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Abstract

Artificial intelligence methods are revolutionizing many areas of business by providing
better insights from data and more accurate predictions than ever. Especially in the
field of predictive maintenance this is very useful as it presents the opportunity to foresee
possible machine failures and minimize downtimes. But since many of those methods in
AT depict highly nonlinear correlations and function as “black box” models, where the
influence of the input features on the output is not transparent, the interpretability of
those methods is very low. This is a big issue, especially for critical business applications,
where the trust in the AI model has to be very high for it to be a useful tool in practice.

This challenge has given rise to the relatively recent field of eXplainable Artificial In-
telligence (XAI), which describes multiple methods that can be used to improve the
explainability of black box models. Our goal was to survey different XAI methodologies
and compare their performance in the context of business applications.

After we implemented two different black box models for a predictive maintenance task,
we transferred our methodology to the newly available client dataset. We achieved high
accuracy in predicting events leading to downtimes of a compressor based on temperature
and pressure data taken from the machine, using a deliberately opaque black box model of
a neural network. Building upon this neural-network model we implemented two different
XATI methods, namely LIME and SHAP, compared their outputs and verified our results
with them. We succeeded at delivering a proof of concept model for the client, which
can be practically applied to understand the factors leading up to different events and
minimizing downtimes.
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1 INTRODUCTION 1

1 Introduction

1.1 Problem Definition and Goals of the Project

With the enormous advancements in the area of computational power in recent years,
more and more so-called “black box” models, e.g. Deep Neural Networks, are used for
data analysis. To increase trust in these black box models and to be able to efficiently
use them in business applications, explainable approaches are needed.

The goal of this project is to deliver a black box model and compare humanly interpretable
representations of this model. To this end, a model dataset from the area of Predictive
Maintenance is used and analyzed with a black box model to test the efficiency and ex-
plainability of different explainable Al models. Two different datasets were analyzed, one
publicly available, the other one from a client of our project partner. The feasibility of
our model together with the explainable AT methods will be used as a proof for potential
clients in predictive maintenance domains.

In the following two sections, an introduction to Explainable Artificial Intelligence (XAI)
is given as well as a short description of the field of Predictive Maintenance. Chapter
contains the analysis and different models for a publicly available battery dataset for
Predictive Maintenance. The description, data handling and modeling of a real-world
dataset available in the second half of this project can be found in chapter |3l Explainable
AT methods for this dataset are described and compared in [}

1.2 Explainable Artificial Intelligence (XAI)

There are many different machine learning algorithms which are used for Data Analysis.
Every algorithm needs to be chosen carefully according to the available dataset as well
as the target variable. The degree of interpretability of the model itself might also be a
decision factor. Several models are potentially interpretable by design like decision trees,
decision rules and linear regression. The opposite of that are black box models which
cannot be understood by looking at their parameters or structure (e.g. a neural network),
see [10].

Interpretability describes the degree to which a human can comprehend the decisions
or output of a model [3]. But why is an interpretable model necessary? First of all, deep
neural networks have proven to perform well learning highly nonlinear dependencies of
possibly high-dimensional data [6]. Due to their better performance than interpretable
methods in a lot of cases, black box models are needed as soon as accuracy of a prediction
is crucial. In autonomous cars for example failure is not an option since it may lead to
an accident. Understanding why the model predicted a certain output can help to learn
more about the problem, the data and the reason why a model might fail [10]. This is
also useful to know in order to leverage good outcomes. In some cases, the prediction
by the machine learning model might not be the complete goal of the task and further
information is needed to proceed.
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A lot of tasks in business also require controlling mechanisms which cannot be provided
by black box models. This as well as detecting biases in the model can be employed by
interpretability. To increase the social acceptance and trust in an algorithm in a company,
employees need to be provided with an explanation for its output.

As of the 8 April 2019, there exists a Ethics Guidelines for Trustworthy Artificial In-
telligence presented by the High-Level Expert Group on Al, which was appointed by the
European Commission. The Guidelines put forward a human-centric approach on Al and
list 7 key requirements that Al systems should meet in order to be trustworthy [20]. This
shows that the topic of accountability and interpretability is central and necessary to
realize.

1.3 Predictive Maintenance

With the progress in accuracy of artificial intelligence methods, there has been the desire
to apply those methods in an industrial setting. Predictive maintenance is such an ap-
plication, where data of the state of a machine or some piece of equipment is collected,
analyzed and used to predict the reason, location and time for necessary maintenance or
failures in the future [14].

Usually this is done by collecting large amounts of data continuously and then apply-
ing machine learning methods, such as random forests or neural networks, to predict the
state of the machine in the future. A typical target value in predictive maintenance is
the Remaining Useful Life (RUL) [9], which tells the user how much longer the machine
can operate productively. Alternatively one can predict whether the piece of equipment
is working normally or whether there are any anomalies which need to be addressed.

Especially in predictive maintenance it is important for a machine learning model to
be interpretable so that the user can comprehend why and how the model arrives at its
conclusions. Maintaining or replacing a machine can be costly and require a lot of effort,
so the owners should understand the recommendations of the algorithm and trust them
enough to follow them. Conversely, by knowing which features the algorithm takes into
account when predicting the RUL, the critical points can be identified and measures can
be adopted to prolong the useful life of any piece of equipment.
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2 Publicly Available Dataset

2.1 Dataset Selection

The first task in this project was to choose a suitable dataset for building a black box
model. Since we did not know yet whether we would get access to actual customer data,
we examined different publicly available datasets in the field of predictive maintenance.

In total we explored 12 different datasets and found 4 promising candidates: One dataset
about coffee machine maintenance data [13], one with hard drive failure data [1], one with
water pump maintenance data [19] and a dataset about battery life cycle degradation [16].

After some consideration we chose the battery dataset, since it has clearly labeled, in-
terpretable features, almost no measuring errors or missing data points and a reasonable
target variable to use for predictive maintenance (namely the Remaining Useful Life of
the batteries). It consists of data taken from 124 batteries during 96.000 charging cycles
in total, which was more than enough data to build a black box model.

