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Abstract

Full-text search based on keyword indexing has been a strongly popular, tried and true
approach to search for information in large amounts of textual data. There are plenty of
specialized search engines supporting this type of syntactic indexing, e.g. Elasticsearch.
However, whenever language in documents is highly context-dependent, full-text search
falls apart. Natural human language is rich – words in different contexts have different
meanings, and users can often find themselves sifting through a lot of irrelevant results.
Moreover, semantically similar texts can consist out of a variety of different words, i.e.
synonyms, in such scenario a keyword search is not working properly. It then becomes
the user’s responsibility to devise complex search queries and techniques to process large
amounts of irrelevant data.

In this project our goal is to be able to index a large number of documents and issue
simple text queries similarly to the full-text search but have them be contextually as well
as semantically aware. Thus, the search should also return documents that are apparently
different, but semantically very close to the query – a functionality not available in the
traditional full-text search.

Recent advances in natural language processing (NLP) research, namely the evolution of
transformer-based models, have set up the state-of-the-art for various downstream tasks
by a large margin. In our work – in order to be able to quickly search indexed documents –
the cosine similarity metric is used to compare the documents within the high-dimensional
embedding space. There are two ways of generating the embeddings. By using Sentence-
BERT models, which are specifically pre-trained for semantic textual similarity tasks [20],
we are able to create two meaningful embeddings exploiting DistilRoberta and Multilin-
gual Universal Sentence Encoder models. Another approach consists of first performing
unsupervised topic modeling and then computing vectors of topic probabilities for each
indexed document. We use Contextualized Topic Models (CTM) [2] and BERTopic [12] to
produce the vectors. Further on, we integrate Elastic’s full-text search with the combined
weighted semantic approach, building on both topic modeling and contextual document
embeddings. By using keyword indexing, it is possible to include or exclude specific terms
in the query. The weighted linear combination of topic modeling and Sentence-BERT em-
beddings allows to see different levels of semantic similarity, from very general topic-based
to the finer more narrow search results. Additionally, we also applied a re-ranking of the
search results using a heavy and more accurate Cross-Encoder model “ms-marco-MiniLM-
L-6-v2”. A re-ranker based on a cross-encoder can substantially improve the final results
for the user.

Furthermore, the implementation can be easily packaged and delivered to apply to a
real world scenario as it was developed in a modular way prioritizing the computational
feasibility of the proposed semantic search approach.
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1 Introduction

Search engines have undoubtedly changed the world. The ability to find documents that
contain The US president or German chancellor, i.e. by keyword indexing, has been a
strongly popular, tried and true approach to search for information in large amounts of
textual data. There are plenty of specialized search engines supporting this type of syn-
tactic indexing. The commercially successful Elasticsearch engine is one of them (Figure
1).

Figure 1: Full-text search with a database engine

However, whenever language in those documents is highly context-dependent, full-text
search falls apart. Natural human language is rich – words in different contexts have
different meanings, and users can often find themselves sifting through a lot of irrelevant
results. Moreover, semantically similar texts often take use of different words, e.g. syn-
onyms, and hence, in full-text search, these are just left out. For instance, let us assume
that someone searches for “painkillers for dogs”. In that case, they might want to find
out either particular instances or more general instances (semantically speaking) of that
query, such as “ibuprofen for pets”. Or maybe they would be curious to find out about
side effects of painkillers for pets. Standard full-text search would be unable to find such
results which are technically close to the main query in the semantic space.

1.1 Problem Definition and Goals

With the advent of Deep Learning, however, such capabilities – as described in the last
section – become imperative. The state-of-the-art NLP models (based on transformers
primarily) are making many of the classically unsolvable NLP problems perfectly feasible.
Semantic search is naturally one of them. In this work, we develop a semantic search
engine (for news articles) based on transformers and Elasticsearch. The final goal of the
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project is to be able to index a large number of documents and issue simple text queries
similarly to the full-text search but have them be context- and semantically aware. Thus
the search should also return documents that are apparently different but semantically
very close to the query (Figure 2) – a functionality not available in the traditional full-text
search.

Figure 2: Semantic search with a database engine

Additionally, this search is to be extended to multiple input documents (each document
would serve as an input query). Furthermore, this idea of finding documents similar to
a set of input documents goes very much in the direction of finding a common theme or
topic among these documents. Hence, the next objective of the project is topic modeling
and topic-based search, i.e. fetching documents which are similar (in terms of the topic)
to the input documents (Figure 3).

In the end, we bundle all software resources to be able to present a proof of concept appli-
cation, which shows our final implementation and findings. The final proof of concept will
combine the semantic, context-aware search built by the searching in the high-dimensional
vector space with a classical keyword search. Moreover, this proof of concept will be also
capable to demonstrate the power of semantic search driven by topic modeling. Finally,
we are able to combine both semantic search engines to allow the user to decide how he
or she wants to apply the search.

