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Abstract

The medical field requires insights based on machine learning models, but in many
cases there is not enough labelled data available. One way to address this problem is to
use an external dataset to compensate for missing information and train on it, while using
a local dataset to test on. The problem of this approach is that, although both datasets
come from the general human population, they can be quite different due to a sample
selection bias. This leads to a mismatch in the joint distribution of the two datasets,
which is often referred to as dataset shift. In this project, we investigate the consequences
of dataset shift as well as research methods for fixing it. These methods include naive
methods like resampling nearest neighbors, and more sophisticated ones like Kullback-
Leibler Importance Estimation Procedure and Boosted Decision Tree reweighter. We use
the American National Health and Nutrition Examination Survey dataset as our external
rich source and a local dataset from the Munich start-up wellabe as our test set.

We evaluate our results on a regression task for age prediction and several classi-
fication tasks. We conclude that in most cases reweighting methods provide moderate
improvement on the target metric in the test set. We also show that reweighting cannot
be considered as a universal tool and its power is limited by the task at hand: rare diseases
transfer worse, while easier tasks with strong predictors transfer better.
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1 INTRODUCTION 1

1 Introduction

In recent years, companies have become more interested in employees’ health due to
the rapid changes in working style and working environment. wellabe, a start-up based in
Munich, aims to provide its client companies and their employees better understanding
of their health status as well as personalized prevention programs.

After a 15-minute on-site check-up taken place directly at the client companies, an
employee’s health profile containing various biomarkers is built. The check-up includes
measuring blood pressure for heart health assessment, taking blood samples to analyse
metabolic processes, evaluating breath for lung volume and pulmonary conditions, es-
timating body composition values via a smart scale, and lastly measuring heart rate
variability to analyse stress levels [1]. One’s medical history as well as lifestyle-related
behaviors are also collected in a questionnaire during this process: it is recorded, for
example, if the person has diabetes. After the check-up, the results are interpreted and
explained by doctors via video consultations. Health scores are then given to the in-
dividuals based on their overall health condition. In the end, personalized prevention
programs, which detect early-stage risk factors, are recommended to the employees via
the wellabe mobile app, so that better precautionary measures can be taken to build a
healthier lifestyle and possibly prevent diseases.

The health data collected during check-ups can be used to build machine learning
models and thus improve our understanding of the relationships between diseases and
their related factors. However, there are several challenges that make it a hard task.
Firstly, due to privacy concerns, one cannot directly access the client data, so in this
project we had to use a synthetic dataset, which mimics the underlying distributions of
the real wellabe data. The synthetic dataset imposes many limitations and challenges
to work with due to its synthetic nature, for example, creating erroneous small clusters
of values, or not being able to capture the true correlations between features. Secondly,
both real and synthetic data do not contain sufficient amount of labels to build disease
prediction models, only diabetes is available, so we need an external source of data. For
these reasons, another dataset, namely the National Health and Nutrition Examination
Survey dataset (NHANES), sampled based on the United States population over nearly
20 years, is introduced with a rich set of biomarkers and other additional health labels.

The problem with such an approach is that although these two datasets come from the
same population (all people on earth), they represent different subsets of this population,
which we can refer to as sample selection bias. Specifically, NHANES dataset represents
the general United States population with large diversity, whereas the wellabe dataset
only represents the German corporate class, in which employees’ health is cared for by
the companies. This selection bias leads to another problem, known as dataset shift [2],
which generally means that the joint distributions of features x and target y, p(x, y), are
different in the two datasets. For us, it means that we cannot directly apply the models
trained on NHANES to the wellabe dataset.

Our main challenge in this project was to address the aforementioned dataset shift
problem, and explore if we can alleviate it to make NHANES models applicable to wellabe.
We first researched the different types of dataset shifts, which include covariate shift,
prior probabilities shift, and concept shift. After evaluating the severity of shift between
NHANES and wellabe, we explored various resampling strategies to fix this issue. There-
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fore, we started with simple methods like resampling the nearest neighbours, and then
investigated more complex methods like Kullback-Leibler Importance Estimation Proce-
dure (KLIEP) and Boosted Decision Tree reweighting (BDT).

