter Tuning

Example Low Goal Desire

ntrinsic Motivatio

STEERING LAB

Conclusion

Hyperparameter Tuning

Example Low Goal Desire

3

Validation Motivation Concepts

Experiment

Ablation study to test, the contribution of the Intrinsic Motivation (IM) concepts

Only Extrinsic Motivation

 $r_{overall} = r_{ext}$

Pure extrinsic motivation reward, similar to the baseline agent

Only Extrinsic & Mood Based IM

 $r_{overall} = r_{ext} + r_{mood}$

No curiosity Driven IM reward, to test the contribution of it

Only Extrinsic & Curiosity Driven IM

 $r_{overall} = r_{ext} + r_{curiosity}$

No Mood Based IM

reward, to test the

contribution of it

4

Only Intrinsic Motivation

 $r_{overall} = r_{mood} + r_{curiosity}$

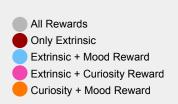
Only mood and curiosity rewards, to test how important the extrinsic reward is

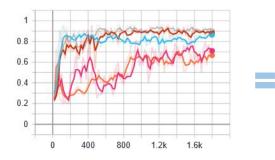
Intrinsic Motivation Complex | Final Presentation

Motivation

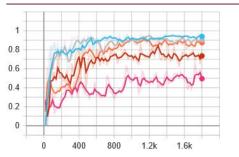
Validation Motivation Concepts

Results Metrics

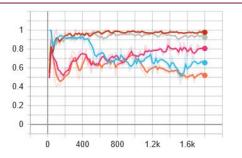




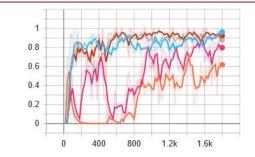
Average mood



Average efficiency



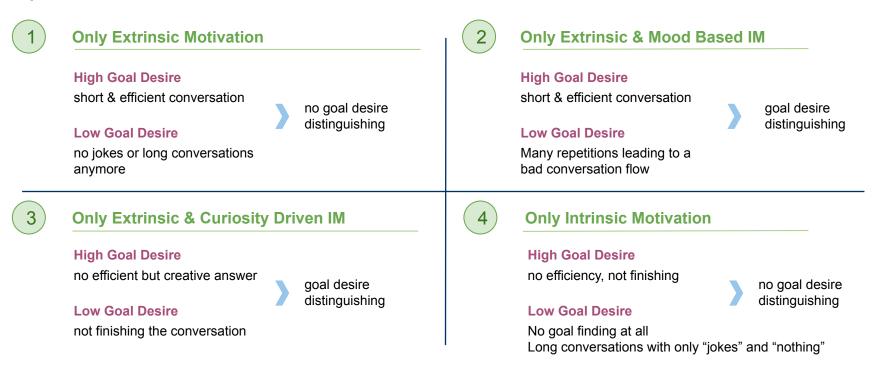
Success rate



STEERING LAB

Validation Motivation Concepts

Experiment



Motivation

Baselines

ntrinsic Motivatio

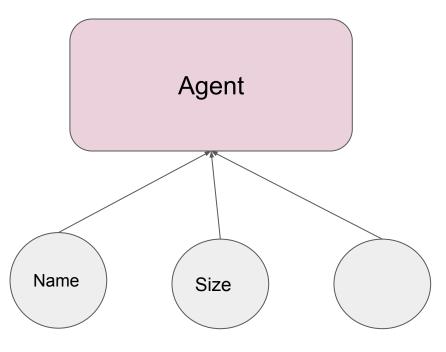
Experiments

STEERING LAB

Conclusion

Continuous Skill Expansion

Experiment



User stories at training time

Motivation

Baselines

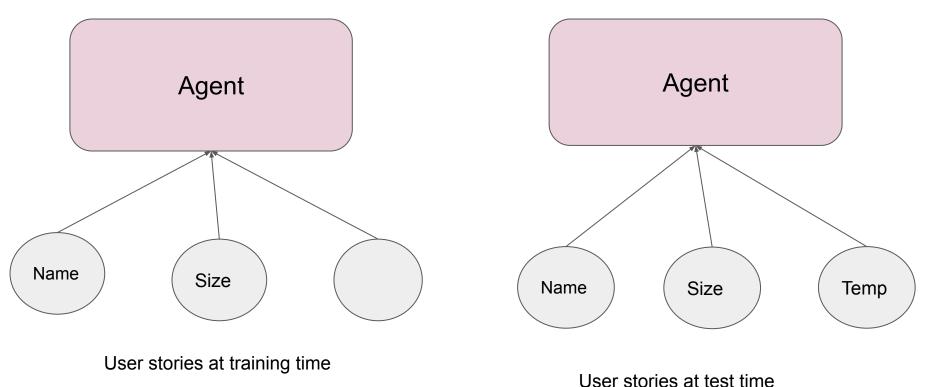
ntrinsic Motivatio

Conclusion

Continuous Skill Expansion

STEERING LAB

Experiment



Intrinsic Motivation Complex | Final Presentation

ntrinsic Motivatic

Experiments

Conclusion

Continuous Skill Expansion Results

Agent Action: Which DRINK do you like? ***User Response: I would like this to be white vine ---User mood:neutral Agent Action: Which SIZE do you like? ***User Response: Which SIZE do you have? ---User mood:negativ Agent Action: Which TEMP do you like? ***User Response: I would like this to be cold ---User mood:negativ Agent Action: We have the following drink: white vine small cold 39 ***User Response: Thanks. I will take this :) ---User mood:positiv Agent Action: bye bye ***User Response: goodbye ----User mood:positiv

