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Abstract

One of the most fundamental challenges in artificial intelligence is enabling the machine to converse with
humans using natural language. Some years ago, intelligent personal assistants were developed. Today,
a new conversational system has emerged: a social chatbot aims not primarily at solving all the questions
a user might have, but rather at being able to establish an emotional connection with the user. This is
achieved by satisfying the user’s need for communication and affection. We present a chatbot that detects
the Six Basic Emotions by Ekman using a hybrid approach including LSTM. It can also adapt any per-
sonality defined by the OCEAN model. Based on the user’s emotion and its own personality, the chatbot
reacts in an emotionally meaningful way.
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1 Introduction

Motivation

Conversations between humans and machines are nowadays commonplace and chatbot interactions re-
place human services more and more. Humanizing machines is thus of great importance, as a first step
to improve user engagement and in the future to eventually give intelligent machines a moral compass [1].
Especially in customer service it is easy to see how an affective assistant that can react to and learn from
emotions enhances customer satisfaction compared to an emotionless machine.

One of the most fundamental challenges in artificial intelligence is enabling the machine to converse
with humans using natural language [2]. Starting with key-word based conversational systems such as
Eliza and Parry in the 1960s, moving to task-completion systems in the 2000s, intelligent personal assis-
tants such as Siri, Cortana, and Alexa were developed in the 2010s. Nowadays, conversations between
humans and machines are common and social chatbots like XiaoIce have emerged as new conversational
systems. Google recently presented the seemingly human-like chatbot Meena [3] And while text-based
sentiment analysis, which classifies emotions as positive, negative or neutral, is a well established field
in natural language processing [4, 5], emotion detection is far from similar success and ubiquity [6]. The
surveys [6, 7, 8] provide an overview over existing machine learning approaches for text-based emotion de-
tection. In particular, hybrid models using deep learning, traditional machine learning and key-word based
approaches achieve accuracies between 57% and 88%, the latter being comparable to human accuracy
levels [9].

Project goal

Our goal was to develop an emotionally aware chatbot that can detect accurately, in real-time, emotions in
short text messages. Moreover, to be categorized as an affective personal assistant, the ability to express
sentiments is also required. Ultimately, we developed a bot that can differentiate between the six basic
human emotions joy, surprise, anger, sadness, disgust, fear, and neutral. Moreover, it can adapt any
personality defined by the personality model, the OCEAN model, and changes its mood according to its
personality and the user’s expressed emotions. The chatbot’s emotion detection component, achieved
a classification accuracy of 88% when using a Bert-large-uncased model for multi-labeled sentences on
Semeval18’s test set. Using RNN models with LSTM, BiGRU, and GRU, we achieved an accuracy of 86%,
82%, and 81% respectively on Unified Dataset.

Outline

In Chapter 2, we discuss different emotion models, define two chatbot personalities, and explain how they
interact to determine the chatbot’s reactions. In Chapter 3, we present suitable text-based datasets, our
emotion detection approaches, and finally, our hybrid approach involving an emotion detection component
using an LSTM model and a key-word based approach. In Chapter 4, we show how we built the chatbot in
the open-source machine learning framework Rasa [10], which is a tool to implement voice or, in our case,
text-based assistants. It provides a platform to easily combine language understanding, processing, and
text generation modules as well as an interface for interactive learning and testing. However, most of our
research can be used independently of the platform.
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2 Psychological models

2.1 Modeling emotion

There are two fundamental approaches to model emotions in psychological and affective computing lit-
erature: categorical and dimensional models. Categorical emotion models assume that all humans have
a given discrete set of basic emotions. Dimensional emotion models represent emotions in a continuous
space which is usually described by the three dimensions valence, arousal, and dominance.

Research following the categorical approach is based on determining which emotions are basic. The
most common categorical model, Ekman’s Six Basic Emotions, distinguishes between joy, anger, fear,
disgust, sadness, and surprise [11]. There are many extensions of this model, as well as other categorical
models [12, 13, 14]. However, the categorical approach has two downsides: On the one hand, the idea
itself to universally classify emotions is challenged, as there are for example intra- and intercultural differ-
ences in the way how emotions are valued and expressed [15, 16]. On the other hand, categorical models
do not take into account the intensity of emotions.

The dimensional approach originates from factor analyses showing a relationship between emotional
responses and the three underlying so-called VAD dimensions: valence (how positive or negative an
experience feels), arousal (how energized or enervated the experience feels), and dominance (how con-
trolling or submissive it feels) [17]. In [18], more than 150 discrete emotions have been embedded into the
three-dimensional VAD space (Figure 4.5). Therefore, the three VAD values and discrete emotions were
surveyed simultaneously. Then each categorical emotion is identified with the centroid of its corresponding
categorical cluster.
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Figure 2.1 VAD embedding

Thus, not only can a wide range of categorical models be
directly embedded into the VAD space but the dimensional
approach also includes by definition more complex emotions
as well as intensity. Therefore, the dimensional approach
turns out to be more flexible compared to the categorical ap-
proach.

Aiming at a chatbot that is easily adaptable to various
domains with possibly distinct relevant discrete emotions, it
seems promising to model emotions via the dimensional ap-
proach, i.e. to learn VAD values from text. However, on the
one hand, section 3.1 will reveal that significantly more text
data is available with labels based on the Six Basic Emotions
model than on the VAD space and an approach to learn VAD
values from data with categorical labels based on [19] was
unsuccessful due to notation obscurities in the paper. On the
other hand, a categorical emotion detection model does not
severely restrict the chatbot’s adaptability as long as its reac-
tions are easily adaptable to a wide range of detected cate-
gorical emotions. Therefore, the emotion detection model in
Section 3.2 is trained using data labeled with the Six Basic Emotions plus "neutral" and the chatbot’s
reaction is modelled based on the dimensional approach.
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2.2 Personality profiles

In psychological literature, the most commonly used model to describe personality is, to the best of our
knowledge, the OCEAN model: it represents personality using the the five dimensions openness, con-
sciousness, extroversion, agreeableness, and neuroticism. The five dimensions were observed in many
factor analyses and are found to be generally stable over time. We represent the values for each dimension
on a scale from [−1, 1] (see Figure 2.2).

-1 1
Openness: conventional, prefers routine vs. curious, independent
Consciousness: impulsive, careless vs. dependable, organized
Extroversion: quiet, reserved vs. outgoing, warm
Agreeableness: critical, unccoperative vs. trusting, empathetic
Neuroticism: calm, even-tempered vs. prone to negative emotions

Figure 2.2 OCEAN model

Based on the OCEAN model, our chatbot can adopt a wide range of personalities. For demonstration
purposes we fix two different ones: the so-called “empathetic” personality with a high agreeableness
value and the so-called “apathetic” personality that shall appear more neutral and business-solving. [20]
presents a commonly used mapping from the OCEAN model space to the VAD space. Using this mapping,
we assign the following OCEAN and VAD values to our two personalities:

Openness Consciousness Extroversion Agreeableness Neuroticism Valence Arousal Dominance

empathetic 1 0.5 0.5 1 0 0.695 0.45 0.315
apathetic -0.5 1 0 0 -1 -0.19 0.495 0.045

Figure 2.3 Personality values

2.3 Mood-dependent responses
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Figure 2.4 Mood embedding

Our chatbot shall respond, dependent on its mood, in a friendly, neu-
tral or mean manner. Based on [21], we model mood as a function of
personality and detected user emotions: Our chatbot’s initial mood coin-
cides with the VAD value of the bot’s personality. After each user mes-
sage, either a basic emotion or "neutral" is detected. If a basic emotion
is assigned to the latest user message, the mood is updated to a convex
combination of the current mood and the detected emotion (Figure 4.5).
The weight depends on the personality’s neuroticism value:

moodnew = moodcurrent + 0.90 (neuroticism + 1) emotion.