We evaluated our approach on a simple regression task for age prediction and also on
a variety of classification tasks. As we have mentioned, wellabe dataset does not contain
enough labels, so we introduced additional artificial features by discretizing some of the
available continuous ones. We concluded that our reweighting stategies gave moderate
improvement in most cases based on the target evaluation metric. We also discovered
several limitations for model transfer for the cases when the classification task is difficult
and cannot be easily explained by the data at hand. Namely, the task of predicting
diabetes became a challenging one when there were many missing values for glucose level
measurements. However, even for such tasks, there was a significant improvement after
applying our reweighting strategies. Thus, we concluded that model transfer is possible
but the outcomes highly depend on the chosen task.

Lastly, we also performed several experiments with NHANES data to see which
particular labels and features could be of potential use for wellabe and can be easily
included. The first of such tasks was asthma prediction for which we conclude that
wellabe can benefit from including the current medication and bronchitis disease status
of a person. Then we also trained another model on NHANES to detect if the person
has taken medication in the last 30 days. Knowing this information is very important
and can help to get additional insights when interpreting check-up results. In the end, we
also suggested a method for wellabe to validate the quality of this model on the wellabe
dataset.

The project report is structured as follows. We first introduce the datasets and
available features in Chapter 2. Next, in Chapter 3 we show domain analysis and explain
our cleaning and preprocessing procedures. Chapter 4 is dedicated to the problem of
dataset shift and our approaches to alleviating it. In the next two Chapters 5 and 6, we
apply the methods from Chapter 4 for regression and classification modeling tasks and
analyse the results. Finally, Chapter 7 shows how we can apply the model transfer results
for working with labels that are not available in the real wellabe dataset.

2 Datasets

2.1 wellabe Datasets

The wellabe dataset, measured on German employees as explained in Chapter 1,
will be referred to in the succeeding sections as ”real wellabe”. This particular dataset
contains 70 features and 1,500 samples. Those features are separated into five groups.
Four of them are the main feature groups containing numerical biomarkers categorized
based on their medical meanings: cardiovascular system, metabolism, respiratory system,
and body composition. The fifth and the last group includes additional features for
personal information (e.g., age and sex), medical conditions (e.g., if one has diabetes),
lifestyle habits and behaviors (e.g., if one ate or exercised recently before the check-up),
health scores (e.g., scores based on doctor’s consultation), recheck status and related
features (e.g., if a follow-up check-up is conducted), and bookkeeping labels (e.g., user id,
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record of when the appointment is booked, etc.).
Given, that samples come from the corporate environment, real wellabe only contains

people of age from 18 until 65, and is not considered to be representative for the entire
German population.

To protect patient privacy and follow data protection laws, a synthetic version of
the wellabe dataset was used for modeling purposes in this project instead. The syn-
thetic wellabe dataset is an algorithm-generated dataset which mimics real wellabe and
maintains the underlying feature distributions. It contains 50,000 samples and 70 fea-
tures (same features as in real wellabe). There are two main advantages for using such
a synthetically-generated dataset. Firstly, the anonymity of the patients is kept. The
synthetic data is generated by creating new samples instead of introducing noise to the
original data, making it harder to retrieve sensitive personal information for individuals.
Secondly, the size of the synthetic dataset is much larger than real wellabe, allowing us
to build more robust and generalizable models. However, working with synthetic data
introduced a lot of challenges, which will be further explained in Section 2.3.

The primary functionality of the synthetic wellabe dataset in this project was used for
modeling and experimenting various methods introduced in Chapter 4. The final model
transfer evaluation was based on the performance tested on the real wellabe dataset, which
was hidden from the students.

2.2 NHANES Dataset

The motivation of this project is to make use of a richer dataset compared to wellabe,
specifically, NHANES. NHANES is a survey and research program built upon multiple
studies aiming to assess the health and nutritional status of the American population
[3]. The dataset includes a combination of interviews and health examinations of survey
participants. The samples are recorded in two-year buckets since the year 1999, making
NHANES a rich complementary dataset to the smaller wellabe dataset with only 1,500
samples.

The initial NHANES version provided for this project contained 28 features, which
were also included in wellabe, and roughly 72,000 samples for the years 1999-2012. During
the course of this project, we decided to enrich the NHANES dataset and include the
years 2013-2018 in order to make use of the additional 30,000 samples. To validate the
enrichment, we investigated equipment used, lab methods, and lab site used during the
medical examinations for each of the year buckets. Except for the feature for glucose
level, we could not find any significant changes. Therefore, all of the other features had
the same medical meanings and were included for the additional years.