1.2 Report Structure

In Section 2, we present the overall high-level idea of our project outcome and the system
architecture we are using. Then in Section 3, we investigate the provided data and describe
the preprocessing steps, which are necessary in order to apply deep learning models on
the data. Next, we express in detail our implementation in Section 4. Finally, we show
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Figure 3: Topic-based search with a database engine

our end-to-end prototype in Section 5, and provide a conclusion as well as an outlook in
Section 6 and Section 7 respectively.

2 General Approach

Within this section, we address the high-level intuition behind our implementation. There-
fore, in Section 2.1, the process of taking deep learning models for natural language pro-
cessing into account is described in more detail. In Section 2.2, we illustrate the underlying
architecture of our software solution.

2.1 Model

In order to be able to quickly search indexed documents, the cosine similarity metric is
used to compare the high-dimensional embedding vectors, which are compact represen-
tations of the query and the document indexed in Elasticsearch. The search results are
then ordered based on the score from the highest to the lowest. There are two different
ways to create such embeddings. By using Sentence-BERT models, which are specifically
pre-trained for semantic textual similarity tasks [20], we are able to create two meaningful
embeddings exploiting DistilRoberta and Multilingual Universal Sentence Encoder mod-
els with dimensionalities of 768 and 512 respectively. Another approach consists of first
performing unsupervised topic modeling on a subset of documents and then computing
vectors of topic probabilities for each indexed document. We use Contextualized Topic
Models [2] and BERTopic [12] to produce vectors with pre-computed 10 and 50 topics for
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each model, with the Contextualized Topic Models for 50 topics producing the arguably
most accurate topics. Further on, we integrate Elastic’s full-text search with the com-
bined weighted semantic approach. By using keyword indexing, it is possible to include
or exclude specific terms in the query. A weighted linear combination of topic modeling
and Sentence-BERT embeddings allows to see different levels of semantic similarity, from
very general topic-based to the finer more narrow search results.

2.2 Architecture and Hardware

Elasticsearch is used as a back-end storage for the indexed documents. Besides providing
a scalable full-text search engine with near real-time performance, it allows to store dense
vectors (dim. up to 2048) and perform document scoring (ordering from the highest to
lowest) based on cosine similarity. Moreover, Elasticsearch provides a simple extensive
REST API interface so that new documents can be easily added to the index. One ap-
parent disadvantage is that the basic Elasticsearch does not yet support a particularly
relevant optimization – approximate nearest neighbors (ANN) – necessary for a billion-
scale low-latency performance. This disadvantage in particular is still an open issue of
vanilla Elasticsearch [15]. Another viable solution in such case is to use the proprietary
GSI’s Elasticsearch k-NN Plugin [13]. Amazon Elasticsearch Service also provides ANN
optimization as a built-in functionality [1].

We used the LRZ Compute Cloud to create an instance with 10 CPUs, up to 45 GBs of
RAM, and 200 GBs of disk space (the maximum limit). We deployed the latest Elastic-
search (v. 7.12) through Docker. Huggingface Transformers [29] and Sentence-BERT [19]
pre-trained models were installed via pip and Python was used for development. The user
interface to perform actual search is built as a lightweight web application using Streamlit
[27]. Communication with Elasticsearch is ensured over the REST API.

Due to the sheer amount of computations needed to apply large cutting-edge NLP models,
we secured access to the LRZ AI infrastructure featuring latest NVIDIA P100 and V100
GPUs. We computed transformer embeddings and performed training of topic models
solely on GPUs. The overall GPU compute time is about 250 hours.

3 Data

The most important part of any machine learning project is data. The industry partner
of this project supplied approximately 20 million news articles, which enabled our work
with cutting-edge transformer models. Due to the small volume of disk space on the LRZ
Compute Cloud, and more importantly the sheer massiveness of the data, we reduced the
operational size of the data to about 2 million news articles, or 8 GB of storage. This
limitation was necessary in order to enable us to apply inference with large transformer-
based models. However, before we can apply any model, we have to explore, analyze,
and preprocess the data. All those steps are explained in more detail in Section 3.1 and
Section 3.2. Furthermore, we also experimented with summarization techniques as an
additional preprocessing step – described in Section 3.3.
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3.1 Data Exploration

Before applying machine learning models to data, one has to fully understand what the
data looks like. To gain a better understanding of the provided data, we conducted
preliminary analysis and visualization.

(a) Distribution of the unique
first 300 words.

(b) Distribution of the unique
first 500 words.

(c) Distribution of the unique
first 1000 words.

Figure 4: Illustration of the distributions of the first unique 300, 500, and 1000 words of
1 million news articles.

In Figure 4, we analyzed the count of unique words within the first 300, 500, and 1000
words of each article of a sample of 1 million documents, which is 1

20
of the total data and

1
2

of the data used. The models which we are applying to the data have only a certain
number of words, which they can take into account for one sequence. Therefore, we had
to ensure that we do not lose information while we are only taking the first words till
the word limit into account. From our analysis, we see that we do not omit information
even if we take only the first 300 words into account, because the average unique words
observed is really close to the average unique words observed within the first 500, or the
first 1000 words.