For example, the apathetic bot moves slower in direction of a detected
basic emotion than the empathetic bot, as its neuroticism value charac-
terizes it to be more even-tempered. If the latest user message is clas-
sified as "neutral", the bot’s mood moves back toward the VAD value of
the personality using the same weights as above.
Finally, in order to determine whether the bot responds in a friendly, neutral or mean manner, the VAD
space is divided into corresponding three regions based on [22, 18]. The bot responds according to the
area that its current mood is located at. For example, the empathetic personality is located in the friendly
region and its mood moves through the VAD space rather quickly. The apathetic personality is located in
the neutral part and its mood barely leaves the neutral area.
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3 Natural Language Understanding

3.1 Datasets

Since datasets are indispensable, the selection of suitable datasets became the first step of our project.
We have conducted in-depth research in datasets for emotion detection by searching through the data plat-
form Kaggle, and reading papers about currently used ones, finally finding data from semantic evaluation
competitions. After collecting a sufficient number of datasets, we compared their contents, and selected
several candidates for the follow-up model training. In the training part, we analyze the behaviors of each
candidate, which helps to make the final decision. In the following, we give a brief comparison among col-
lected datasets, a detailed introduction on two representative ones in this field, and also a unified dataset
which is the combination of several famous ones.

3.1.1 Dataset comparison

An overview of datasets for emotion detection tasks is provided in Table 3.1. These datasets are different
in sizes, label numbers, topics, text types and annotation schemas. Therefore, it is necessary to identify
the relevance of each one to our task and select a suitable one comprehensively.

Following the annotation schema, the list of datasets can be split into two types, categorical [23] and nu-
merical. Categorical datasets use discrete categories as labels, which are determined by emotion models
such as Ekman’s basic emotions. The majority of categorical datasets contain the six basic emotions joy,
anger, sadness, surprise, fear and disgust. Some categorical ones subdivide emotions further and add
labels, such as love, guilt and optimism. These detailed emotions are more accurate, but also difficult for
the model to detect. Besides, some emotions among them are very ambiguous for humans. Therefore,
a dataset with a limited number of emotion labels is desired for training a chatbot. In contrast, numerical
datasets [24] use continuous numbers to represent the emotion of each data point. For example, VAD
values assign to each sentence a three-dimensional vector, which is described in 2. With the development
of various kinds of emotion modeling approaches, some datasets adopt both categorical labels and nu-
merical intensity values [25] for a better representation.

Granularity and topic are another two critical characteristics for the selection. The type of granularity
controls the language style in the dataset. Social media posts, such as tweets [26] and Facebook posts
[27], are shorter and colloquial. People tend to use fewer sentences and more hashtags to express their
emotions. On the contrary, descriptions, news headlines [28] and whole sentences [29] are more formal.
Instead of using words that can deliver emotions explicitly, they tend to implicitly include emotions in the
context. Therefore, without the entire context and its language style, the emotion contained in the latter
has to be learned from the context. Furthermore, conversations are another useful type for our task. They
consist of dialogues between two people, and each sentence in the conversation is labeled with an emo-
tion category or a VAD value. Since our goal is to converse with humans, dialogue data is most suitable
for us.

The topic provides supplementary descriptions of the dataset. For example, some collect sentences in
literature or fairytales [30], which possess fewer overlapping features with daily conversations, and thus
result in poor performance.
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To exploit deep learning models in emotion detection, the size of the dataset is also very important.
Small datasets cannot thoroughly train the model [31]. However, some large ones also face the problem
of imbalanced labels and insufficient data quality. According to our observation, the number of sentences
with label surprise, disgust and fear are often relatively small compared with other labels in most datasets.
This imbalance will lead to a poor prediction of sentences with these labels.

At last, we have to consider the number of labels for each sentence. Emotions in sentences may be in-
terpreted differently by different people, or in a different context. As a result, some datasets assign multiple
labels. Nevertheless, some labels in one sentence may be contradictory, and it is also difficult for models
to decide which labels to take in the prediction period. Therefore, the tradeoff between training complexity
and the number of labels should be considered.

In addition to training and validation datasets from the Internet, we also generate a small test set to
help us choose a suitable model. This small one contains 60 sentences in total for 6 emotions, which are
joy, anger, disgust, fear, sadness and surprise. Each emotion has 10 corresponding sentences written by
ourselves. In order to test the performance of our model in real conversations, 60 sentences are imitated
possible dialogue that might appear during chatting with a bartender.

Dataset Granularity Annotation Size Topic Label Source
Affective Text Headline E+V 1,250 news multi [28]

Blogs Sentence E+ne+me 5,025 blogs single [29]
CrowdFlower Tweet E+CF 40,000 general single [32]
DailyDialog Dialogue E 13,118 multiple single [33]

Electoral-Tweets Tweet P 4,058 elections single [26]
EmoBank Sentence V+A+D 10,548 multiple single [24]

EmoInt Tweet E-DS 7,097 general single [25]
Emotion-Stimulus Sentence E+shame 2,424 general single [23]

Gb-valence-arousal Facebook V+A 2,895 questionnaire multi [27]
Grounded-Emotions Tweet HS 2,585 weather single [31]

ISEAR Description E+SG 7,665 events single [34]
Tales Sentence E 15,302 fairytales single [35]
SSEC Tweet P 4,868 general multi [36]
TEC Tweet E±S 21,051 general single [37]

Empathetic Dialogue Dialogue P+SG+ED 24,850 general single [38]
EmoContext Dialogue EC 38,424 general single [39]

SemEval-2018 (task 1) Tweet P+M 7,902 general multi [40]

Table 3.1 Dataset Comparison. Ann. refers to the following annotation schemata: [E] Ekman: anger, disgust, fear,
joy, sadness, surprise, [P] Plutchik: anger, disgust, fear, joy, sadness, surprise, trust, anticipation, [CF] enthusiasm,
fun, hate, neutral, love, boredom, relief, empty, [DS] disgust, surprise, [JS] happy, sad, [V] valence, [A] arousal,
[D] dominance, [SG] shame, guilt, [±S] positive surprise, negative surprise, [ne] no emotion [me] mixed emotion
and Availability refers to the following, [M] love, optimism, pessimism, [EC] happy, sad, angry, others, [ED] excited,
proud, annoyed, grateful, lonely, terrified, impressed, hopeful, confident, furious, anxious, nostalgic, disappointed,
impressed, prepared, jealous, content, devastated, embarrassed, caring, sentimental, apprehensive, faithful

3.1.2 Dataset Selection

We tested multiple data collections to train our models on, and will provide a brief description of the three
most promising ones and the reason for our final selection in the following section.
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DailyDialog DailyDialog [33], the largest conversational dataset should be certainly considered. It con-
tains more than 13k daily dialogues, and each dialog consists of roughly 8 speaker turns in average.
The labels are annotated based on the six basic Ekman emotions. In every dialogue, each utterance is
annotated with a label accordingly. Since all dialogues are written by humans, they are less noisy com-
pared to datasets containing posts from social media. Moreover, the conversations involve a wide range
of scenarios, such as shopping in a store and school life.

However, as shown in Table 3.2, the distribution of labels is imbalanced. The majority of sentences are
labeled with joy, while only 74 and 353 sentences are respectively attributed to fear and disgust. As a con-
sequence, when we train the neural network with DailyDialog, the model cannot learn the characteristics
of fear and disgust sufficiently.