One issue with the NHANES dataset was that not all features were present in all
year buckets (see Appendix A), creating many missing values for certain features. The
problem will be addressed by our imputation procedure explained in Section 3.2.2.

For this project, the NHANES dataset was used as the training set for our models.
Given its richness compared to the wellabe dataset, we aim to not only transfer models
trained on NHANES to real wellabe, but also predict target variables which are not
measured by wellabe.



2 DATASETS 4

2.3 Limitations of Synthetic Data

Synthetic datasets, generated by computer simulation, have many limitations, espe-
cially in complex systems as the human body. The challenge is to accurately model not
only separate distributions, but also the complex relationships between random variables.

As a result, the wellabe synthetic dataset naturally posed challenges in terms of
medical inconsistencies and general data inconsistencies. In-depth research was conducted
and initial data analysis was done on all the features in order to guide the cleaning
process. This thorough research was crucial to understand which health features needed
to be adjusted, or which features could not be used when testing a model trained on
a separate dataset. When considering the features that could be recomputed such as
the Fatty Liver Index (FLI) and Body Mass Index (BMI) (see Appendix B for detailed
feature explanation and calculation), the values in the synthetic dataset would not match
our recalculated value. Moreover, certain medical inequalities were violated, for example,
many samples had a higher forced expiratory volume in 1 second (FEV1 L) than their
total forced expiratory volume (FVC L).

Initial data analysis of the synthetic dataset showed small clusters at outlier values.
One example of this is seen in high-density lipoprotein (HDL), the graph in Figure 1
shows approximately 400 samples with an HDL level of 124 mg/dL, which is a substantial
amount for this outlier value. On the lower end of HDL values, many samples have values
clustered in the range of 1 to 9 mg/dL. This posed challenges because more in-depth
knowledge was required to determine if those values were valid or not, the domain was
restricted to exclude the outlier values.

Figure 1: Distribution with small clusters Figure 2: Non-smooth distribution

Moreover, many features follow non-smooth density distributions. Figure 2 shows
an example pattern for FVC L. In this case, the density distribution of this feature has
large jumps and drops seen at FVC L values of 3 liters and 6 liters. These jumps and
drops limit the ability to accurately estimate the true distribution, which is more normally
distributed.

Lastly, although the synthetic dataset captures individual features’ distributions as
in real wellabe, correlations between features are not always maintained. Features that
should be strongly correlated due to their medical meanings, for example, alanine and
aspartate transaminases (ALT, AST), have correlation of 0.77 in NHANES, but only 0.18
in the synthetic dataset.
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3 Domain Understanding and Data Handling

3.1 Domain Understanding

Using various online medical research sources based out of universities [4] and clinics
[5], as well as Centers for Disease Control and Prevention [6], detailed exploration on all the
features of the datasets was performed. Further research was done on each of the features
to determine which values were considered healthy. This so-called ”normal range” was
defined as a range of values that correspond to the ideal values for that label. Comparing
the values in the datasets against those normal ranges provided us medical understanding
of the features along with insights about the individuals’ health conditions. The normal
ranges can be found in Table 9 under Appendix B, alongside the corresponding feature
descriptions.

All the features were categorized into one of the five groups: metabolism, respiratory
system, cardiovascular system, body composition, and other features which did not fit into
the previous four groups. Table 10 in Appendix C shows how each feature was categorized
and its availability in the wellabe and NHANES datasets.

3.2 Data Cleaning and Handling

3.2.1 General Cleaning Procedure

We examined each feature in both datasets in detail and implemented a thorough
cleaning procedure. The data cleaning rules were divided into 3 subgroups: rules that
only apply to the NHANES or the wellabe dataset, and rules that are applicable for both.
A comprehensive list of the most relevant used cleaning procedures can be found in Table
11 in Appendix D.

For both datasets, several general rules were applied. Zero values were firstly con-
verted to NaNs before the imputation steps. Features that existed in both datasets were
compared and cross-checked to ensure they had the same units and thus on the same
ground for comparison. Furthermore, we unified encodings (e.g., gender and pregnancy)
and data types for features available in both datasets. Lastly, a few additional features
were created which could be beneficial for the further modeling tasks. For example, BMI
was created based on weight and height for both datasets; Mean Arterial Pressure (MAP)
as well as Pulse Pressure (PP) were calculated for NHANES since they were not recorded
previously (the exact formulas can be found in Appendix B).