The 1 million sample articles are crawled in the time frame from January 2019 to May
2019. They are uniformly distributed over time and also the word count per article is
uniformly distributed over the time frame. We also analyzed if there is a heavy bias
within the news articles, i.e. if there are dominating topics which would lead to a biased
search engine. From our perspective, the corpora obviously includes many articles about
then U.S. President Donald J. Trump, in addition to various other topics, but given the
historical context of the time period from which the articles originated and the nature of
journalism, we feel that we should leave the corpus as it is.

Furthermore, we wanted to analyze where the news articles are crawled from. From our
analysis, we can report that the articles are crawled from numerous news pages around
the world, e.g. “reuters.com”. However, for the majority of the articles (roughly 800, 000
articles), the field which includes the information of the source is not filled. So we can
not tell precisely from which parts of the world the data is crawled, but we can say for
sure that the corpus includes mainly news articles.
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3.2 Data Preprocessing

Another necessary step before we can apply deep learning models for natural language
processing is to preprocess the data in order to ensure that the models can operate prop-
erly. In detail, we had to apply initial preprocessing and deduplication.

Initial Data Preprocessing

To ensure that the data has been crawled from reliable sources, articles containing “twit-
ter” in their URL were removed from the data set. Moreover, articles were filtered to
have a word count between 200 and 2000. Articles in any other language than English
were removed. This resulted in a data reduction of 25%. Some articles contained HTML
entities that were also removed.

Deduplication

Because the original data was regularly crawled from news websites, we encountered many
duplicates of the very same article. Some articles had up to 10-15 copies, though with
minor changes. We decided to use a classic NLP method – the Jaccard similarity index
on sets of words (1-grams) to filter syntactically similar articles due to its simplicity and
speed:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(1)

However, some further simplifications were made: splitting of data into chunks of 3 GBs
each, taking only the first paragraph (about 100 words), and comparing an article with
next 1000 articles. Otherwise it would have been computationally infeasible. With such
simplifications it took 12-15 hours to process a 3 GB chunk on the cloud instance. In
general, this resulted in 10-15 % reduction of size.

Overall, after the preprocessing, the original 3 GB chunks got reduced to 2 GBs chunks,
each having around 500k documents. We proceeded further with 4 chunks of data, hence
8 GBs of data.

3.3 Summarization

Apparently, the transformer models described in Section 4 that are used to compute text
embeddings can take the maximum of 512 tokens as input. However, some documents
exceed this limit in length. In such a case, and as some blog posts point out, it is sufficient
to use the first 512 tokens of the input, and truncate the rest. The natural logic behind
this is that practically all news articles explain the gist of it in the first one or rarely
two paragraphs. Furthermore, we investigated the number of unique words in a sample
of 1 million articles – as described in Section 3.1. Our analysis shows that we do not
lose much information in this regards if we take the first e.g. 300 words (which yields in
approx. 512 tokens) into account. Nevertheless, we decided to compare it with extractive
summaries produced for long texts on a small subset of data. We intentionally did not
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use abstractive summarization, which would introduce new words and thus, might change
the meaning. We tested and timed three models:

1. BERT Extractive Summarizer [18]

2. Latent Semantic Analysis (LSA) [11]

3. LexRank [10]

All three models produced valid extractive summaries, the difference being in speed. The
slowest proved to be the BERT summarizer, taking about 0.5 seconds for one document
on a V100 GPU. LSA takes on average 0.2 seconds, whereas LexRank is 10 times faster.
Overall, producing extractive summaries using LexRank would require additional 11 hours
of preprocessing time for the 2 million documents. Further on, we computed text embed-
dings on the summaries and performed semantic search. The results actually proved to be
worse than taking just the first 512 tokens of the text into account. Since LexRank uses
Sentence Centrality and Centroid-based summarization techniques, the search results are
distributed across different topics identified in the summaries. Thus, we dropped the idea
of using extractive summarization.

4 Implementation

The transformer models BERT [9] and RoBERTa [17] have set a state-of-the-art perfor-
mance on semantic textual similarity tasks. They compare sentences pairwise to obtain
a similarity score, which causes a large computational overhead. Comparing 10,000 sen-
tences requires about 50 million inference computations (65 hours on a modern V100
GPU). The construction of BERT makes it unsuitable for semantic similarity search in-
side a large collection of documents. Having a fixed query text and running pairwise
inferences with all the documents is quite cumbersome and infeasible in terms of perfor-
mance. Our goal is rather to move the bulk of computations away from the user, and have
cheap fast comparisons during the retrieval, similar to full-text search utilizing keyword
indexing. We decided to first produce embeddings for each document that compactly rep-
resent it as a high-dimensional vector of numbers. The semantically similar documents
in this case should then have vectors that are close in that embedding space. Thus, dur-
ing the retrieval step, the dot product of vectors produces the cosine similarity, which
is not an expensive operation. Elasticsearch is used to store and index the collection of
documents to be searched, as it provides the specially designed “dense vector” type and
the scoring mechanism based on the cosine similarity between the query vector and the
vector of each item in the index.