SemEval The SemEval-2018 dataset [40] collects English, Arabic, and Spanish tweets annotated by
multiple labels for a competition. It is the largest multi-label dataset and is able to provide us an insight
to multi-label situation. The dataset can be split into two parts. The tweets in the first part are labeled by
one emotion with its numerous intensity, or the valence value, while the tweets in the second part have
multiple labels from 11 given emotion categories. The 11 categories are the six basic Ekman emotions and
anticipation, love, optimism, pessimism, trust. Among them, joy, anger, disgust, sadness and optimism
account for a higher percentage with 39.3, 36.1, 36.6, 29.4 and 31.3 respectively, as shown in Table 3.3. In
contrast, surprise and trust are two of the lowest percentage emotions with only 5.2 and 5.0. Since some
emotions are rarely occurred in common conversations, such as anticipation and trust ; some are difficult to
detect without context or hashtags, such as optimism and pessimism, the dataset has to be preprocessed
for our task.

Unified dataset As described in the previous part, each dataset has its own advantage and flaws. To
improve the overall performance of a dataset, we utilize the unified dataset proposed by Bostan et al. [41].
It aggregates multiple comparably small datasets and merges various schemata into a unified dataset
collection. The final unified dataset contains more than 208k sentences from 12 datasets, namely Af-
fectiveText, Blogs, CrowdFlower, DailyDialogs, Electoral-Tweets, EmoInt, Emotion-Stimulus, Grounded-
Emotions, ISEAR, SSEC, Tales and TEC.

It consists of 11 labels, which are anger, anticipation, confusion, disgust, fear, joy, love, noemo, sadness,
surprise and trust. They are selected from 59 original labels, where similar labels are combined into new
labels. As we focus on six basic emotions, further preprocessing on the unified dataset is also conducted.
Specifically joy, love and anticipation are centralized as joy ; anticipation, confusion, trust and noemo are
merged into neutral.

Dataset joy anger sadness disgust fear surprise
DailyDialogs 74.5% 5.9% 6.6% 2.0% 0.4% 10.6%

Unified Dataset 36.7% 10.9% 19.1% 6.4% 17.0% 9.9%

Table 3.2 Percentage of samples labeled with a given emotion.

Dataset anger antic. disg. fear joy love optim. pessi. sadn. surp. trust
SemEval 36.1% 13.9% 36.6% 16.8% 39.3% 12.3% 31.3% 11.6% 29.4% 5.2% 5.0%

Table 3.3 Percentage of tweets labeled with a given emotion.
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3.2 Text emotion analysis

3.2.1 Evaluation measures

In single-label classification we can use simple metrics such as

(a) accuracy: 1
N

N∑
i=1

1[ŷ(i) = y(i)]

(b) precision: tp
tp+fp

(c) recall: tp
tp+fn

(d) F-score: 2× precision×recall
precision+recall

with ŷ(i) being the prediction for sample x(i) for i ∈ [N ], tp the number of true positives, fp the number
of false positives, tn the number of true negatives, and fn the number of false negatives.

However, in multi-class and multi-label classification, it is more difficult to measure misclassification. A
prediction that returns part of the actual labels should be evaluated as more correct than a prediction that
does not return any of the actual labels. Therefore, we generalize precision and recall (see Table 3.4):
Micro-averaging first sums up all true positives, true negatives, false positives, false negatives for each
class and then takes the average; it can be useful when the classes vary in size. Macro-averaging takes
the average of precision and recall on different classes; it shows how the system performs overall across
the classes. The F-score remains 2× precision×recall

precision+recall .

Precision Recall

Micro
∑

c∈C tp(c)∑
c∈C tp(c)+fp(c)

∑
c∈C tp(c)∑

c∈C tp(c)+fn(c)

Macro
∑

c∈C Precision(c)
|C|

∑
c∈C Recall(c)
|C|

Table 3.4 Evaluation measures for multi-class and multi-label classification with C being the set of classes

3.2.2 Multi-label classification

Multi-label classification assigns to each data sample a set of target labels, i.e. the categorization is not
mutually exclusive. As many classification algorithms do not naturally permit the use of more than two
classes, we present three approaches to reduce the problem of multi-label classification to multiple binary
classification problems: Binary Relevance, Classifier Chain, and Label Powerset.

In Binary Relevance, a single-label binary classifier is trained for each class. Each classifier predicts
either the membership or the non-membership of one class. The union of all classes that were predicted
is taken as the multi-label output. This approach is popular because it is easy to implement, however it
also ignores the possible correlations between class labels.
In Classifier Chain, a chain of binary classifiers C0,C1, ...,Cn is constructed, where a classifier Ci uses
the predictions of all the classifier Cj , where j < i. This way the method can take into account label
correlations. The total number of classifiers needed for this approach is equal to the number of classes,
but the training of the classifiers is more involved. In particular, the performance depends strongly on the
order of the labels.
The Label Powerset takes possible correlations between class labels into account. It is called the label-
powerset method because it considers each member of the power set of labels in the training set as a
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single label (connecting them by the logical AND function). In the worst-case, this methods needs to train
exponentially many classifiers (in the number of classes), i.e. easily leads to combinatorial explosion and
computational infeasibility.

3.2.3 Deep learning approaches

LSTM, BiGRU and GRU Models

The appearance and development of deep learning have revolutionized tasks in Natural Language Pro-
cessing, such as emotion detection. Recurrent Neural Network (RNN) is one of the most well-known
models in deep learning. It can take time series into account, and thus is able to process sentences and
documents, where words appear in chronological order. Besides, RNN is capable to preserve the contex-
tual information inside conversations with various lengths. In SemEval-2018 task 1 [40], SVM/SVR, LSTMs
and Bi-LSTMs become the most widely used algorithms to deal with emotion recognition and classification
problem. Therefore, we adopt RNN with LSTM [42], GRU [43] and Bi-GRU to our task, and compare their
results in the end.

RNNs consist of a sequence of neurons, which are called hidden states. Each state takes a word
from sentence sequentially as part of the input. With directed edges from previous units to current units,
each hidden state can also take advantage of previous outputs as part of the inputs, and thus keep the
information from previous words. In each time step t, hidden state i combines output from the previous
hidden state and input word from the input layer, feeds the concatenation of two parts into the network and
obtains output for the current unit i. This process is shown as follows:

a<t> = g1(Waaa
<t−1>+Waxxt+ba) (3.1)

y<t> = g2(Wya + by) (3.2)

where Waa and Wya denote weight matrices between two hidden states and from input to hidden state
respectively, Wya denotes the weight matrix from hidden state to output, ba and by are bias terms respec-
tively.

Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU) are variants of basic RNN, which
can avoid gradient vanishing by recording and delivering messages selectively. LSTM is composed of cell,
input gate, output gate and forget gate. They control which information from previous states and current
input should be memorized, delivered or forgotten. GRU holds similar idea as LSTM, with only reset gate
and update gate. Bidirectional LSTM and Bidirectional GRU process input from both forward and backward
directions. Therefore, the context of the whole sentence can be preserved and utilized in each hidden state.