Provided that the samples were collected from different populations, the age groups
and their distribution for the two datasets also vary, as shown in Figure 3. NHANES covers
a wide age group from infants until age 85, whereas in the corporate wellabe dataset,
samples’ ages range strictly from 18 to 65. In order to model the two populations as
close as possible, while not losing too many rows, we included samples from the NHANES
dataset with age from 18 until 75, with the assumption that samples with age 66 - 75 have
similar health data as people who are, for example, above 60. This resulted in having
around 53% of the original data for NHANES. This age distribution comparison after
cleaning can be found in Figure 4.

Cleaning medical data can be a challenging task for various reasons. Questionable
(i.e., too high or too low) values in the datasets could be caused by measurement errors
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Figure 3: Before cleaning Figure 4: After cleaning

during examinations, algorithmic errors produced by the synthetic data, or they could
indicate a certain illness in samples, which require adequate medical understanding to
recognize and differentiate.

As already discussed in Section 2.3, after taking an in-depth look at all the features,
rules were set in place to handle the issues synthetic dataset generates, such as the small
clusters. Moreover, some outlier samples, which were considered as physically impossible,
were removed. For example, the normal range for BMI is from 18.5 to 24.9 for both males
and females. Samples with extreme BMI values, greater than 62.87 (more than 5 standard
deviations away from the mean), were considered as severely obese and thus taken out
from NHANES.

3.2.2 Missing Value Imputation

Missing data can be classified into one the the three categories introduced by Rubin
[7], describing the different underlying mechanisms that generate the missing data: Miss-
ing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At
Random (MNAR). MCAR implies that the missingness of a variable is purely random,
and is not related to any other observed or unobserved covariates. MAR suggests the
missingness is still random, but is related to some other observed variables. MNAR, on
the other hand, refers to the case when the missingness relates only to the unobserved
variables, or data that is missing. For example, people with depression might more likely
refuse to complete survey questions about depression, creating missingness that is MNAR.

Overall, one should consider missing types when doing imputations and avoid imput-
ing variables that are MNAR, since more biases could be introduced to the estimations.
Unfortunately, there exists no well-defined statistical method to determine exactly which
category a variable belongs to. Therefore, to reduce potential induced bias, we only
imputed variables that had less than 5% missing values.

Since NHANES’ features is a subset of wellabe’s features and we would only model
on NHANES, imputing missing values for features which only existed in wellabe was
considered unnecessary. The set of features that appeared in both datasets with less
than 5% missing values made up the so-called ”usable features” group, which contained
the following features: ALT, AST, BMI, CHOLESTEROL, CREA, DIA BP, GGT, HDL,
HEART RATE, MAP, PP, SYS BP, WAIST SIZE, WEIGHT, age at checkup, has diabetes,
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height, is pregnant, and sex (see Appendix B for further feature descriptions). All fea-
tures were imputed directly, besides has diabetes, where the missing values were filled as
0 (non-diabetic).

We experimented imputing missing values using k-nearest neighbors (kNN) with
various numbers of neighbors. In the end, we chose k = 4 as it gave better performance
when modeling for the age prediction task mentioned in Chapter 5, while all other model
parameters were kept consistent.

4 Model Transfer

One of the challenges of this project was to research if we can potentially transfer a
model trained on NHANES data to wellabe dataset without direct re-training. This kind
of setting would be of particular interest for predicting the probability for diseases that
have labels in NHANES but not in wellabe. Naturally, one should not expect that the
predictions for NHANES will automatically work in wellabe. The problem we have been
challenged with is to see if there exists a way to somehow make the knowledge learned
from NHANES more applicable to wellabe.

Broadly speaking, the term dataset shift describes the setting, when the joint distri-
butions p(x, y) of features x and targets y at the time of training and testing are not the
same. This kind of problem happens quite often in real world, when the system developed
in lab conditions has to be applied in real world. The problem is that machine learning
algorithms often come with the assumption that train and test data come from the same
distribution and this is what we cannot guarantee in our scenario with the NHANES and
wellabe datasets. The consequence of that is that good performance of the model in the
stationary environment (when train and test come from the same distribution) does not
guarantee the model will still be valid when dataset shift happens.