4.1 Transformer-based bare models

Since transformer-based models perform well on sentence pair regression tasks, our first
näıve approach was to use these models as they are, and extract the embeddings from
the hidden states of the encoder. The logic behind this was that theoretically the hidden
states should represent the contextual encodings of the input text because the models are
trained to perform language modeling. We experimented with four models on a small
subset of documents:
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1. DistilBERT [28]: The last hidden state (dim. 768) is used as the embedding. The
distilled version was chosen due its speed compared to the original BERT – it is 60%
faster and preserves 95% of BERT’s accuracy as measured on the GLUE language
understanding benchmark.

2. GPT-2 [31]: The last hidden state (dim. 768) is used as the embedding. The speed
is rather slow, as GPT-2 contains 1.5 billion parameters. At the time of its release
in 2019, the model was the best in text generation domain.

3. Pegasus [32]: This model is used for abstractive summarization. At the time of
its release in 2019, Pegasus achieved state-of-the-art summarization performance.
The structure consists of both an encoder and decoder. The last hidden state of the
encoder (dim. 1024) is used as embedding. The latency is also big, due to the fact
that the input goes through the entire model to produce an abstractive summary.

4. T5 [33]: This model achieves state-of-the-art results at semantic similarity tasks
when comparing sentences pairwise. Creating embeddings by using the last hidden
state (dim. 768) is rather slow.

For all four models, we used mean pooling of the hidden state vectors representing each
input token to produce a single vector. To speed up the prototyping and testing phase,
we used FAISS [22] – a library for efficient in-memory similarity search and clustering of
dense vectors. However, the expectations were not met – the search results were not even
semantically similar to the query. That is, the produced embeddings were not meaningful
in the embedding space. The point initially overlooked by us was that these models were
not created and trained with the aim of producing meaningful embeddings.

4.2 Sentence-BERT

After doing an extensive research, we discovered that sentence embeddings were a well
studied area with a number of proposed methods. Skip-Thought [16] trains an encoder-
decoder architecture to predict the surrounding sentences. InferSent [8] uses labeled data
of the Stanford Natural Language Inference (SNLI) data set [5] and the Multi-Genre NLI
(MNLI) data set [34] to train a siamese BiLSTM network with max-pooling over the
output. Conneau et al. showed, that InferSent consistently outperforms unsupervised
methods like Skip-Thought. Universal Sentence Encoder [6] trains a transformer network
and augments unsupervised learning with training on SNLI. Hill et al. [14] showed, that
the task on which sentence embeddings are trained significantly impacts their quality.
Previous work (Conneau et al., 2017 [8]; Cer et al., 2018 [6]) found that the SNLI data
sets are suitable for training sentence embeddings. Thus, in the first place we should have
used models that were specifically additionally fine-tuned for the semantic textual similar-
ity tasks using the SNLI data sets. Further research revealed Sentence-BERT (SBERT) by
Reimers et al. [20], a modification of the BERT/RoBERTa network that is able to derive
semantically meaningful sentence embeddings. The architecture of SBERT intentionally
uses siamese and triplet networks [23] so that the sole aim of the model is to produce
meaningful embeddings that can be further compared with cosine similarity. Addition-
ally, SBERT is trained on the combination of the SNLI [5], the Multi-Genre NLI [34], and
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Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg.
Avg. GloVe embeddings
Avg. BERT embeddings
InferSent - GloVe
Universal Sentence Encoder

55.14
38.78
52.86
64.49

70.66
57.98
66.75
67.80

59.73
57.98
66.75
67.80

68.25
63.15
72.77
76.83

63.66
61.06
66.87
73.18

58.02
46.35
68.03
74.92

53.76
58.40
65.65
76.69

61.32
54.81
65.01
71.22

SBERT-NLI-base
SBERT-NLI-large
SBERT-STSb-base
SBERT-STSb-large

70.97
72.27

-
-

76.53
78.48

-
-

73.19
74.90

-
-

79.09
80.99

-
-

74.30
76.25

-
-

77.03
79.23
84.67
84.45

72.91
73.75

-
-

74.89
76.55
84.67
84.45

SRoBERTa-NLI-base
SRoBERTa-NLI-large
SRoBERTa-STSb-base
SRoBERTa-STSb-large

71.54
74.53

-
-

72.49
77.00

-
-

70.80
73.18

-
-

78.74
81.85

-
-

73.69
76.82

-
-

77.77
79.10
84.92
85.02

74.46
74.29

-
-

74.21
76.68
84.92
85.02

Table 1: Spearman-rank correlation ρ between the cosine similarity of sentence represen-
tations and the gold labels for various semantic textual similarity (STS) tasks. Perfor-
mance is reported by convention as ρ × 100. STS12-STS16: SemEval 2012-2016, STSb:
STSbenchmark, SICK-R: SICK relatedness data set.

the STS benchmark (STSb) [7] data set. The SNLI is a collection of 570,000 sentence
pairs annotated with the labels contradiction, entailment, and neutral. Multi-Genre NLI
contains 430,000 sentence pairs and covers a range of genres of spoken and written text.
The STSb provides a popular data set to evaluate supervised STS systems. The data
includes 8,628 sentence pairs from the three categories captions, news, and forums. It
is divided into train (5,749), dev (1,500), and test (1,379).