In our task, we implement LSTM, GRU and Bi-GRU with similar architecture. The general architecture
consists of embedding layer, two RNN layers and a fully-connected layer. The only difference among
them occurs in RNN layers. LSTM, GRU and Bi-GRU utilizes two layers of LSTM, GRU and Bi-GRU
respectively, as shown in Figure. The output from the last hidden state in the second RNN layer is fed
into a fully-connected layer to generate the final result, which is a vector containing seven scores for seven
emotions. Each score represents the probability of corresponding emotion for the input sentence. If the
dataset is single-labeled, the emotion with the highest probability is selected. In such case, the sum of
scores should be 1. In addition, the model can also be exploited for multi-label dataset with modification in
the output. Given a manually set threshold, only labels with above-threshold scores will be chosen as the
emotions for the sentence.

BERT

Bidirectional Encoder Representations from Transformer (BERT) is a recent model developed by Google AI
Language that is widely used in NLP since it can achieve state-of-the-art results in many tasks [44]. BERT
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uses a transformer mechanism that is normally constituted of two separate modules: the encoder that
processes the text and the decoder that outputs a certain value related to the task in question. However,
since BERT’s purpose is to generate a language model, only the encoder part is present.

Moreover, BERT pre-trained models, trained on large corpus BooksCorpus (800M words) [45] and En-
glish Wikipedia (2,500M words), are available for transfer learning. To build the emotional component of the
chatbot, BERT-large-uncased (340M parameters) and BERT-base-uncased (110M parameters), two pre-
trained models available in the Hugging-Face transformers library [46], were used as sentence embedding
generators, each sentence is transformed into a 1024 one-dimensional vector by BERT-large-uncased and
a 768 one-dimensional vector by BERT-base-uncased.

In order to generate the sentence embeddings BERT’s first layers use WordPiece tokenization [47] to
split the data into tokens and create embedding for every tokens. The embedding for every token are 768
one-dimensional vector BERT-base-uncased and 1024 one-dimensional vector for BERT-large-uncased.
A [CLS] token is added in the beginning of the sentence and the [SEP] token at this end of it. The output
of the tokenization part is, thus, a matrix of dimension: number of tokens (including [CLS] and [SEP]) by
the token embedding vector’s dimension.

Then, the tokenization layer’s output goes through layers of encoder (transformer blocks), 12 for BERT-
base and 24 for BERT-large. Each encoder layer has a self-attention component, multi-head attention in
this case, and a feed-forward component. BERT-base uses 12 attention heads and BERT-large uses 16
attention heads in the mutli-head attention component of the encoder. The output of the encoder has the
same dimension as the output of the tokenization layer, number of tokens (including [CLS] and [SEP]) by
the token embedding vector’s dimension.

For sentence classification problems, the [CLS] token’s final embedding after running BERT is the sen-
tence’s embedding. That one-dimensional of size 1024 (BERT-large) or 768 (BERT-base) is then the input
vector of the next layer, a one-layer fully connected network.

When using Unifed Dataset with single label classification, the dimension of the vector after the FC layer
is 7. When using SemEval, multi-label classification, the vector’s dimension is reduced to 11. After com-
puting the sigmoid function (multi-label classification) or the softmax (single label classification) function
on that one-dimensional vector, we could then generate the predictions.

For the multi-label classification problem, since a sentence can be associated to 11 emotions, indepen-
dently, the prediction vector is thus an 11 dimensional vector where each entry is a probability between 0
and 1 of a certain emotion being present or not in the sentence. Note that the sum of the probabilities do
not sum to one; detecting each emotion can be view as an independent binary classification problem. This
reasoning justifies the use of the element-wise sigmoid functions on the FC layer’s 11 dimensional output
vector. Then, a simple average of the binary Cross-Entropy losses applied element-wise on the output
vector is used as the network’s loss function.

For the single label classification problem, a sentence is associated to one of the seven labels, the
basic six Ekman’s emotions and neutral, the prediction’s vector is then a 7-dimensional vector where each
entry corresponds to a probability between 0 and 1. It is important to note that this time that, since every
sentence is associated to only one emotion, the probabilities sum to 1. This explains the use of the softmax
function on the FC 7 dimensional output vector. Then, the multi-class cross entropy loss is applied on the
output vector to compute the classification’s error.

3.2.4 Classical learning-based approaches

As traditional machine learning methods can outperform deep learning methods, especially when there
is not a large amount of training data available, we aim at comparing the results from Section 3.2.3 for
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SemEval [40] to a traditional learning approach. The best performing traditional learning methods for emo-
tion detection with respect to accuracy and F-score have been support vector machines (SVM) and naive
bayes (NB) classifiers [6, 7, 8]. Thus, in the following we use SVM and NB for emotion classification and
compare the results to our deep learning approaches.

βe + weφ(x) = 0

Figure 3.1 SVM: two-class data points (black vs.
white), optimal hyperplane (orange line), support
vectors (encircled in orange)

SVM computes a hyperplane to separate the data,
which has been mapped into some possibly higher di-
mensional space: we assign a text embedding vector
x ∈ Rn obtained from FastText (see Section 3.2.3) to
the emotion class e if and only if βe + weφ(x) ≥ 0
for some coefficients βe ∈ R, we ∈ Rm, and a fea-
ture mapping φ : Rn → Rm. An appropriate choice
of the feature mapping may allow to handle non-linearly
separable data [48]. The hyperplane coefficients βe,we

are chosen as a solution to the primal optimization
problem of maximizing the distance to a closest data
point. Using complementary slackness, it can be seen
that only the data points which minimize the distance
to the optimal hyperplane, the so-called support vec-
tors, can contribute to the weight vector we. Thus,
the decision function βe + weφ(x) can be computed as
βe+

∑
i∈[N ] α

e
iy

(i)〈φ(x(i),φ(x)〉, where x(1), ...,x(N) are

the support vectors and y(i) : [N ] → {−1, 1} with y(i) = 1 if and only if x(i) is labeled with emotion e.
Even though the feature mapping φ(x) may be very expensive to calculate, the corresponding kernel
function K(x, z) := 〈φ(x),φ(z)〉 may be inexpensive. Moreover, as the number N of support vectors is
usually much smaller than the number of training data points, SVM is memory efficient and effective in
high-dimensional spaces.

NB classifiers use the strong assumption of independence between the features to derive from Bayes’
theorem that p(e |x) ∝ p(e)

∏
i∈[n] p(xi | e) for an emotion e and a text embedding vector x = (x1, ...,xn).

Then x is assigned to the emotion class that is most probable: ŷ := argmaxe p(e)
∏

i∈[n] p(xi | e). We esti-
mate the class probabilities from the training data. As using FastText for the text embedding yields n-gram
features (see Section 3.2.3), we assume the feature distributions to be multinomial [49]. The multinomial
NB becomes linear when expressed in log-space [50]. Finally, as it requires only linearly many parameters
in the number of variables, it is also highly scalable.

The implementation of single-label binary classifications using SVM and multinomial NB classifier is re-
alized via SVC and MultinomialMB from scikit-learn library. Parameters are tuned using an exhaustive grid
search: For SVM, we choose the regularization parameter C ∈ {0.01, 0.1, 1, 10, 100} and the kernel coef-
ficient γ ∈ {auto, scale}, where auto = 1

#features and scale = 1
#features×Var(x) . The regularization parameter

is used for a squared l2-penalty such that low values make the decision surface smooth. Large kernel
coefficients determine the influence of each single training example to be strong. For the multinomial NB
classifier, we use additive Laplace smoothing parameters α ∈ {1e-10, 0.1, 1, 5, 10, 100}, where 0 repre-
sents no smoothing. Priors are chosen from uniform and learned. Results for the tuned parameters are
presented in Table 3.5. Moreover, results using SVM and multinomial NB in Binary Relevance, Classifier
Chain, and Label Powerset are shown in Table 3.6.