2.2 124 Lithium-ion Batteries Dataset

The dataset of 124 lithium-ion batteries |15], as surveyed in [16], consists of 3 batches
of battery charging data, each containing roughly 41 battery cells. The batteries in the
dataset were cycled to failure under fast-charging conditions with a different charging pol-
icy per batch. The policies where two-step charging policies, where the (constant) current
changes after a certain state-of-charge. The batteries were cycled “to failure”, mean-
ing until the battery does not charge to 80% of full capacity anymore. The “cycle life”
of the battery i.e. the number of cycles till failure, are the target feature we try to predict.

The data provided in the set is tripartite: Beyond descriptors for each battery (tag num-
ber, charging policy and cycle life), it contains summary features for each of the charging
cycles, consisting of cycle number, discharge capacity, charge capacity, internal resistance,
maximum temperature, average temperature, minimum temperature, and chargetime. In
addition to that, the dataset also contains detailed cycle data for the entire duration of
each charging cycle for each battery. This consists of the timestamp, charge capacity,
current, voltage, temperature and discharge capacity. With all in all 96,700 cycles, this
is the largest publicly available lithium-ion batteries dataset.

For the data to be suitable for our use case, the variability in batteries charged with
the same policy had to be high enough, so that our black box model could learn other
important features. Since this is the case and the data is reasonably clean, we had a good
basis to work on our black box model.

Train / Validation / Test split The dataset split for training (41 cells), validation
(43 cells), and testing (40 cells) was already available in the simple preprocessing code
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given by the authors. We followed this split when building the models described in the
next sections.

2.3 Linear Model as Benchmark

We started by building a white-box linear model explained in the journal paper [16]. The
authors used their domain knowledge in lithium-ion batteries to engineer features with
high predictive potential. Our idea was to apply XAl methods on Deep Learning Models
and compare the results with this linear model.

Feature Engineering We implemented the features proposed by the authors in their
regression model, for details see [17]. The key idea is that the battery capacity is consid-
ered as a function of voltage, as opposed to voltage as a function of capacity, in order to
maintain a uniform basis for comparing cycles. The discharge voltage between cycle 100
and 10 is denoted AQ10—10(V). Our linear model features were:

e Minimum AQ19o_10(V)

Variance AQ1p9-10(V)

Slope of the linear fit to discharge capacity, from cycles 2 to 100

Intercept of the linear fit to discharge capacity, from cycles 2 to 100

Discharge capacity of cycle 2

Average discharge time, from cycle 2 to 6
e Minimum internal resistance, between cycle 2 to 100

e Difference internal resistance, between cycle 100 and 2

Modeling Our target was to predict the logarithm of cycle life for batteries. We per-
formed a Z-score standardization on the training set and applied it to the validation and
test sets. Then, we built an elastic net model as advised by the authors because it could
deal with high correlations between the features. The model was trained with a four-fold
cross-validation on the training set, tuned with the help of the validation set and verified
on the testing set.

Challenges To reproduce the published result, we plotted our features corresponding
to cycle life and compared this to the feature plot by the authors, see figure[I] The graphs
have a similar overall shape, but the authors might have done some numerical rounding
and excluded outliers without mentioning the details in their publications, which would
explain the discrepancies.

Besides that we also excluded the temperature integral from cycle 2 to cycle 100 from our
model. This was done for two reasons: first, we still saw a big difference when comparing
the authors’ plot for this feature with ours and second, a much worse result was returned
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when including this feature. A similar question was found in their GitHub [15] without
useful answer. We finally requested access to the authors’ modeling code but did not
receive any response when moving on to the real-world dataset.

Internal resistance ,
Internal resistance
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(a) A feature plot by authors (b) Our feature plot

Figure 1: Feature internal resistance difference between cycle 100 and cycle 2 corresponds
to battery cycle life. The train, validation, and test sets are represented by blue circles,
red squares, and orange triangles, respectively. The discrepancy is circled as green in .

Result
Training set Validation set Test set
MAE (cycle) | MPE (%) | MAE (cycle) | MPE (%) | MAE (cycle) | MPE (%)
71 11.68 126 29.18 164 15.03

We had a high error in the validation set due to outliers that can be seen in figure [T}, which
might be due to a different preprocessing for outliers of the authors without including the
details in their publication. Nevertheless, this result is ready as a benchmark model.

2.4 Deep Learning Models

In order to implement and compare various XAI methods, a black box model had to be
implemented first. We approached two different Neural Network architectures which are
described in the next two sections. After implementing those models, we got the exciting
news to work on a real-world dataset for our supervisor’s client. Thus, we stopped working
on the battery dataset and proceeded with the new challenge. Our approach and results
are described in the next chapter

2.4.1 Convolutional Neural Network (CNN)

After researching various papers on Neural Networks built for battery datasets to get an
idea about possible architectures, we found a blog and GitHub repository that imple-
mented a CNN in Python on the 124 batteries dataset ([5], [4]). Thus we proceeded by
using the code provided in the GitHub repository as a foundation for our own architecture.
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Modeling The data analysis and CNN provided in the GitHub repository [|4] is based
on the dataset [15]. The goal of the CNN model was to build a more sophisticated model
and to be able to feed the model measurement data from a battery that is already in use.

To achieve this goal, they only used the data from the discharging periods since the
charging policy varies from cell to cell and therefore the charging measurements are not
comparable, whereas discharging measurements are. Batteries that did not reach the 80%
capacity were excluded. Additionally, cycles with time gaps, small outliers, or other incon-
sistencies were removed. For smoothing they used the Savitzky-Golay filter. Further, the
data for charge, voltage and temperature was not comparable across cycles and batteries
since the different charging policies lead to different cycle time frames. Thus they took the
voltage range instead of time as reference and interpolated charge and temperature over
1000 equidistant voltage steps. Then the detail features per cycle included into the model
are charge (Ah) and temperature (°C) and the scalar features per cycle included into the
model are Internal Resistance (€2), Total Charge (Ah) and Discharge Time (minutes).