Initial User Utterance: Can I have a medium drink Agent Action: Which DRINK do you like? ***User Response: I would like this to be barracuda ---User mood:neutral Agent Action: We have the following drink: barracuda medium cold 28 ***User Response: Thanks. I will take this :) ----User mood:positiv Agent Action: bye bye ***User Response: goodbye ----User mood:positiv

Correct behaviour

Actual behaviour

STEERING LAB

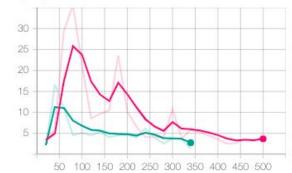
BY HORVÁTH & PARTNERS

Conclusion

Continuous Skill Expansion

Results

	Number of episodes
Agent (Partially filled slots)	260
Agent (Scratch)	500

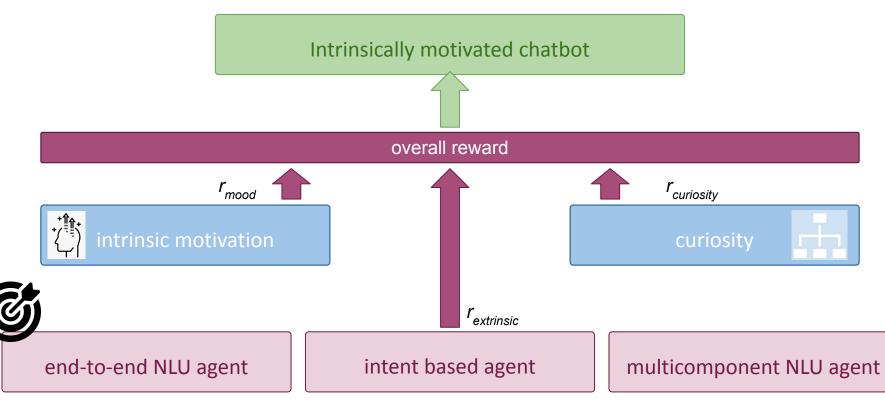


Intrinsic Motivation Complex | Final Presentation

Agenda

- Project Motivation and Overview
- 2. Scientific Concepts
- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

Conclusion

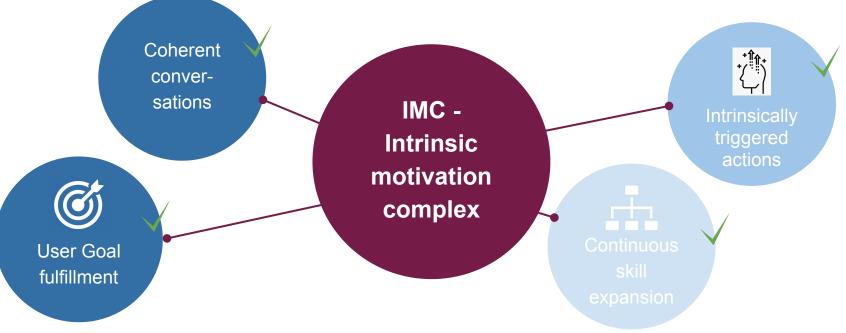


STEERING LAB

Project Overview

Overall Objectives

Intrinsic motivation complex for an artificial conversational assistant



Agenda

- Project Motivation and Overview
- 2. Scientific Concepts
- 3. Baseline Agents
- 4. Intrinsic Motivation
- 5. Experiments
- 6. Conclusion
- 7. Demonstration

Sources and Literature

Sutton, Richard S.; Barto, Andrew G. (2018). Reinforcement Learning: An Introduction (2 ed.). MIT Press. ISBN 978-0-262-03924-6.

https://dictionary.apa.org/intrinsic-motivation

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, Trevor Darrell (2017). Curiosity-driven Exploration by Self-supervised Prediction. <u>https://arxiv.org/abs/1705.05363</u>.

Karol Gregor, Danilo Jimenez Rezende, Daan Wierstra (2016). Variational Intrinsic Control. <u>https://arxiv.org/abs/1611.07507</u>.

M. Brenner (2018). Training a goal oriented chatbot. https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383.

Andrew Y. Ng., Daishi Harada, Stuart Russel (1999). Policy invariance under reward transformations: Theory and application to reward shaping. <u>https://arxiv.org/pdf/1908.06976.pdf</u>

A. Aubret, L. Matignon, S. Hassas (2019). A survey on intrinsic motivation in reinforcement learning. http://www.robotics.stanford.edu/~ang/papers/shaping-icml99.pdf