Even though good accuracies are achieved compared to state-of-the art deep learning results [6] as
well as to our own results using deep learning (Section 3.2.5), precision and recall in the emotion classes
"1" show that both SVM and multinomial NB perform poorly in assigning emotion to a SemEval text sam-
ple. On the one hand, as the grouping of FastText with respect to semantically similarity might disturb the
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emotion classification, another word embedding may achieve better results. On the other hand, the large
amount of total available data might allow deep learning to outperform the traditional approaches.

Support Vector Machine Naive Bayes

Accuracy Precision Recall F-score Accuracy Precision Recall F-score
Joy 0.51 0 0.53 0.77 0.63 0.53 0 0.54 0.78 0.64

1 0.43 0.20 0.27 1 0.48 0.23 0.31
C = 100, γ = scale α : 0.0001, uniform priors

Surprise 0.93 0 0.96 0.97 0.97 0.96 0 0.96 1.00 0.98
1 0.04 0.03 0.03 1 0.00 0.00 0.00

C = 100, γ = auto α : 1e-10, learned class priors

Neutral 0.89 0 0.96 0.93 0.94 0.96 0 0.96 1.00 0.98
1 0.09 0.15 0.11 1 0.00 0.00 0.00

C = 100, γ = scale α : 0.0001, learned class priors

Sadness 0.66 0 0.70 0.89 0.78 0.48 0 0.72 0.41 0.52
1 0.31 0.11 0.17 1 0.31 0.63 0.42

C = 100, γ = scale α : 1e-10, uniform priors

Anger 0.60 0 0.65 0.84 0.73 0.52 0 0.66 0.54 0.59
1 0.36 0.16 0.22 1 0.37 0.49 0.42

C = 1, γ = auto α : 1e-10, uniform priors

Fear 0.79 0 0.87 0.89 0.88 0.86 0 0.86 1.00 0.93
1 0.21 0.19 0.20 1 0.00 0.00 0.00

C = 100, γ = scale α : 1e-10, learned class priors

Disgust 0.61 0 0.65 0.88 0.75 0.52 0 0.65 0.57 0.60
1 0.40 0.14 0.20 1 0.37 0.45 0.41

C = 1, γ = scale α : 1e-10, uniform priors

Table 3.5 Results and tuned parameters of a single-label binary classification on the SemEval dataset using SVM
and multinomial NB classifier. We use SVC and MultinomialNB from scikit-learn library. "1" describes the class
having the respective emotion label, "0" the class which does not have the respective emotion label. Running times
for training the classifiers with fixed parameters are negligible.

Micro-scores Macro-scores Hamming
loss

Subset
accuracyPrecision Recall F-score Jaccard Precision Recall F-score Jaccard

SVM 0.32 0.46 0.38 0.23 0.28 0.37 0.27 0.17 0.37 0.09
NB 0.46 0.27 0.34 0.21 0.1 0.15 0.1 0.1 0.25 0.32

Table 3.6 Evaluation of Binary Relevance, Classifier Chain, and Label Powerset using SVM and multinomial NB
classifier on the SemEval dataset. Only the results for the respectively best method are presented, i.e. Classifier
Chain for SVM and Label Powerset for NB.

3.2.5 Deep learning models comparison

Various models were used to train the emotional component of the chatbot, we compare the training results
in Table 3.7. The models were first trained on the SemEval dataset, a multi-labels dataset where every
sentence can be associated with more than one emotion (11 labels per sentence). A threshold of 0.8 (and
also 0.5 for BERT) determines if a certain emotion is predicted for a given sentence, the probability asso-
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Figure 3.2 Loss in training period of RNN with LSTM

ciated with it in the final output vector has to exceed the threshold. Then, the models were also trained on
the Unified Dataset, a single-label dataset, where one sentence is associated with only one emotion. This
time, the probabilities on the final output vector are summing to one; the model’s prediction corresponds
to the emotion with the highest probability.

Three metrics, namely precision, recall, and F-score are computed for each six basic emotion labels.
The macro-average of those metrics is also computed for each model. All the final results are shown in Ta-
ble 3.7. We used the validation loss and performed early stopping to prevent the over-fitting phenomenon.
For example, Figure 3.3 shows the change of training loss and validation loss for RNN with LSTM model
on Unified Dataset. The curve indicates that the model after 16 epochs is preferred because the validation
loss starts to increase after that point.

We see clearly that BERT models, BERT-large-uncased with a threshold of 0.8 and 0.5, achieve better
results on SemEval, reaching better macro-averaged metrics. This result indicates that using a more com-
plex model is beneficial for our task since it can capture more complex information in the sentences that
may not be captured by a more simple structure. To see the threshold’s effect on the results, we compared
the performance of BERT, changing only the threshold from 0.8 to 0.5. The BERT used model is identical
in both cases: the same weights that we obtained after training the model are used for BERT(0.8) and
BERT(0.5). BERT(0.8) achieved high precision for the different labels, (over than 0.85 for 5 of the 6 basic
emotions except for surprise for which we obtained 0.5. BERT(0.5) has lower precision for the labels,
however, it reaches higher recall for emotions and the highest macro-averaged F-score, making it the best
model. The macro-averaged score is preferred to compare the models since we value both precision and
recall.

Joy seems to be the label for which we obtained better F-scores as it is the emotion that is more present
in the dataset (39,2% of the tweets are labeled with that emotion). On the opposite, the F-scores are the
lowest for surprise and it could be explained partially by the SemEval class distribution as only 5.2% of the
tweets contain surprise.

After training the models on Unified dataset, we achieved better results for the three RNN models. It
shows the advantages of a larger and a more balanced dataset. Due to the absence of powerful computers
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available, we could not train the BERT model on the Unified Dataset which has significantly more data
sentences. However, BERT trained on the SemEval still leads to the best results among all models, since
BERT has a powerful structure to capture a more complex data structure.

Model(Thres.)
Metrics Anger Disgust Fear Joy Sadness Surprise

Macro
Dataset Average

RNN-LSTM(0.8)
Precision 0.53 0.50 0.52 0.71 0.70 0.40 0.560

Recall 0.47 0.55 0.45 0.60 0.57 0.27 0.485
SemEval F-score 0.498 0.524 0.482 0.650 0.628 0.323 0.520

RNN-BiGRU(0.8)
Precision 0.50 0.46 0.48 0.73 0.55 0.42 0.523

Recall 0.34 0.34 0.35 0.66 0.56 0.32 0.428
SemEval F-score 0.405 0.391 0.405 0.693 0.555 0.363 0.469

RNN-GRU(0.8)
Precision 0.34 0.26 0.38 0.64 0.54 0.37 0.422

Recall 0.29 0.23 0.37 0.41 0.65 0.34 0.385
SemEval F-score 0.313 0.244 0.375 0.523 0.590 0.354 0.423

BERT(0.8)
Precision 0.889 0.858 0.897 0.943 0.925 0.5 0.83

Recall 0.635 0.571 0.579 0.703 0.419 0.393 0.54
SemEval F-score 0.741 0.686 0.704 0.805 0.577 0.440 0.65

BERT(0.5)
Precision 0,815 0.782 0.754 0.883 0.763 0.508 0.74

Recall 0.781 0.799 0.736 0.795 0.608 0.411 0.69
SemEval F-score 0.797 0.791 0.745 0.837 0.676 0.454 0.71

RNN-LSTM
Precision 0.701 0.700 0.749 0.910 0.854 0.533 0.741

Recall 0.476 0.472 0.449 0.532 0.601 0.471 0.500
Unified F-score 0.567 0.564 0.546 0.671 0.706 0.500 0.597

RNN-BiGRU
Precision 0.700 0.691 0.692 0.859 0.822 0.492 0.709

Recall 0.432 0.402 0.452 0.5 0.528 0.453 0.461
Unified F-score 0.534 0.508 0.547 0.632 0.643 0.472 0.558

RNN-GRU
Precision 0.690 0.703 0.730 0.906 0.845 0.542 0.736

Recall 0.380 0.374 0.423 0.441 0.477 0.403 0.416
Unified F-score 0.490 0.488 0.536 0.593 0.610 0.462 0.532

Table 3.7 Results for models with SemEval and Unified Dataset.