The model is fed the features of 20 consecutive cycles of one battery. Its architecture
is shown it figure 2] The detail features are processed in three Conv2D layers with
MaxPooling, the scalar features are processed in two ConvlD layers with MaxPooling.
The results are flattened, concatenated and sent through a fully connected dense network.
The two outputs are the current cycle (showing the current age of the battery) and the
remaining cycles (providing the Remaining Useful Life). The total cycle life of one battery
can then be computed by summing up the two outputs. This is comparable to the output
of the linear model being the logarithm of the total cycle life.

2D CNN +
————
— "MaxPool Flatten
Current cycle
Concat —> Dense
Remaining cycles
%ﬁ—b IDCNN + Flatten ———33

MaxPool

Figure 2: Architecture of the CNN model implemented in [4]. Picture taken from [5].

Result After resolving several issues with the provided code and fixing the saving and
loading logic of the model that arises from tensorflow library, our results are in a similar
range than the results achieved by the authors of the blog [5]. The metrics used are loss
and mean absolute error (MAE) of the current cycle, as well as for remaining cycles. The
MAE is calculated as difference between the output and the real value for each battery,
then averaged and multiplied with the maximum battery cycle lifetime. The best result
of the authors of the code in [5] was 90 MAE for the current cycle and 115 MAE for the
remaining cycles of the validation dataset. Our best result after 250 training epochs was:
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Training set Validation set
loss MAE current | MAE remaining | loss MAE current | MAE remaining
cycle cycles cycle cycles
0.0050 | 92.6132 104.9049 0.0079 | 91.6973 132.3842

Additional Features

Since XAI methods are mainly a visualization of feature impor-

tance or explain results based on certain values of features, more features were desirable
to perform XAI analysis on this model. We thus added an alternation of the features that
are used in the linear model described in section These features are window-based,
i.e. on 20 consecutive cycles, compared to features based on cycle 2 to 100 or 2 to 6 in
the linear model. The detailed added features can be found in the appendix (table .
These window-based features were inserted into the dense layer of the CNN model.

Result With Additional Features The best result in 500 training epochs was:

Training set Validation set
loss MAE current | MAE remaining | loss MAE current | MAE remaining
cycle cycles cycle cycles
0.0070 | 123.1916 117.9473 0.0079 | 123.3576 116.0443

This result is slightly worse than the result without additional window-based features.
Possibly a change in the CNN architecture could resolve this. Since we then got the
real-world dataset, we did not improve the model any further.

2.4.2 Recurrent Neural Network (RNN)

Since the battery dataset consists of time-series for each charging cycle as well as one
time-series of summary data per battery, we decided to follow an alternative approach
with an architecture often used for time-series data: A Recurrent Neural Network.

For the RNN we used a basic model having one LSTM layer with 128 nodes, dropout
regularization (30%) and two dense layers. The input was the summary data Internal
Resistence, Total Charge and Discharge Time, taken over a sliding window of 20 cycles
somewhere in the lifecycle of the battery and engineered in the same way as in the CNN
(see also table . Detailed cycle data was not included and the two outputs are again
the current cycle and the remaining cycles.

Result using Summary Features The best result in 400 training epochs was:

Training set Validation set
loss MAE current | MAE remaining | loss MAE current | MAE remaining
cycle cycles cycle cycles
0.0086 | 138.6296 120.0887 0.0166 | 164.0829 162.7043

As can be seen from the table, the results of the RNN are a bit worse than the CNN
results, but since the RNN is only using the one-dimensional summary features, this was
to be expected. With further tuning this could be improved, but since we then got access
to the real-world dataset, we stopped the development of the RNN.
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3 Industrial Hydrogen Compressor Dataset

3.1 Introduction to the Compressor Dataset

At the end of November 2019, a real-world dataset from a client of the Steering Lab by
Horvath & Partners GmbH was made available to us.

This dataset contains sensor data taken in short, irregular steps from both turbine and
compressor in a site. A sketch of the compressor can be found in figure|[12|in the appendix.
In total less than 100 different sensors measured the rotational frequency, pressure, tem-
perature, thrust and re-circulation at different points of the machine. Not all sensors
readings cover the whole time period as some were installed later. This was a challenge
for the bearing damage analysis. Besides having the dataset, we also received repair dates
and some report information on events and repairs.

We were asked to look at 4 possible events and predict indicators for these events:
e Valve tightening (routine maintenance or when weird sound is heard)
e Valve breakage (leads to machine stop)
e Bearing damage (machine stop)
e Change of oil (routine maintenance)

We discarded the change of oil as target variable since there were only three maintenance
cases in the whole time period. The bearing damage events can be found in the doc-
umentation of Anes Valentic. Therefore, we are only looking at two events related to
valves.

3.2 Data Sanity Check

From the report information on events and repairs we first had to extract the events to-
gether with our project partner. Some technical understanding of the machine was needed
for that. This was additionally difficult since not all downtimes were linked to either valve
breakage or bearing damage, but scheduled maintenance independent of the repair events.

Sensors only record a data point if it is deviating a certain amount from the last mea-
surement. To make the measurements comparable across different sensors, the data was
resampled and the measurements linearly interpolated.

Before we dove deep into the analysis of the data, we first conducted a sanity check by
checking the downtimes and events we received from the factory against the rotation of
the turbine. During bearing damage or valve breakage the machine should not be oper-
ated anymore and the rotations per minute of the turbine should go to zero. This was
true for all events and allowed us to determine date and time the turbine stopped and
started again additionally to the date specified in the report information.
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We also performed a short consistency check: the data that was given to us in two formats,
once clustered by year and once by sensor, was consistent. Some missing sensors that were
given in a description but not as data was detected, but this did not affect our modeling
process. We also cleaned duplicates records.

3.3 Exploratory Data Analysis for Valve Tightening Events

We analysed all valve tightening events and plotted all sensors in the compressor to find
abnormal patterns, but no obvious pattern was detected. However, we discovered that
some valves break soon after tightening, which may hint that the valves were fastened
too loose or too tight. From the repair records, we also saw that more valve tightening
was done after certain years and since then no valve breakage was reported anymore. We
then assumed more valve tightening leads to less valve breakage which the client confirmed.