One of the major reasons for that is sample selection bias [2]. For example, the
wellabe dataset is not representative of the whole German population. However, it is a
representative subset of the German corporate class. NHANES at the same time attempts
to be representative of the United States population and includes much richer variety of
observations, although this richness sometimes can also be a source of problem. For
example, the research shows 54% of African American adults have high blood pressure
while for Caucasian adults it is just 46% [8].

We can potentially de-bias the train dataset by excluding certain ethnicities, however,
the ethnicity label is not available in wellabe and unfortunately it does not solve the
problem: even though de-biasing slightly improve the situation with the heavy tails for
NHANES, the densities are still different as seen in Figure 5. That is why we had to come
up with more sophisticate methods.

With this in mind it is clear that it is very important to address this situation in
this project. In the next section we will briefly look at different types of dataset shifts
which might occur when switching from train to test setting, namely: covariate shift,
prior probability shift and concept shift.

In this and the following section we define x as as set of features or covariate, y as a
target variable and p(x, y) as a joint distribution over features and targets.
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Figure 5: Pulse pressure before and after de-biasing

4.1 Covariate Shift

One of the most well-known types of dataset shifts is the covariate shift. As one can
guess from the name, this is the situation when the distribution of covariates is different
for train and test datasets, namely [2]:

pNH(x) 6= pwel(x)

Here, pNH(x) and pwel(x) are the joint density distributions of the features for
NHANES and wellabe respectively. The important assumption we are making in this
case is that the conditional distributions, pNH(y|x) and pwel(y|x) are equal, which means
that. This is important because Amos Storkey [9] raises the idea that if we are able to
learn the true conditional model, that could explain the data, then there is no need to
compensate for the covariate shift and the accuracy of the predictions should not change
much. However, if the test data is simpler than train, then, by compensating for the
covariate shift and, for example, resampling, we are allowing for a simpler model, which
is not necessarily a true model, but it provides a better performance due to locality.

We should note that we can also end up in the situation when test data is more
complex than train and in this case the performance of the model with compensated
covariate shift might be even worse.

Another case when matching the distributions might lead to worse results is when
the test data we are matching to does not capture the actual relationships in the data.
By resampling or reweighting we might end up in the situation where we simply give too
much weight to points that are likely to come from test data but are not informative
enough for building a good model. As a result, by matching the joint distribution, we
might actually break important correlations that are present in real world and captured
by train data but that are not present in test due to different reasons as shown in Section
2.3. One notable example are the features of ALT and AST. The correlations between
ALT and AST in NHANES is 0.76, while in the synthetic dataset it is just 0.18. After
resampling the correlation between these features is 0.6 in resampled version and 0.59 in
the case of reweighting. We can observe a similar behaviour with other features. The
results are similar both for resampled and reweighted.

We can conclude that under the situation of the covariate shift we can either try to
learn the true model or match the distributions such that we can use a simpler model.



4 MODEL TRANSFER 9

However, in both cases we have to keep in mind the assumption that pNH(y|x) = pwel(y|x).

4.1.1 Measuring Covariate Shift

In case of wellabe and NHANES we can see (again, under assumption that pNH(y|x) =
pwel(y|x)) that the covariate shift is indeed present), which can be seen in Figure 6, where
the blue and orange density distributions are from the NHANES and wellabe datasets,
respectively.

Figure 6: Original distributions of selected features

Before we dive into methods for fixing the covariate shift, it is reasonable to develop
a metric, with which we can measure if the suggested method indeed provides an improve-
ment. One way to do so is visual examination, as seen in Figure 6. Another approach
would be to train a classifier to distinguish between elements in the two datasets and check
its prediction performance. If no covariate shift is present, we should expect the classifier
to have a low performance. The algorithm for that can be summarized as follows:

1. Assign 0 to all samples in NHANES and 1 to all samples in wellabe

2. Train a classifier to predict if the sample comes from wellabe dataset, using selected
features (the features choice depends on the task for which we are fixing the covariate
shift)