As a result, SBERT embeddings significantly outperform other state-of-the-art sentence
embedding methods like InferSent [8] and Universal Sentence Encoder [6]. Moreover, the
results of experiments by Reimers et al. show that directly using the output of BERT
leads to rather poor performances. The results are depicted in Table 1.

Ultimately, we concluded that SBERT fits perfectly into our project to achieve the goal,
namely produce textual embeddings that can be used for scalable semantic search. Fur-
ther research showed that there existed already an open-source implementation of SBERT
called SentenceTransformers [24]. It is a Python framework based on PyTorch and Hug-
gingFace’s Transformers [29] and offers a large collection of pre-trained models [19] tuned
for various tasks. Table 2 lists some of the already available pre-trained models, ranked
in descending order of the Spearman-rank correlation on the STSb test set.

Consequently, for the second round of experiments we chose three models:

1. stsb-mpnet-base-v2: the base model is MPNET (Microsoft) [25]. Training data:
NLI + STSb. It has the highest Spearman-rank correlation.

2. stsb-distilroberta-base-v2: the base model is DistilRoBERTa-base. Training data:
NLI + STSb. The rank is 2 points less, but the inference speed is almost 1.5 times
higher than the speed of mpnet.

3. distiluse-base-multilingual-cased-v1: distilled version of the Multilingual Universal
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Model Name STSb Speed
stsb-mpnet-base-v2 88.57 2800
stsb-roberta-base-v2 87.21 2300
paraphrase-mpnet-base-v2 86.99 2800
paraphrase-multilingual-mpnet-base-v2 86.82 2500
nli-mpnet-base-v2 86.53 2800
stsb-distilroberta-base-v2 86.41 4000
nli-roberta-base-v2 85.54 2300
paraphrase-distilroberta-base-v2 85.37 4000

Table 2: Top 8 models on the STSb test set (in descending order). Speed is described as
encoding speed (sentences per second) on a V100 GPU. [19]

Sentence Encoder for 15 languages: Arabic, Chinese, Dutch, English, French, Ger-
man, Italian, Korean, Polish, Portuguese, Russian, Spanish, Turkish. The rank is
80.62 and the inference speed is 4000 sentences/sec. This model was chosen because
it is multilingual and the inference speed is the highest among other multilingual
models though with slightly higher ranks.

We computed new embeddings on 50,000 documents randomly taken from the data. This
time, the expectations were actually met. The search returned semantically similar doc-
uments, ranking the semantically similar articles – which covered the same context – the
highest. Additionally, as already mentioned in Section 3.3, we produced extractive sum-
maries using LexRank algorithm and computed mpnet and distilroberta embeddings on
the extracts. However, this approach produced worse results, as the output had a mix
of articles based on different topics identified by LexRank. For instance, a query article
about measles outbreak in Vancouver airport because of two returning unvaccinated pas-
sengers from the Philippines produced different independent articles on measles outbreak,
Vancouver airport, vaccination, and the Philippines.

After doing an extensive human evaluation by our project team, we selected Distil-
RoBERTa because it prfoduced the best results, and the multilingual Distiluse which
also performed quite well. Both models yield the fastest inference speed among other
models, 4000 sentences/sec on a V100 GPU. Further, we computed two embeddings for
each document of our working subset, approx. 2 million articles. This operation took
approximately 8 hours on a single V100 GPU of DGX-1 node. Then the documents and
its corresponding embeddings were indexed in the Elasticsearch instance.

4.3 Topic Modeling

Topic models are entirely about uncovering the hidden topical patterns which pervade a
collection of texts. Those patterns are called topics [4]. In topic modeling, each document
consists of a certain number of topics derived from the text collection, and each topic is
composed of a certain group of words. After applying a topic model to a text collection it
is possible to annotate the documents according to the assigned topics and then use those
annotations to organize, summarize, and search the hitherto unlabeled texts. An example
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algorithm of this kind of natural language processing models is displayed in Figure 5 (to
illustrate the pure character of a topic model).

Because of our goal of designing a cutting-edge semantic search engine for documents, we
go one step further and use each documents’ topic distribution as a vector space, which
we exploit for searching similar documents. To be more precise, we experimented with
two cutting-edge models: Contextualized Topic Models and BERTopic. Both models take
advantage of embeddings created by transformer models and will be explained in more
detail in Section 4.3.1 and Section 4.3.2.