We also dove deep into more critical events in which valves were loose enough to hear
obvious noise. Majority of these events had breakage patterns similar to figure [3

As more serious valve loose events have similar abnormal patterns as the ones before valve
breakage, we focused on building a model for valve breakage events.

3.4 Exploratory Data Analysis for Valve Breakage Events

Based on the information we received from the client and the domain information ac-
quired over time, we decided to focus our analysis and model for the valve breakage on
the information provided by the temperature sensors.

As can be seen in the diagram of the compressor (figure [12|in the appendix), there are
temperature sensors on each valve. The sensors measuring the input flow generally have
a much lower temperature. In addition to that there are also pressure sensors measuring
the input and output pressure of cylinders 1 & 2 as well as 3 & 4 separately.

For the first exploratory data analysis of these temperature values we focused on the
behavior shortly before and after the downtimes and tried to see if we could find any
patterns regarding the temperature changes.

What we found gave us a first indication on how to predict an approaching downtime for
the events of valve breakage. Shortly before the valve breakage event, the temperature
difference between the input and output sensors goes up (i.e. the input is colder and the
output is hotter), which makes sense, considering that the compression happening inside
the cylinder cannot work properly if the valves are broken. Figure |3| shows one example
for this.

3.5 Challenges in Modeling

While working on completing the machine learning model and the implementation of
the XAI methods in less than 1.5 months, we faced different challenges, mainly due to
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Figure 3: Analysis of valve sensors

incomplete information and “messy” raw data:

It is not possible to differentiate between real valve breakage event and a regular
maintenance event. We did not know the exact starting time when a valve operates
abnormally.

The dataset is extremely imbalanced. There were less than 1% valve breakage events
recorded.

There are more than one valve in the compressor in total, but the report information
on events and repairs does not contain which valves were broken.

Special events that create irregular readings at the sensors:

— The whole machine may be shut down for repair, upgrade and maintenance.
— Some valves may be closed if the current speed of the turbine is insufficient to

run the compressor in full capacity.

Complex seasonality of temperature sensors. They are influenced by outside tem-
perature that are composed of day and night season and summer and winter season.

Valves only broke in the first few years, but the model should be able to predict this
event far beyond the interval, until recent years. There were several reconstructions
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and upgrades of the machine without additional details that caused a different data
distribution in the later years.

Although it was very challenging to formulate the exact problem, we finalized our machine
learning problem by predicting valve breakage on a daily basis of n valves as a whole. It
means that our model would learn and predict event class as 1 if any of the valves started
to run abnormally until they broke down or a repair took place, and 0 if all valves are
operating normally.

We chose a daily instead of weekly aggregation of the raw time-series as the abnormal
pattern typically lasts for a few days. This, however, does not tell which valves are ab-
normal. We then applied XAI methods (see chapter |4]) to identify problematic valves to
simplify machine maintenance and provide further insight.

The solutions for the mentioned challenges are explained in the following sections.

3.6 Data Cleaning and Preprocessing

To create a proof of concept model that delivers high business impact for the client of
Horvath & Partners GmbH, we spent a lot of time on data preprocessing to solve the
challenges written in chapter to produce high-quality data. The following section is
divided into subparagraphs to discuss each challenge and solution in details.

3.6.1 Label Valve Breakage Events Manually

As mentioned previously, the raw data does not truly reflect the health state of valves.
Those valves might already behave abnormally before detected by technicians. Therefore,
we went through all breakages written on the repair records, plotted graphs for more than
30 sensors, and compared the graphs with the actual valve breakage date. We extended
the event duration and set the event class to 1 as long as an abnormality could be seen
in the plots.

For example, in figure [3, a valve breakage was reported on day 1, but we already saw
the abnormal pattern in a plot starting day -5. Therefore, we set the breakage event to 1
starting day -5 until a repair took place on day 8. This step is tedious yet critical, as it
enables our model to detect the abnormal pattern before valves break.

3.6.2 Handle Downtimes

Sometimes the whole machine would be shut down due to events, restarts, and occasionally
hardware upgrades and not all of them were related to valve breakages. During shutdowns,
sensors’ readings drop to their “zero” states, which are significantly different from the
regular values. These dramatic changes make model training much more difficult, and
thus required special processing.

Definition of a Shutdown First, we compared three methods to extract all downtimes:
either looking at the turbine output (rotation per minute = 0) or valves outputs (output
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pressures = 0 for cylinder 1 & 2 and 3 & 4, or outputs temperature sensors of cylinder 1,
2, 3, and 4 drop below a certain threshold). We proceeded with the output temperature
sensor of cylinder 2 because:

e Turbine output fluctuates significantly, and it could be just a quick restart

e There were spikes in the temperature readings due to repairs or valves closure with-
out turbine shutdown

The output pressure of the valves is rather constant, making it difficult to find a
good threshold

There are more breakages at cylinder 1 & 2 compared to 3 & 4, and the output
temperature of cylinder 2 is more stable than of cylinder 1

This selected downtime may be extended easily to include partial closure of valves

Healthy Intervals Extraction If the output temperature sensor of cylinder 2 falls
below t°C, we consider it a wvalid shutdown.

To extract the “healthy” interval after the previous step, we calculated the average tem-
perature drop per minute, 1.2, and its standard deviation, 0.6, for all shutdowns based
on the output. A pessimistic temperature drop per minute, 0.305, could then be derived
from these statistics. We concluded that it took less than 60 minutes to drop 20°C from
normal operating temperature for 99.7% of cases. Besides, we got the important infor-
mation from the client that it takes up to 2 days after a downtime for the machine to
stabilize and operate normally again. Thus, we defined the healthy intervals as 2 hours
before the output is less than t°C, and 2 days after the output is greater than or equal to
t°C again, as summarized in figure []

Sensor reading 2 ¢ Sensor reading < ¢t | Downtime The turbine is powered up again
(Sensor reading = room | Sensor reading 2 ¢t
temperature)
L ) 4\ ) L J
T | Y
“Healthy” I “Downtime” I “Healthy”

Figure 4: Extraction of healthy intervals among shutdowns

We exported our result to a .csv file to have more control and also eliminated a very short
healthy interval (less than 7 days) between shutdowns.