Dataset Model (Thres.) Accuracy

SemEval

LSTM (0.8) 66.87%
Bi-GRU (0.8) 64.02%
GRU (0.8) 59.28%
BERT (0.8) 86.84%
BERT (0.5) 88.24%

Unified
LSTM 85.89%
Bi-GRU 81.93%
GRU 80.67%

Table 3.8 Accuracy comparison for models with SemEval and Unified Dataset

In our task, we should consider both performance and computational time equally. Although RNN mod-
els are not as accurate compared with BERT models, their training time is much lower and the response
time during the actual conversation is significantly lower. Therefore, we consider choosing the RNN-LSTM
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Figure 3.3 Loss in training period of BERT-large model trained on SemEval dataset

for our model, which has higher precision and F-score, and also accuracy among the three models (Table
3.8). In Section 3.3.3, we also test our models with a 60-sentences dataset, and the result also supports
our point of view. In the future, it is possible to exploit lightweight BERT, such as ALBERT, or preload BERT
to decrease the time cost and preserve the performance at the same time.

For reproducibility, we would like to introduce the hyperparameters for our models: For three RNN
models trained on SemEval and Unified Dataset, the embedding dimension is 100, the learning rate is set
as 5e-4, the hidden state’s dimensions in the RNN layers are 64 and 32 respectively, and the dropout is
set as 0.5 and 0.4 respectively. For BERT-large, fine-tuned on SemEval, we used a learning rate of 2e-05,
a batch-size of 64, weight-decay 3e-06 and we trained the model for 10 epochs. We chose the model’s
weights after 3 epochs since after then, the validation loss increases.

3.3 Hierarchical emotion detection

As seen in the previous section, the pre-trained models enable us to predict the emotion of the user based
on a text analysis. To have a more robust emotion estimation, several preprocessing steps are performed
on the user message. In addition, the emotion expressed using emojis and emoticons is merged with the
text emotion to predict an overall emotion.

3.3.1 Emoji and Emoticon

In today’s online communication, emojis and emoticons are becoming one of the main modern languages
that allow fast, diverse and above all universal communication. An emoji (exp: ) is "a small digital
image or icon used to express an idea or emotion. The word emoji essentially means “picture-character”
(from Japanese e - picture, and moji - letter, character)" [51]. Whereas an emoticon ( :) :-] ) is "a rep-
resentation of a human facial expression using only keyboard characters such as letters, numbers, and
punctuation marks" [51]. Emojis and Emoticons facilitate human emotional expressions by representing
their facial expression (smileys, tears, etc.) using some representations and therefore provide valuable
information, particularly in sentiment and emotion analysis [52]. Another potential in emojis is that they are
language-independent indicators of emotions, which can help to avoid errors of language processing [53].

To extract emojis and emoticons from the text, a database of some of the most frequent emojis and
emoticons as well as the emotions they express is created and maps emojis / emoticons to the VAD space
as well as the six basic Ekman emotions. The most expressed emotion is recorded as an emoji / emoticon
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emotion and will then be combined with the emotion of the text. In the case that no emoji or emoticon is
given in the user message, the neutral emotion will be selected.

3.3.2 Sentiment Analysis

Sentiment Analysis is a text analysis method that focuses on detecting the sentimental polarity (positive,
negative, or neutral) within a text, based on the opinions and emotions expressed in the text [54]. In the in-
vestigated hierarchical emotion detection model, the sentiment analysis component can be considered as
a classification process to detect the neutral user message frequently used in conversations with chatbots
(e.g. greetings, order confirmation, etc.). In fact, once a user message has neutral polarity, the neutral
emotion will be labeled without using the pre-trained text prediction models. A negative or positive polarity
indicates that the user message has an emotion and therefore a prediction using the emotion extraction
models is necessary. By using the sentiment component, the complexity and the computational effort of
the algorithm is reduced, and the reliability of the neutral emotion is increased.

3.3.3 Key-word approach

Recognizing emotions in text is an important task of natural language processing (NLP). This task is
particularly challenging when the emotion is hidden implicitly in the text, and therefore, its solution requires
an understanding of the context [6]. Nevertheless, not all thoughts and emotions require understanding
of the complete sentence or its context. Certain explicit emotions would be directly recognized if certain
words are present in the user message.

Keyword-based approaches for explicit emotion recognition have been investigated [55]. For instance,
the sentence “I am happy with your service” explicitly expresses joy and includes the emotion keyword
“happy”. A keyword-based approach would be able to recognize emotion successfully. However, the
presence of an emotion keyword does not always correspond to the emotion expressed. For example, the
phrases "I am not happy at all" include the emotion keyword “happy" but do not express that emotion.

To solve this problem, a negation check is carried out after each emotion keyword detection in which we
check if a negation word ("no", "not", "don’t", etc.) is present in the sentence and linked to the keyword. In
case of negation, the opposite emotion will be predicted. For example in the sentence "The drink is not so
good!" the keyword "good" will be detected which belongs to the emotion joy, but after the negation check
(the presence of "no"), the emotion sadness will be predicted. To avoid the problem of detecting a negation
word not related to the emotion expressed by the user, we only considered negation words located at most
3 words before the explicit emotional keywords.

To validate the keyword approach, we compared the results of the emotion extraction models trained
on the SemEval dataset with and without the keyword approach and using a threshold of 0.8. Table 3.9
shows the percentages of correctly detected emotions of 60 emotional sentences (10 sentences for each
of the 6 basic emotions) and proves that the keyword approach improves the prediction of investigated
deep learning models.

Model GRU BGRU LSTM BERT
Without key-word 12.07% 13.79% 36.21% 58.62%

With key-word 62.79% 62.07% 65.52% 70.69%

Table 3.9 Comparison of the accuracy of models with and without the keyword approach

3.3.4 Fusion of text and Emoji-Emoticon detections

After extracting the emotions from the text, emojis and the emoticons, a merging process is performed to
predict the global emotion of the user. A map containing all possible combinations of categorical emotions
allows the fusion and enables to predict complex emotions such as sarcasm. For example, for a user’s
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message "Please bring me a cola :) to the pool." the emotion of the text would be neutral, and the emoticon
emotion would be joy. By combining the two extracted emotions, the global emotion joy will be predicted.
Sarcasm will be predicted for example in case of a positive text emotion ( joy or surprise) combined with
an emoji or an emoticon expressing anger or disgust. The complete combination mapping is presented
in the appendix. Moreover, in case of an unclear emotion’s combination such as contradiction of joy and
sadness, the fused emotion is labeled as confusion. Once a confusion is detected, the bot should ask the
user to repeat his request.

Figure 3.4 summarizes the complete hierarchical emotion extraction model and how the global user
emotion is predicted. This fused global emotion is then used as a main entity in the Rasa-core to create
appropriate stories that allow the bot to learn to react to the different emotions of the users.