4.3.1 Contextualized Topic Models

Contextualized Topic Models [3] (CTM) is a topic modeling technique which builds on
top of ProdLDA. ProdLDA is the yielded model by Autoencoding Variational Inference
for Topic Models (AVITM) [26] which is, in the end, an altered version of plain LDA.
They simply replace the word-level multinomial distribution assumption with a weighted
product of experts. This means that they replaced line 5 of the algorithm shown in Figure
5 with wn|β, θ ∼ Multinomial(1, σ(βθ)). The function σ is indeed the AVITM blackbox
inference method, which returns µ and Σ of the multinomial distribution after learning
the hidden structures within the data via applying a neural autoencoder with variational
inference targeting the reconstruction of the input. They claim that the most significant
advantages of ProdLDA over LDA are the better topic coherence, and the computational
efficiency. Latter is due the fact, that on unseen data, AVITM does only require to pass
through the forward pass of a neural network.

1: for document dd in corpus D do
2: Choose θd ∼ Dirichlet(α)
3: for position w in dd do
4: Choose a topic zw ∼ Multinomial(θd)
5: Choose a word ww from p(ww|zw, β), a multinomial distribution over words con-

ditioned on the topic and the prior β.
6: end for
7: end for

Figure 5: Essential latent dirichlet allocation algorithm (LDA) derived by [4]. α and β
are a priori intialized parameters of the algorithm. ProdLDA and therefore also CTM is
based on LDA.

The authors of [3] extended the bag of words approach of ProdLDA by adding contextu-
alized information to the input. This minor change of ProdLDA then yields even more
coherent topics.

There are several reasons why we have chosen CTM as a topic model. The authors of
the model claim that this model outperforms other state-of-the-art topic models. Fur-
thermore, we can utilize arbitrary sentence BERT embeddings. That means that one can
reuse the embeddings created for the semantic search for the training of a topic model,
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which enables an efficient machine learning pipeline.

We conducted experiments with various parameters and variable number of documents
taken into account. In the end, we decided to include two models in the final proof of
concept. Both models are trained on 100, 000 documents. The documents are embedded
with “stsb-distilroberta-base-v2”, which is the same model used for the embeddings. Fur-
thermore, both models are trained with 100 epochs with a batch size of 256. The batch
size is restricted by the amount of VRAM available on the GPU of the LRZ AI cluster
which is 15 GB. The only difference between the two models is the number of topics. One
model is trained with 10 and the other with 50. In early evaluations, we saw that the
model with 50 topics yields more meaningful results and should be a model to consider
for a real product, while the model with 10 topics is more suitable for a demo showcase.

For inference without any training of any part of the model – which is necessary in an
productive environment – we had to make some changes within the source code of CTM.
For example, the developers of CTM did not consider that while the model can be trained
on a GPU, there would be no GPU available for inference. After the submission of this
project, we will open pull requests accordingly on the open source platform GitHub to
contribute and share our improvements with the community.

4.3.2 BERTopic

Traditional topic modeling has been done by considering the bag-of-words assumption for
underlying documents. With the advent of transformers though, smarter ways to encode
documents have been developed. One such encoding method is BERT. BERT is meant to
capture contextualized information from the underlying document in a better way that
classic methods (e.g. bag-of-words) could ever do. As its name also suggests, BERTopic
leverages BERT for codifying (or embedding) a document as well as possible and uses
those embeddings in further steps (Figure 6).

Intuition

BERTopic is essentially a clustering algorithm. In a nutshell, what it does is a sort of
embedding-based clustering. The documents whose embeddings are clustered together
share a common topic.

Dimensionality Reduction

The clustering algorithm used as part of BERTopic is HDBSCAN. However, HDBSCAN
is highly sensitive to the course of dimensionality, requiring large amounts of data for
large-sized embeddings. BERT spits out rather some large-dimensional vectors, so, for
that reason, the UMAP algorithm is used in order to reduce the dimensionalities of those
embeddings before actually feeding them into HDBSCAN.

1©https://maartengr.github.io/BERTopic/tutorial/algorithm/algorithm.html

https://maartengr.github.io/BERTopic/tutorial/algorithm/algorithm.html
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Figure 6: BERTopic – under the hood 1

Clustering

After generating contextualized embeddings using BERT and subsequently reducing their
dimensionality, we have extracted some meaningful vectors which fully characterize the
documents. At this point, HDBSCAN is used to cluster this documents using a custom
distance function, such as the euclidean distance, and find similar documents.

Finding Topics

At this point, all the semantically similar documents are clustered together. That is, all
the documents which belong to one cluster talk about a common thing in one way or
another. The question that arises now is: How can this common thing be identified? The
answer is TF-IDF. Or more precisely, a cluster-based version of TF-IDF. In more detail,
what is done as part of this algorithm, is an aggregation of documents which belong
to the same cluster. That means that all documents which belong to the same cluster
are considered as one large document. Consequently, the common thing we spoke about
before is identified by computing the most significant terms within these clusters via TF-
IDF. The k most significant terms (k being configurable) are then used for characterizing
a topic.