Application in the Model There are two choices: (1) replace the values in shutdown
intervals with interpolated values using the healthy intervals before and after the shut-
down, or (2) just remove them entirely when training a model. As a shutdown happened
after an interesting breakdown event, we chose (2) to prevent our model from learning
the interpolated patterns that are not available when predicting events in the future.
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3.6.3 Remove Influence of Outside Temperature on Temperature Sensors

Since the main input of the model are the temperature sensors located on the compressor
valves, it is important that this input is as meaningful as possible. Influence from the
outside temperature is therefore undesirable and should be minimized to isolate the pure
change in temperature that is coming from the machine valves.

We first attempted to remove the influence by doing a seasonal decomposition of the out-
side temperature, decomposing the seasonality in daily and yearly cycles (for the day/night
and summer/winter difference in temperature) and then downscaling the seasonal cycles
and subtracting them from the temperature readings of the sensors.

The downscaling factor per valve temperature sensor is needed since the valves are less
influenced by outside temperature changes than the actual outside temperature. To deter-
mine the right choice of this factor was a difficult task and the result of this first attempt
still showed outside temperature influences.

As a final approach we used adaptive filtering to improve the input to our model. It
allowed us to very accurately filter out the exact influence of the outside temperature,
beyond just seasonal effects.

Theory The following explanation is taked mostly from [21]. Adaptive filtering is an
approach from signal processing, where two input signals, d, and xj, discrete measure-
ments at different time points, are fed into the filter. Here x; is the observation, i.e. the
actual signal that is measured, and dj is the desired signal, i.e. the signal we want to
isolate from the observation.

In our case we have the raw valve temperature readings of the sensors as x;, and the outside
temperature as d. The signal we actually desire in this setting would then be the residual
€k, which is the signal which is left over once the influence of the desired signal is removed.

Adaptive filtering works by learning the weights that allow the reproduction of the desired
signal from the observation, see also figure[5] The output from the filter is the reproduced
desired signal y,. It is computed by applying the weights to the input zy:

N
Yk = E Wy, * Tl—n -
n=1

The residual signal is then defined as

ep = di — Yp -

This is the signal which is left once the influence of the desired signal is removed. It
gives the temperature changes in the machine, which are not explained by the outside
temperature changes.

Practical Application To implement this filter, we used the Python library padasip
[2] with a ready-built adaptive filter.
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Figure 5: Adaptive Filtering

Before filtering we smoothed the outside temperature measurements, so the filter does
not learn every little fluctuation, but only actual reasonable trends. For the smoothing
we used a time frame of 4 hours and applied a Savitzky-Golay filter of polynomial order 3.

For the adaptive filtering we then used interpolated data on a minute basis. We chose
the last 60 measurements of the outside temperature as the input to the adaptive filter
(N = 60), so the adaptive filter learned the influence of the last hour of outside tem-
perature on the valve temperatures. As error function we chose Normalized Least Mean
Squares.

Result The result of the temperature removal are the cleaned temperature sensor read-
ings. As can be seen in the figures, the correlation of the outside temperature and the
residual signal is completely gone in [6a] and one can very well see the changes in tempera-
ture that a downtime or an abnormal event brings in [6b] The same is depicted in table
showing the correlation of the outside temperature and valve temperature sensor T3041
(unfiltered and filtered) during normal operating conditions and table [2| for abnormal
conditions.

outside temp

raw valve temp

filtered valve temp

outside temp
raw valve temp
filtered valve temp

1.00
0.47
0.01

0.47
1.00
0.09

0.01
0.09
1.00

Table 1: Correlation under normal conditions

outside temp

raw valve temp

filtered valve temp

outside temp
raw valve temp
filtered valve temp

1.00
0.31
0.01

0.31
1.00
0.58

0.01
0.58
1.00

Table 2: Correlation under abnormal conditions
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Figure 6: Raw and cleaned temperature of a sensor.

3.7 Modeling

Our goal was to first build and then explain the output of a black box model with XAI
methods. Thus, we implemented a multilayer perceptron (MLP) model that could easily
capture interactions among features, yet is complex enough to apply XAI methods to
meet the goal of this project.

The raw time-series data is not yet ready to feed into models. Figure [13|in the appendix
summarizes the crucial steps before feeding inputs into a model.

More than 1000 models with different feature engineering, aggregation, and hyperparam-
eters were built and evaluated using the CRISP-DM methodology. This chapter lists the
details of the final models whose results were already presented to the client.
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Model (1) Model (2)
f(valve 1 high temp | f(valve 2 high temp | ... | f(valve 1| f(valve 2
- valve 1 low temp) | - valve 2 low temp) high temp) | high temp)
day 1
day n

Table 3: Different features used in Model (1) and Model (2). f is any function applied
per day during aggregation. We let f as max in Model (1) and min in Model (2)

3.7.1 Feature Selection and Engineering

From data exploration analysis (see section and rapid prototyping, we identified that
the output temperature sensors of each valve in the compressor (see figure are crucial
to identify breakages. According to the thermodynamic law, the gas temperature goes up
during gas compression. When a valve is loose, it may be needed to add more pressure
to compress the gas, which could result in a higher output temperature that indicates
abnormally. The sensors are, however, influenced by outside temperature, and we had to
remove this influence to get better prediction. The steps are described in [3.6.3

While working on a function that removes the outside temperature influence, we also built
another model with creative feature engineering that gave a much better result than the
raw features. By pairing input and output temperature for each neighboring valve and
taking the difference between them, for instance, V1., — V1;, in figure [12] we managed
to create a better model that pushed the AUC score from 0.66 to 0.9.

Table [3] summarises the models delivered with this project.

We also applied Z-score standardization to the whole dataset based on the training set.
Besides that, all numeric values are bounded to a reasonable minimal and maximal value,
as extreme values do not give additional information for valve breakages but only make
the model more difficult to train.

As we already obtained an excellent result with this creative feature engineering, we
decided not to create more complex features since this may lead to difficult interpretation
in the XAI phase.