User-message

Pos / Neg

Key-word detected
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Neutral
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Figure 3.4 Hierarchical emotion detection model
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4 Chatbot Integration

As explained in the Introduction, we implemented our project as a Rasa Chatbot coded in Python3 that can
be chatted with locally through the terminal, or online through for example the integrated website interface
RasaX or Telegram.

The Rasa framework can be split into two parts, the NLU, a processing tool for intent classification,
response retrieval and entity extraction and the dialogue engine Rasa Core. For a proof of concept the
implemented bot works in a "Bartender Domain". We were provided with a fitting NLU data set including
names of drinks, places and typical customer intents (i.e. to order drinks).

4.1 Rasa NLU

To understand how we integrated some of the more complex parts, it is helpful to start with the basic
concepts of Rasa NLU. By default, a NLU training data file is required, that contains example sentences
with the message intent and entities [56]. In our case for example the intent could be to order drinks, and
mentioned entities are a temperature and a drink name such as Cosmopolitan. During a conversation
entities can be saved in so called slots, and their current value is tracked and can be retrieved by the
bot [57]. All possible intents, entities and slot-mappings have to be listed in the domain file, as well as
the custom bot actions which will be explained in the Rasa Core Section 4.2, as well as a more detailed
overview of the component interactions in Figure 4.4.

4.1.1 Emotion component

As mentioned in Section 3.3, each message is used to predict the user’s emotion and then generate an
appropriate response. The complete hierarchical emotion detection is implemented in Rasa as a custom
NLU Component. A custom component is a message processing unit in a pipeline used to perform a
specific task which NLU does not offer (for example, sentiment analysis, emotion analysis, etc.). Compo-
nents are collected sequentially in a pipeline. Each component is called one after another. This holds for
initialization, training, persisting, and loading the components. During each of these steps, components
can pass information to other components [58].

The emotion component reads first a configuration file where the text emotion analysis model (LSTM,
BiGRU, BERT, etc.) is specified. Second, the emoji and emoticon as well as the key words databases are
loaded as data frames. Finally, the global emotion is predicted following the hierarchical model (Figure 3.4).
The predicted global emotion is then returned as an entity "emotion" and could be tracked in Rasa-actions
as a slot.

4.1.2 Pipeline optimization

Chatbots technology relies greatly on the capacity of correctly identifying through the text the intents, user’s
intentions, and the entities, words that express valuable information.

This intent/entity identification is performed after every user’s message during the conversation. In-
deed, after receiving the user’s message, the bot tries to correctly classify that message into predefined
categories of intents while simultaneously extracting entities.

In our case, there are 15 different intents: Greet, goodbye, bot-challenge, confirm-negative, confirm-
positive, cancel-order, how-are-you, ask-for-options, order-drinks, recommend, thanks, inform, feedback,
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mood-great, mood-unhappy. Some of them are specific to our domain (order-drinks, ask-for-options, can-
cel order, etc.), while others are more general and can be present in a wide range of conversations. (greet,
goodbye, thanks, etc.)

In addition to the intents, there are six possible types of entities: AMOUNT, LOCATION, SIZE, DRINK,
TEMPERATURE, personality, emotion, mood. The capitalized ones are related to key elements of the
user’s order and the others to the bot’s state: its personality, its mood, and the emotion it has detected.

The relevance of the bot’s responses relies greatly on those two classification problems: intent and entity
classification. Rasa has built-in tools to perform those tasks. The pipeline defining the text pre-processing
steps and the intent/entity classifier has to be indicated in a configuration file.

We compared three different pipelines frequently used by Rasa users and compared their results on the
bartender dataset (nlu dataset file). All three use Dual Intent and Entity Transformer Classifier (DIETClas-
sifier) for intent/entity classification, but use different tokenizer and featurizer during the pre-processing
steps. Figure 4.1 shows the three different pipelines.

(a) config (b) config-2 (c) config-3

Figure 4.1 pipeline configuration files

We used DIETClassifier since it showed state-of-the-art results for entity and intent classification in a
conversational setup [59]. We trained it on our given bartender dataset. It can be used with trained (config)
or pre-trained (config2 and config3) tokenizers and featurizers.

The first configuration uses the WhiteSpaceTokenizer pre-defined in Rasa that creates tokens by simply
detecting whitespaces between words: the sequence of characters between two spaces is defined as the
token. To create the token embeddings, that pipeline uses two different featurizers that are trained from
scratch with the bartender nlu dataset: RegexFeaturizer, LexicalSyntacticFeaturizer, and CountVectorFea-
turizer.

The second pipeline uses ConveRT (Conversational Representations from Transformers) [60], a pre-
trained language model on Reddit data that is trained for response selection tasks. The word pre-trained
representations from the encoder are widely used in conversational settings as word embeddings. Indeed,
it is currently the model that Rasa recommends to its users building a chatbot in English.

The third pipeline is using BERT-base-uncased pre-trained model to generate word embeddings. BERT,
which we introduced earlier, is used in multiple Natural Language tasks as it offers often better results
[45]. However, its number of parameters and the fact that it requires high computational capacities during
training and test time could outweigh its potential in terms of performance.

We trained the three pipelines with our bartender dataset where intents and entities are defined. Each
pipeline was trained 5 times, each time by excluding a certain number of the training data (lines in the
NLU training data file): 0%, 25%, 50%, 70%, and 90% respectively. The purpose is to determine how the
pipeline performs on our domain’s text distribution.
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The label-weighted average F-score (F-score) for intents and entities on the test set for each exclu-
sion percentage was then recorded after training. The results are presented in the following graphs. The
weighted F-scores for intents and entities are computed on the test set. The weighted F-score over intents
and entities is a new metric that we used in order to compare the three different pipelines.

For intents it is defined as: F -scoreweighted =
∑

i∈intentswi ∗ F − scorei, where wi corresponds to the
number of occurrences for intent i over the total number of intents and F − scorei the F-score on intent i.
For entities it is defined as: F -scoreweighted =

∑
e∈entitieswe ∗ F − scoree. where we corresponds to the

number of occurrences for entity e over the total number of entity and F − scoree the F-score on entity e.
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Figure 4.2 Pipeline comparison for entity and intent classification

We clearly see that config-2 performs better for intent classification while config-3 performs better for
entity classification. Since every user’s message is associated to one intent by the bot in order to select
the correct response and that some user’s messages do not contain any entity (greeting messages, pos-
itive/negative confirmation, goodbye, etc.), the intent classification remains a more important task and a

19



pipeline achieving higher performance should be prioritized. Moreover, config-3, involving BERT requires
more computational power and, thus, requires powerful machines equipped with GPUs in order to perform
the task in a reasonable time. Thus, config-2, a lighter pipeline, is preferred.

4.2 Rasa Core

The Core is the Dialogue Engine of Rasa that operates based on the defined stories, domain, actions, slots
and forms [61]. As already mentioned, the domainfile contains all possible intents, entities, responses,
actions and entity slots. An overview is given in Figure 4.4, where the interactions between the components
are shown. The NLU file, how the user message gets processed and intents and entities are detected
has been talked about before and is not directly a Rasa Core part. The stories on the other hand, are
conversational training data used to train the Rasa dialogue management models [62].

Figure 4.3 Rasa Stories Example

A story is a represents a conversation be-
tween a user and the AI assistant and is writ-
ten in a specific format where user messages
are stylized with only their intents (and en-
tities where necessary) while the responses
of the assistant are expressed as the corre-
sponding action names. For many conversa-
tional situations there are examples in the file,
which suggest the bot which actions to exe-
cute, depending on entities and intents that
are present.