Training

Like most clustering algorithms, BERTopic is also highly configurable. Starting with
choosing the number of clusters to changing the underlying model which generates the
embeddings, everything can be customized. In the current set-up, the following configu-
ration has been used:

• stop words removal
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• a pre-trained model to generate embeddings: paraphrase-MiniLM-L6-v2

• k = 10 minimum documents required to create a cluster

• 100k documents as the training data set

Normal configuration with BERTopic produces a multitude of outliers. At first, 47% of
the data was classified as outliers. By empirical investigation, we figured out that k = 10
minimum documents (outlined by the 2 parameters min samples and min cluster size
in Table 3) for producing a cluster yields very good results, by reducing the number of
clustering outliers to 17%. Last but not least, BERTopic was left to produce as many
topics as possible, by letting the corresponding parameter free. Subsequent reduction to
10 and 50 topics respectively was performed, ending up with 2 models (as in the case of
CTM).

BERTopic

min samples min cluster size Outliers
1 2 17.4%
1 10 17%
1 50 28%

Table 3: BERTopic – outliers experiments

4.4 Retrieve and Re-Rank

As pointed out by Reimers et al. [20], SBERT embeddings serve the purpose of performing
scalable semantic search. The reader might imagine a situation where the user’s query sug-
gested a question for which the results should return documents containing valid answers
first rather than the general pool of semantically similar documents. Correspondingly,
Reimers et al. also suggest that for complex search tasks, e.g. for question answering
retrieval, the search can significantly be improved by using additional re-ranking after the
initial retrieval step.

In a retrieve and re-rank pipeline such as in Figure 7, a set of documents as well as an
input document are passed to the retrieving model first. The top k articles returned from
the retrieving model are then passed to the re-ranker, which compares them to the input
query and re-ranks them.

As a re-ranking model, Reimers et al. suggest to use a Cross-Encoder. The input text
and a document from the data set are passed simultaneously to the transformer network,
which then outputs a score indicating how relevant the document is for the given input.
The advantage of Cross-Encoders is the higher performance, as they perform attention
across the input and the document [21]. However, they do not produce embeddings, thus
cannot be used for scalable semantic retrieval.

Among different variations and models, we chose the “ms-marco-MiniLM-L-6-v2” [30]
model as a re-ranking model in our search engine. This decision is based on a ranking
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Figure 7: Retrieve and Re-Rank Pipeline [21].

of models trained on the MS MARCO Passage Ranking data set [30]. MS MARCO is a
large scale information retrieval corpus that was created based on real user search queries
using the Bing search engine. The provided models can be used for semantic search using
given keywords or a search phrase. As a result, they will find passages that are relevant
for the search query.

Thus, our Cross-Encoder re-ranker does not only pay attention to the semantic similarity
of the results, it also pays attention to the relevance of the results to the user. The
re-ranker is included as an option in our search engine.

5 Prototype

Our search engine uses a combination of Topic Modeling and Sentence-BERT embeddings
by default. Our application supports the following functionality:

• A slider on the left indicates to how much percent the search should be based on
Topic Modeling.

• Keywords to be included or excluded in the search can be provided.

• The re-ranker can be chosen as an option.

• For multilingual use cases, the transformer model will be changed from the Distil-
RoBERTa to Distiluse.

• For a search based on several articles, up to 3 articles can be added in text fields or a
list of articles can be uploaded in an Excel file. For semantic search, the embeddings
of several input files will be averaged apriori to the search.

The search results go through one more deduplication step as not all duplicates could be
deleted while preprocessing the data in small portions.

5.1 Sentence Embeddings

Searching for documents semantically similar to an article about a “looting” of shops in
Johannesburg, South Africa, the search engine based only on DistilRoBERTa embeddings
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returns closely related documents. The first result depicted in Figure 8 is about “sporadic
attacks” on shops by protesters in Johannesburg, the second one about riots in Pretoria,
South Africa.

Figure 8: Screenshot of the semantic search user interface.

All of the top ten results contain news about crime or violence in Johannesburg or other
South African cities. Another article very relevant to the input article – also reporting
on looting of stores in Johannesburg and Pretoria – is ranked only 10th in the semantic
search with DistilRoBERTa embeddings. Applying the re-ranking method will change
that. The “ms-marco-MiniLM-L-6-v2” model recognizes the article to be more similar as
well as more relevant to the search and puts it to the 1st rank.

Figure 9: Re-ranked search results.

To our knowledge, there has not been a large-scale evaluation about the results of re-



5 PROTOTYPE 19

ranking methods applied on Semantic Similarity tasks. We observed the re-ranked results
to be more relevant in many cases, this is, however, subjective. In our experiments, re-
ranking a lower amount of the top k documents (15 ≤ k ≤ 25) performed better than
re-ranking a larger amount of documents (50 ≤ k ≤ 100).

The results returned by Distiluse are semantically similar, yet some of them tend to
exhibit more topic-based general similarity among documents semantically very close to
the input article. For example, an article on measles outbreak returned another article
about norovirus outbreak among the top 10 results. Nevertheless, the application of
Distiluse is to add an opportunity of multilingual search once non-English data is added
to the data set.