3. Evaluate the performance

For performance evaluation, we will the concordance statistic (c-statistic), represent-
ing the area under the Receiver Operating Characteristic curve, which is often used to
evaluate classification methods. If it is close to 1, it means that the datasets are far
apart and we can clearly predict if the sample comes from NHANES or wellabe. As a
classificator we used boosted decision tree in all cases. Another metric that we have used
to evaluate the covariate shift is Kolmogorov-Smirnov Statistic for each feature [10]:
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Dn = sup
x∈R
|F1,n(x)− F2,m(x)|,

where F1,n(x) = 1
n

∑n
i=1 IXi≤x and IXi≤x indicates whether observation Xi is in the region

(−∞, x]. F2,m is defined in the same way. The KS statistic checks what the largest gap
between the two distributions is. The functions F1,n(x) and F2,n(x) check quantile by
quantile and find the difference of their cummulative distributions. It can be seen from
the definition that the smaller the value of the KS statistic indicate bigger similarity
between the distributions.

4.1.2 Methods for Covariate Shift

When the covariate shift is present, ideally one should retrain the model on the new
data. However, it is not always possible. In our case specifically, the available train data
is richer than test. In the next sections we show different methods for alleviating the
covariate shift and evaluate them using the metrics, described above. The summary of
these results can be found in Section 4.1.3

4.1.2.1 Naive Methods

One intuitive thing to do in a situation of a covariate shift is to drop the features
that are the most problematic and demonstrate the biggest mismatch - for example, age
at check-up. However, if we keep removing features, we will end up with a very limited
set of covariates that provide less insight to us.

Another idea that comes to mind is to resample the dataset by choosing only similar
observations: for each observation x in wellabe, we find observation y in NHANES that is
closest in terms of Euclidean distance. In such, we are left with the following optimization
problem:

y = arg min
y∈NH

d∑
i

(yi − xi)2,

where given a fixed observation x, we find the closest observation y across d features. This
method is very heavy computationally due to necessity to compute all pairwise distances,
which results in runtime complexity of O(nm× d) because we compute n = |wellabe|
distances to m = |NHANES| observations across d = dim(wellabe) features. We will
refer to this approach as nearest neighbor resampling (NN).

4.1.2.2 Dataset Prediction Classifier
A lof of methods for the covariate shift rely on the idea that it can be fixed by reweighting
the training data according to the ratio of the train (pNH(x)) and test (pwel(x)) proba-
bility distributions. Formally known as the importance estimator [11], these weights are
calculated using:

w(x) =
pwel(x)

pNH(x)

Similar to the algorithm described in 4.1.2, we used a dataset prediction classifier (Lo-
gReg) to estimate the importance. We start again by assigning 0 to samples in NHANES
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and 1 to samples wellabe. Using the probability that pwel(σ = 0) and pNH(σ = 1), we
take this ratio as a an estimate for the importance, where σ denotes the dataset label for
NHANES or wellabe. Then the logistic regression model is fitted to predict p(σ|x). Then
the estimate of the densities ratio can we rewritten as [12]:

pwel(x)

pNH(x)
=
p(σ = 0)

p(σ = 1)

(
1

p(σ = 0|x)
− 1

)
The original methods suggests to incorporate the weighting procedure directly into the
learning algorithm. However, we are only using the weights.

4.1.2.3 Kullback Leibler Importance Estimation Procedure

Another method for estimating the density ratio and finding the importance was
suggested by Masashi Sugiyama [13] and is called Kullback-Leibler Importance Estimation
procedure (KLIEP). The key idea of this approach is to model the importance as a linear
combination of basis functions ξi(x) scaled by parameters {αi}ki=1, which are learnt from
data [13]:

ŵ(x) =
k∑

i=1

αiξi(x),

and then use it to estimate pwel:

p̂wel(x) = ŵ(x)pNH(x)

KLIEP uses the Kullback-Leibler divergence (KL divergence), which measures how differ-
ent two probability distributions are. By taking the formal definition of the KL divergence,
we can minimize the distance from pwel to p̂wel, and in the process, obtain an estimate for
ŵ(x).