Figure 4.3 is an example of a story with
the name happy path empathetic, where user
message intents are marked by a star "*" and
bot responses by a dash "-". Marked in red are the entity slots, in this case the bot personality is the
decisive factor. In a conversation scenario where the user expresses that he is in a great mood. Here only
the empathetic bot will respond with utter_happy, the apathetic with something different defined in a similar
story. The bot can also be calibration further after setting the story and NLU data, with the option to use
the interactive learning interface Rasa X. Here the user can directly correct false classifications, actions
and save successful conversations.

Figure 4.4 Rasa Component Interaction
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4.2.1 Custom actions

As explained in the section before, the Rasa Core trains on the stories file, containing stylized conversation
examples, but it is not designated to change the response style depending on user or bot emotions directly.
For this special task, as well as for some service specific actions, self made custom actions have to be
implemented and included in the stories. These custom actions can also write and change entity slots as
bot mood for example, which will be explained in detail in the following chapter. A also very helpful tool for
customer service conversations is the integrated class FormAction, that can be used to make sure a list of
entities was given before moving on.

4.2.2 Personalities and moods

The bot at this stage is equipped with an intent/entity classifier component, an emotional component that
can detect the user’s emotions, and a response selector trained with the rasa stories file (conversations
skeletons) to respond correctly to the user’s requests. To mimic human interactions, the bot should not
remain stoic and should also express certain emotionality and have different moods.

The present bot is able to achieve that goal without mirroring the user’s emotions. Indeed, the bot created
is not simply responding and expressing the last emotion detected in the user’s message. A bot doing so
would constantly change its style of responses and disrupt the natural flow of the conversation. However,
in order to differentiate that bot from a generic bot, it has to remain sensitive to the user’s emotions and
adapt from time to time its style of responses. Thus, the user expressing anger for the first time should not
trigger a change of style of response. However, the user expressing sadness repeatedly should definitively
lead to a certain change. The following formula presented in Section 2.3 controls the update of the bot’s
mood:

moodnew = moodcurrent + 0.90 (neuroticism + 1) emotion.

We have found through empirical testing that a value of 0.9 leads to better results. The bot’s mood is
reactive to customers’ emotions, without being too volatile. Indeed, the bot’s mood changes approximately
after 2 or 3 repeated emotions expressed by the user.

As explained in Section 2.2, in order to be used in different business contexts, the present bot possesses
two different personalities: empathetic and apathetic (or business). The user, at the beginning of the
conversation, can define the personality of the bot by simply typing I would like to talk to an empathetic
bot, for example.

The selected personality will then influence the emotional reactivity of the bot: the empathetic is sensitive
to the user’s emotions, while the apathetic bot remains always in the neutral mood. As defined in Section
2.3, the bot has three different moods: friendly, neutral, and mean. The response style is completely
defined by the bot’s mood. However, it is constantly changing in the course of the conversation. When in a
friendly mood, the bot uses a friendly tone (emoticons and positively connoted words). The neutral mood
imposes an informative and sober tone. Finally, when in the mean mood, the bot is irritated by the user
and the responses are short and contain negatively connoted words.

For every type of response, there are three different choices of utterances, one for each mood. To send
the menu, for example, the chatbot can select depending on its mood from the three following answers:

(a) Friendly: Here’s a list of our drinks . Please tell me when you’re done or need some advice :) .

(b) Neutral: Here’s a list of our drinks. Please tell me when you’re done or need some advice.

(c) Mean: Here’s a list of our drinks. Tell me what you want.

The mood can be associated with a point in the VAD space ([−1, 1]n) introduced in section 2 and is
updated after every user’s message. The categorical representation is also updated with respect to the
updated VAD representation of the mood.
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Dominance refers to the control over emotion that one can have, the negative values expressing a
greater control. Thus, if the mood’s dominance value is negative, the mood is automatically categorized as
neutral. Indeed, the bot can have control over its emotions and then chooses to express neutral responses.
However, when the mood’s dominance is positive, the bot loses that sense of control and can be friendly
or mean. For that case, we defined three different regions in the Valence-Arousal space.

Furthermore, in order to redirect unsatisfied customers to real customer service agents, we introduced
a function counting the number of times a customer repeatedly expresses negative emotions (anger, sad-
ness, or disgust). If the negative emotions sequence’s length exceeds 5, the user is automatically redi-
rected to a real bartender.

V

A

neutral

mean friendly

(a) dominance > 0

V

A

neutral

(b) dominance ≤ 0

Figure 4.5 Mood’s categorical representation according to the mood’s VAD representation for the empathetic bot’s
personality. If the mood dominance value is > 0, then H≥

((1,1),β) and H≥
((−1,1),β) define the zones, where β = 0.75.

Otherwise, the mood is equal to neutral.
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4.3 Sample conversations

Figure 4.6 Telegram Sample Conversation
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Figure 4.7 Rasa X Sample Conversation
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5 Conclusion

The project goal was to develop an affective personal assistant with the ability to have its own sentiments
and emotional reactions. We achieved this goal and designed an emotional bot using the Rasa framework.
Using a hierarchical emotion extraction model, the bot successfully detects the six basic user emotions,
forms its own mood and reacts to the detected emotions based on its personality.

The accuracies of our emotion detection can compete with human accuracies, which can never attain
100% [9]. Given the fact that every individual perceives emotion differently, it is not possible to classify
all emotions correctly with only text input, without knowing the full background of the texting person. In
this project, we relied on chosen scientific psychological concepts for modeling emotions and we designed
the emotion extraction model such that it can be easily adapted to different psychological approaches and
different platforms.

The emotional chatbot has been tested in different conversations where users express different emotion
patterns and has shown satisfiable results with both a friendly and a business oriented personality. Other
personalities could be easily added in the future, as well as a more excessive action, NLU or stories file.
With changes to these files the bot can also adapt to other domains. Other potential extensions include
connecting the system to a speech and image recognition models, which could increase the reliability of
emotion recognition, but would come with a great deal of implementational work. Aside from that, ex-
panding the emotional capabilities of the chatbot would be an interesting extension, such as giving the bot
morals, his own values or further character traits.

Working on the Rasa platform and implementing an emotional chatbot was a very enriching experience
for all of us and we would like to thank Horváth & Partners and the mentors for their support as well as for
offering this group project.
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A Supplementary material

Text emotion Emoji emotion Global emotion
joy joy joy
joy surprise joy
joy disgust sarcasm
joy sadness confusion
joy fear confusion
joy anger sarcasm
joy neutral joy

surprise joy joy
surprise surprise surprise
surprise disgust disgust
surprise sadness sadness
surprise fear fear
surprise anger anger
surprise neutral surprise
sadness joy sarcasm
sadness surprise sadness
sadness disgust disgust
sadness sadness sadness
sadness fear sadness
sadness anger anger
sadness neutral sadness
disgust joy sarcasm
disgust surprise disgust
disgust disgust disgust
disgust sadness disgust

Text emotion Emoji emotion Global emotion
disgust fear disgust
disgust anger anger
disgust neutral disgust

fear joy confusion
fear surprise joy
fear disgust disgust
fear sadness sadness
fear fear fear
fear anger anger
fear neutral fear

anger joy sarcasm
anger surprise anger
anger disgust anger
anger sadness anger
anger fear anger
anger anger anger
anger neutral anger
neutral joy joy
neutral surprise surprise
neutral disgust disgust
neutral sadness sadness
neutral fear fear
neutral anger anger
neutral neutral neutral

Table A.1 Text and Emoji emotions combination mapping
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