3.7.2 Balancing Dataset

There are only less than 1% valve breakage events (positive class) in the raw time se-
ries, which makes the model very challenging to train. We applied several methods to
dramatically improve the model performance:

1. Label valve breakage events manually
2. Cost-sensitive learning

3. “Manual” oversample minority class
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We already discussed method 1 in [3.6.1}

Method 2 enables the model to put more weight on examples from an under-represented
class. We did this by calculating the ratio of positive class versus negative class and
passed it as a parameter when fitting the model.

As for method 3, we did not use the oversample logic from Python’s sklearn library but
rather manually inserted a few more data points of positive examples instead of using
only one data point per day when doing daily features aggregation. By balancing the
class distribution of the dataset with this method, we saw a much better model having a
stable loss in both the training and validation phase.

3.7.3 Train / Validation / Test Split

We used a holdout approach guaranteeing that data points of an event belong to either
the training, validation or testing set. On the other hand, in a first naive cross-validation
approach, the data points of the same event may be found in all train, validation, and
test sets. This naive approach caused overfitting and overconfidence in the model’s per-
formance.

We also ensured the training set contains data of all valves that failed before for the
following reason: if an abnormally of e.g. valve 1 was only found in the testing set but
not the training set, the model would perform badly because it has never seen this pat-
tern during the training phase. We “hand-picked” holdout split for this project with the
fraction: 45% train, 30% validation, 25% test. Two years were excluded due to major
reconstruction work, long downtimes, and frequent machine restarts.

Another possible split is with a rolling window approach. We did not proceed with this
approach because it requires more training time. In addition to that, the holdout approach
gives more a accurate information on the model’s performance.

Limitation As some valves never break before, our model will not be able to recognize
breakage pattern on these valves.

3.7.4 Final Models

We kept our MLP architecture as simple as possible to prevent overfitting. The models
takes the input features described in section [3.7.1. The output sigmoid layer returns the
probability that the valves are operating normally on a given day:

Layer Number of nodes | Activation function | Dropout probability
Input layer number of features - -
Hidden layer 1 50 selu 0.5
Hidden layer 2 50 relu 0.5
Output layer 1 sigmoid -
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Result Figure [7] shows the best result after at most 100 epochs, with early stopping
when the validation loss does not improve anymore after n iterations: Model (1) uses the
“pair” features; Model (2) uses the “cleaned” temperature of each valve as features.

Test Result for Valve Breakage Periods Test Result for Whole Horizon
T 6 50 44
6 40
,_51 G 30
3 2 20
"i o ol " oss all =
0 0 |
P FP FN TP FP FN
Model 1 mModel 2 Model 1 mModel 2

Figure 7: Results for Model (1) and Model (2). True Negative result is not shown in this
plot.

We took a closer look into the cases where model (1) gives false positive for the whole
horizon. More than 90% of all false-positive cases happen right before the event dates,
and this is expected because we did not have an expert to verify our manual event la-
beling. This means the model is so good that it finds trivial abnormal patterns that are
not visible with the bare eye. In other false-positive cases, there might be a spike on the
sensor reading at a particular day that goes back to normal again in the next day and our
model captures the spike too. To exclude this case, we recommend that the client only
investigates further if the model predicts an abnormality for more than 2 consecutive days.

Model (2) has much more false alarms which could not be explained easily. It could be
that the influence from higher room temperature may lead to more breakage, this infor-
mation is removed when removing the outside temperature. We also tried to “pair” these
clean readings by taking the difference of input and output temperature of each valve as
in model (1), but the result is worse than the one of model (1).

Nevertheless, these results are sufficiently good to apply XAI methods to find abnormal
Sensors.
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4 Explainable Artificial Intelligence (XAI)

As a final step of our project we implemented two XAI methods for the dataset, see
chapter [3] Their theory and our results are described in the next two sections.

4.1 Local Interpretable Model-Agnostic Explanations (LIME)

LIME [12] explains the predictions of any classifier in an interpretable and faithful manner
by learning an interpretable model locally around the prediction. Its greatest advantage
is that it is independent of the machine learning model it explains.

Theory Let G be a class of potentially interpretable methods (e.g. linear models,
decision trees) and g € G an explanation model with complexity €(g) (e.g. number of
non-zero weights for linear models, depth of the decision tree). Let f be the model being
explained and 7,(z) be a proximity measure between an instance z and x. L is a measure
of unfaithfulness of ¢ in the local approximation of f. The explanation is then given by:

explanation(x) = argmin L(f, g, 7,) + 2(g).
geG

This is usually achieved by fixing Q(g) and approximating L(f, g, ) as follows:

Sample around the instance of interest x and get the black box predictions for these new
points. Weight the new samples according to their proximity to x and train a weighted,
interpretable model on this dataset. This local model can then be interpreted.

Python Library In the Python library lime |11] a linear model is used for explanation.
The sampling of the new data points is done with a Gaussian distribution. The complexity
is determined by the maximum number of features the linear model may use. LIME uses
an exponential smoothing kernel to define the neighborhood, where the kernel width is

set to 0.75 /7 features.

Application in the Model We applied LIME to model (1) described in where no
outside temperature removal was done and the prediction was restricted to cylinder 1 and
2. The model was trained on data containing valve breakage events only instead of whole
horizon. The linear model of LIME receives the quantiles of the numeric features used in
the machine learning model.

The result of LIME can be seen in figure For each day, the left most part gives the
prediction probabilities for class “Working” and “Abnormal”. The middle part gives the
8 most important features in descending order. Attributes having orange color support
“Abnormal” and those with blue color support “Working”. The float point number on
the horizontal bars represent the relative importance of these features and their weight
in the linear model. For example on day 2, if “S1” had been small or equal —0.18, the
probability for “Abnormal” would drop by around 39%. The right part for each day
follows the same color coding as the other two parts. It contains the actual values of the
features ranked by their importance given in the middle.
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Day 1 , Model prediction: @ , Reality: @
Working: 0 Abnormal: 1