5.2 Topic Modeling

For topic modeling, we have included 4 models into the final proof of concept:

• Contextualized topic model with 10 topics

• Contextualized topic model with 50 topics

• BERTopic with 10 topics

• BERTopic with 50 topics

Topics for all the 2 million documents have been generated and pushed into Elasticsearch.
Due to the lack of effective formal evaluation methods in the scientific literature, naked-
eye comparisons of the models were made. On a set of 10 randomly chosen documents,
the following results were obtained:

CTM10 CTM50 BERTopic10 BERTopic50
Accuracy 70% 90% 40% 70%

Table 4: Naked-eye comparison of the 4 topic models.

As one can see from Table 4, the most precise model is CTM50. There is one caveat to
the table though. BERTopic, unlike CTM, does not perform any sort of hard assignment.
Instead, at inference time, BERTopic assigns a document to the outlier class, provided
it is too far away from any of the other clusters which correspond to real topics. In
particular, for the tested documents, BERTopic10 has detected 3 outliers (among the
60% incorrectly classified), whereas BERTopic50 has detected 1 outlier.

Further Observations

• CTM10 is more general than CTM50, and, generally, a smaller amount of topics
specified within the model leads to more general topics. However, CTM50 seems
to be in a sort of sweet spot, since further decrease in the number of topics leads to
poorer performance while other experiments showed that more topics lead to very
fine granular results, which are already covered by the context-aware embeddings.
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• BERTopic may be very descriptive in terms of the correctly assigned documents.
However, working with it may be problematic due to the existence of the so-called
Outlier topic, which makes it impossible to do any further topic-based search.

Topic-based Search

The topic assignment for one particular document is an array of 10 probability values (in
the case of 10 topics-based models) and an array of 50 probability values (in the case of 50
topics-based models). Each of these values correspond to the probability of the document
having the topic at that particular index. Each topic, in turn, at one particular index is
described by a multitude of words (Figure 10). For the sake of outlining how the search
works, the reader may assume that we have a 10 topics model. Hence, each document
is assigned a 10-value topic array. In order to identify documents with similar topics,
the cosine similarity measure is computed (between this document and all the others
in the database) – the intuition being that documents which have a similarly assigned
distribution should “talk” roughly about the same story.

Figure 10: Example of topic assignment for one document within the data base.

Topic-based Search Results

For the input article about lootings in Johannesburg, the Contextualized Topic Models
approach finds a topic described by violence-related words such as “explosion”, “pistols”
or “infantry” to fit the article the most, assigning it a probability of 17.66%. This is
reflected in the search results with a search based solely on Contextualized Topic Models,
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depicted in Figure 11. The top articles returned are all related to violence, the first being
about “attacks”, the second one about “night raids”.

Figure 11: Semantic search fully based on Contextualized Topic Model.

5.3 Combined Search

When setting the slider for topic modelling to 50%, the results will contain news about
rather general violence-related topics, but still have a close link to the input article. The
top result in an example displayed in Figure 12 is still about “attacks”, but they are
taking place in “Johannesburg”.

Figure 12: Example of a combined search output. Utilizing both topic modeling and
context-aware embeddings.
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6 Conclusion

We have developed a full end-to-end proof of concept semantic search engine, which is
capable to understand the contextual differences between texts while utilizing cutting-
edge deep learning models. All this success would not have been possible without the
interdisciplinary characteristic of our team, the supportive mentorship of both sides (TUM
and the industry partner), and the Leibniz Rechenzentrum which offered us access to
top-notch AI infrastructure. We can conclude that this project enabled the project team
to acquire hands-on experience on the latest deep learning models for natural language
processing.

7 Outlook

To be able to apply transformer-based models in the short time frame, and because of
storage limitations on the Leibniz Rechenzentrum compute cloud, we had to restrict our
amount of data to 2 million articles. This amount of data is still a lot by all means, but
future students could exploit even more articles having more storage capacity to be able
to gain even better search results.

Furthermore, we had to find a compromise between the power of the models, i.e. accu-
racy and the applicability in terms of time the models need to compute embeddings of a
document. With even more compute power one could have use even bigger, and therefore
also more powerful models.

Additionally to the implemented functionality to include or exclude special keywords, one
could also think of supplying the user a keyword extension to his or her search. Such
a keyword extension could be done by finding synonyms for a certain keyword, or by
exploiting thesauri. For this, we implemented one approach for finding synonyms in the
lexical database WordNet. We also implemented another approach finding synonyms as
well as paraphrases of a named entity by searching Wikipedia for links leading to the
article about the respective named entity. It gives a list of the captions of all links leading
to the article. Thus, the keyword search for “Elisabeth II” will be extended with para-
phrases such as “The Queen”. But we did not include this software to our final prototype.
Due to the complexity, more time would be needed to actually test the keyword extension.

Since the formal evaluation of the developed semantic search engine is not yet feasible,
future work could try to find methods and approaches of how to evaluate such a context-
aware search engine. However, such an evaluation might be driven by subjective decisions.
Developing an objective benchmark is a clear challenge.
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