Feature Value

Prediction probabilities

Working: 0 _]0.95
Abnormal: 1 -0.23 <85 <=0.01

-0.33 < 54 <= -0.14
0.02
-0.22 <83 <=-0.10
0.02

Day 2 , Model prediction: 1 , Reality: 1

Working: 0 Abnormal: 1

Prediction probabilities Feature Value

Working: 0
Abnormal: 1 [T 0.99

-0.28 <56 <=-0.16
0.02

Day 3 , Model prediction: 1 , Reality: 1

Working: 0 Abnormal: 1
S1>-037

Prediction probabilities Feature Value

Working: 0
Abnormal: 1 _0.99 =

-0.23<85<=0.01

Day 4 , Model prediction: 1 , Reality: 1

Working: 0 Abnormal: 1

Prediction probabilities Feature Value

Working: 0
Abnormal: 1 [ 1.00

-0.24 <87 <=0.09
0.02
-0.16 < 56 <= -0.08
0.01

Figure 8: The output of LIME. Between day 2 & day 4 a valve breakage happened. The
abnormality is affecting valve pair S2 (detected visually and in the report message), which
matches the second explanation given by LIME.
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The valve breakage in this period happened between day 2 & day 4. The abnormality
affected valve pair S2, which was partly written in the report message and detectable vi-
sually from the sensor plots. The affected valve pair only matches the second explanation
given by LIME.

Another example can be seen in figure [14] in the appendix. On day 2 and day 3 a valve
breakage happened. This abnormality affected pairs S1 and S2, what we detected visually
when plotting the sensor value. Only S1 is captured by LIME, but not S2, instead other
sensors are said to have an abnormality. Interesting is also day 1 which is a “Working”
day, but the top two explanations of LIME are pointing towards “Abnormality”.

We checked all explanations of valve breakage events in the training data to see whether
the sensor pair(s) explaining the abnormality according to LIME matched our information
from the report or, if that information is missing, our visual analysis. Unfortunately this
is not always true and the explanation during one abnormal period changed sometimes,
see for example figure [14]in the appendix.

As an extension of LIME, Submodular Pick (SP-LIME) [12] tries to give a global under-
standing of the model by explaining a diverse, representative set of instances. We also
looked at those results for different numbers of instances. In figure [9] the result for two
instances is shown. The explanations for the instances classified as “Working” contained
mostly features indicating an abnormal instance. It seems as if the linear model does not
learn the underlying structure of our black box model very well.

One possible reason why LIME does not perform well is that it assumes linear behavior
of the machine learning model locally, and we might have very nonlinear data. Another
reason might be a bad choice of the kernel width of the exponential smoothing kernel. The
best kernel width choice can only be detected by lengthy experiments. Another downside
of LIME is that the explanations take up a lot of storage space, so it is very costly to
store the explanation of every day of one year. Fortunately, the next method we tried,
SHAP, worked better and takes up a lot less storage space.

4.2 SHapley Additive exPlanations (SHAP)

SHAP is based on the Shapley Value [18], a game-theoretic method for a fair allocation
of the output among all members of a coalition. It is computed as the average marginal
contribution of a member across all possible coalitions. Let N be a set of n players and v
be a characteristic function, i.e. let v(S) be the worth of coalition S. Given a coalitional
game (v, N') the Shapley value is given by

)= 3 BLEZBIEDN 6y — ().

n!
SCN\{i}

The idea for the usage of the Shapley Value in explaining a black box model is to interpret
each feature value as a player in a coalition game and the prediction as payout. Then
the Shapley Value of a feature is its average contribution to the prediction in different
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The result of SP-LIME with: 2 explanations.

Prediction probabilities WO[’killg: 0 Abnormal: 1

Working: 0
Abnormal: 1 [ 1.00

Feature Value

Prediction probabilities Working: 0

working: 0 [N 0.99
Abnormal: 1

Feature Value

0.16
-0.41 <85 <=-0.23
0.12

-0.24 <87 <=0.09
00

Figure 9: The output of SP-LIME when two representative instances shall be picked.

coalitions and the prediction is explained as a game played by the feature values.

The biggest advantage of the Shapley value is that it is the only explanation method with
a solid theory (see ), giving the explanation a reasonable foundation. It requires a lot
of computing time as there are 2¥ possible coalitions of the feature values, therefore in
general approximations are needed. We used the approximation method KernelSHAP.

Theory KernelSHAP was presented in |8] and is an alternative, kernel-based estimation
approach for Shapley values inspired by local surrogate models. It unifies six other XAI
methods, one of them being LIME. This following explanation is taken largely from [10].

With the explanation model g and 2’ € {0,1}*, SHAP gives the explanation by
M
g(2') = ¢o + Z ¢;2;.
j=1

Here, M is the maximum coalition size and ¢; € R is the Shapley Value of feature j.
The 2’ describe the coalition of the instance: when the corresponding feature value is
“present”, then z’ has an entry of 1, if it is “absent”, then z’ has an entry of 0.
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Now for the instance x that shall be explained it holds
M
f@) = ga") = g0+ o5
j=1

KernelSHAP estimates the Shapley Value ¢; of each feature value for an instance z in
the following way:

First, the coalitions z, € {0,1}* are sampled with k € {1,..., K}, where 1 means that
the feature is and 0 means that the feature is not in the coalition. We then feed the input
corresponding to the coalition z; to our black box model and get its prediction. The
weight for each z;, is computed via the SHAP kernel

L M1
= = )

A weighted linear model is then fitted returning the Shapley values ¢,. The SHAP kernel
computes the weight the coalition would get in the Shapley value estimation. It has been
shown in [8] that linear regression with this kernel weight indeed yields Shapley values.

The main difference of KernelSHAP to LIME are the weights of the instances in the
linear model. Thus differently to LIME, the Shapley value does not give the change in
prediction when we would remove the feature from the model, but the average contribution
of a feature to the prediction in different coalitions.

Application in the Model We applied the implementation of KernelSHAP (imple-
mented in the shap package [7]) to model (1) described in [3.7, where no outside temper-
ature removal was done and the prediction was restricted to cylinder 1 and 2.

The result of SHAP can be seen in figure[10l Here, the classes “Working” and “Abnormal”
are indicated by 0 respectively 1 and the model output is the probability for “Abnormal”.
The explanation of one day shows how much each feature is contributing to push the
model output from the base value (the average model output over the training dataset we
passed) to the model output. Features pushing the prediction towards “Abnormal” are
shown in red, those pushing the prediction towards “Working” are in blue.

The valve breakage happening between day 2 & day 4 affected the valve pair S2, which
we detected visually from the sensor plots. We can see in figure [10[ that this matches the
top explanation given by SHAP.

SHAP is also able to explain several instances is one plot, see figure This is done
by computing the Shapley Values for all instances, rotate the single explanations by 90
degrees, and then stack them horizontally.

In figure another example of SHAP are shown. In this period sensor pair S5 was
affected. Again, this was detectable visually from the sensor plots. This matches the top
explanation given by SHAP.

In figure (15| in the appendix the output of SHAP is shown. A valve breakage happened
from day 3 until day 14 and the sensor pairs S1 and S2 were affected. Again, this was
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Day 1 , Model prediction: © , Reality: @
higher = lower

output value base value
0.03096 £0.024 0.06904 0.119 0.169 219 0.269 0.31
. - . . . .
$8=1.072 $5=-0.076 $2=-03243 S1=-0.3563 'S7=0.2446
Day 2 , Model prediction: 1 , Reality: 1
higher = lower
base value output value
1.031 -0.831 -0.631 -0.431 -0.231 -0.03096 0.169 0.369 0.569 0.769 00.99 1.169 1.36
S7=-0.5214 | $1=-0.0706 $2 =0.6477
Day 3 , Model prediction: 1 , Reality: 1
higher = lower
base value output value
C 0 1 0.431 231 0 0.169 0.369 0.569 ).769 0.98 1.169
S7=-0.4077 1 S1=-0.1809 52 =0.7997

Day 4 , Model prediction: 1 , Reality: 1

higher = lower
base value output value

1.031 -0.831 -0.631 -0.431 -0.231 -0.03096 0.169 0.369 0.569 0.769 £0.99 1.169 1.36
$8=129 $1=0.007506 $2=10.6539

Figure 10: The output of SHAP. From day 2 to day 4 a valve breakage happened, affecting
sensor pair S2.

Figure 11: The output of SHAP showing S5 was affected.

detectable visually from the sensor plots. Interestingly, first S1 is the sole explanation
for the valve breakage and S2 arises after some days. Since the valves affect each other
and the report messages do not indicate which valve pair broke on which day, this is a
conceivable scenario.

We looked at all explanations of valve breakages in the training data. SHAP always
indicated the broken valve pair(s) in the explanations that we found visually and (if
available) matched the report message. We are therefore confident our model does not
only have a very high accuracy but can also indicate the broken valve pairs with SHAP.
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5 Conclusion

In the first part of this project, we successfully chose a dataset appropriate for build-
ing a black box model and XAI and were able to build a linear model as benchmark
and on RNN as well as extend one CNN. We learned a lot about different approaches to
predictive maintenance and gained first experience with tensorflow, a new tool for all of us.

At the end of November, a new dataset from one of the clients of Horvath & Partners
GmbH was made available to us. We were able to experience all exciting moments and
challenges of a real-world data analysis task: we had to identify relevant sensors, gain
technical knowledge, wait for information from the client and face all phases of building a
model. During all exploratory data analysis, data preprocessing, data labeling, removal of
outside temperature influence and downtimes as well as deciding on the actual architec-
ture of the model, we learned that no data analysis task is the same and many innovative
ideas and persistence are needed to arrive at the final goal: a highly accurate model.

Out of a large variety of XAl methods we applied two to our final model of the client’s
dataset. The topic of explainable Al is a quickly growing subject since Al methods in
business applications need to fulfill laws and regulations. After reading a lot about the
different methods, the application of two of them to our model made them tangible. We

are especially happy that our model is not only highly accurate but we were able to verify
it with SHAP.

We are proud that the client is pleased with our proof of concept models, and he is
interested to use them for other similar machines in his site to predict valve breakages
and minimize downtimes.
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Appendix

Additional CNN features

© 00 O Ul Wi

Minimum AQ (i420)—i (V)
Variance AQ (i420)—i(V)

Skewness AQ (i120)—i(V)
Kurtosis AQi+20—i(V)

Slope of linear fit to discharge capacity
Intercept of linear fit to discharge capacity
Average discharge time
Minimum internal resistance
Difference internal resistance of 20 cycles

Table 4: Addition features for battery dataset CNN

RNN Model
Layer (type) Output Shape | Parameters | Connected to
IR (InputLayer) [(None, 20, 1)] 0 -
QD (InputLayer) [(None, 20, 1)] 0 -
Discharge-time (InputLayer) | [(None, 20, 1)] 0 -
concat-scalar (Concatenate) | (None, 20, 3) 0 IR[0][0],
Discharge-
time[0][0], QDIO][0]
recurrent (LSTM) (None, 128) 67584 concatscalar[0][0]
dropout-lstm (Dropout) (None, 128) 0 recurrent[0][0]
hidden (Dense) (None, 32) 4128 dropout-lstm|[0][0]
output (Dense) (None, 2) 66 hidden|[0][0]

Table 5: RNN architecture with 71,778 trainable parameters in total
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Figure 12: Diagram of the compressor
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Figure 13: Important preprocessing steps of models’ features
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Day 1 , Model prediction: @ , Reality: ©

Working: 0 Abnormal: 1
S1>-0.36

Prediction probabilities

Working: 0 [N 0.99
Abnormal: 1

Feature Value

Day 2 , Model prediction: 1 , Reality: 1
Working: 0 Abnormal: 1

Prediction probabilities

Working: 0
Abnormal: 1

Feature Value

Day 3 , Model prediction: 1 , Reality: 1

Prediction probabilities Working: 0 Abnormal: 1

Working: 0
Abnormal: 1 _ 1.00

Feature Value

Figure 14: The output of LIME for three consecutive days. On the 2nd and 3rd day a
valve breakage happened. The abnormality is affecting valve pairs S1 and S2 (detected
visually and in the report message), which only partly matches the top explanations given
by LIME.
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Figure 15: The output of SHAP. From day 3 until day 14 a valve breakage happened,
affecting sensor pairs S1 and S2. This matches the top explanations given by SHAP.
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