After solving directly from the definition of KL-divergence and empirically approxi-
mating this integral, we are left with a concave optimization problem with the objective
function to be maximized defined as [13]:

nwel∑
j=1

log

(
k∑

i=1

αiξi(x
wel
j )

)
,

subject to
∑nNH

l=1

∑k
i=1 αiξi(x

wel
l ) = nNH and ai ≥ 0∀i. The variables to be optimized are

{α}i with a set of initialized basis functions ξi(x)
This objective function has constraints that can be derived from the fact that p̂(x)

has a density equal to 1. In deriving these constraints, we approximate that integral
empirically based on of the testing input (wellabe). Finally, by solving this concave
problem with respect to {αi}ki=1, KLIEP allows to estimate the importance ratio w(x)
without directly computing the densities.
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4.1.2.4 Boosted Decision Tree Reweighter

Another interesting approach that we have found during our research was proposed by
Alex Rogozhnikov [14] and is based on boosted decision trees (BDT). The idea is somewhat
similar to that of dataset prediction explained in Section 4.1.2.2 . We are again working
with the merged dataset, consisting of NHANES and wellabe data with additional label
indicating which dataset the observation comes from. In this case, however, we encode
wellabe as 0 and NHANES as 1 instead.

Figure 7: Reweigthing results with BDT

The key idea is to use the decision trees to find the regions (aka leaves) of the
feature space of this full dataset that are important for the reweighting. In this tree,
the importance is measured with respect to the number of observations from train and
test data: if the leaf contains much more data points from train than from test, then the
importance of this region should be smaller. In order to achieve this we build many shallow
decision trees, where the following metric is maximized (referred to as symmetrizied χ2

on page 3 in the original paper [14]):

χ2 =
∑
leaf

(|NHleaf | − |welleaf |)2

|NHleaf |+ |welleaf |
,

where |NHleaf | and |welleaf | is the number of train (NHANES) and test (wellabe) obser-
vations in the leaf respectively. When there is equal number of observations in the leaf,
the χ2 will obviously be zero - we don’t have to do anything there. Intuitively it makes
sense to ideally have a balance of both datasets in the leaves. After the tree is found the
prediction, ŷ, is computed using:

ŷ = log(|teleaf |)− log(|trleaf )

At each iteration, the weight vector ω is updated using the following formula:

ωnew = ωold exp(y · ŷ),

where y is the true value (1 for NHANES and 0 for wellabe), and the weight vector ω is
initialized as a vector of ones. It should be intuitively clear that if the observation y comes
from the test dataset (0 for wellabe), then the weight does not change. The runtime for
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this method is O(m × p × ntrees), where m is the size of the combined dataset, p is the
number of features and ntrees is the number of trees. This runtime can be adjusted when
choosing the depth of the decsion tree.

Figure 7 shows the results of the BDT reweighting method, where we can see the
original covariate shift for the features: WAIST SIZE, HDL and age at checkup. After
reweighting, it is visually clear that the reweighted NHANES follows a similar distribution
to wellabe.

4.1.3 Covariate Shift Reweighting Results

In order to compare the covariate shift reweighting methods, we used the average
KS statistic for the features ALT, CHOLESTEROL, CREA, GGT, HDL, WAIST SIZE,
height and age at checkup. These features were the most complete overlapping between
the NHANES and wellabe datasets, and the effects of the covariate shift was clearly
seen when no reweighting metod was applied due to a high C-statistic (0.9627), which is
close to 1 and high KS statistic (0.27426). The table below shows all of the results for
the covariate shift methods mentioned in this section, and it is clear that each method
lowered the C-statistic and significantly lowered the KS statistic. The best performing
methods were KLIEP and BDT.

Covariate Shift Reweighting method C-statistic KS Statistic

No reweighting 0.9627 0.27426

Nearest Neighbour reweighting method 0.8927 0.1217

Dataset prediction method (LogReg) 0.9217 0.2083

KLIEP reweighting method 0.8590 0.128

BDT reweighting method 0.8563 0.0787

Table 1: C-statistic and KS Statistic for different reweighting methods to address covariate
shift

4.2 Prior Probability Shift

In contrast to the covariate shift, this type of shift is detected in the target variable y,
when its distribution in train and test datasets are different. Using the notation consistent
in this section, we have [15]:

pNH(y) 6= pwel(y)

under the same assumption that Pwel(x|y) = PNH(x|y), where pwel(x|y) and pNH(x|y) are
the conditional distributions of the features x given label y. This can be the case with data
such as diseases, where this target variable is not distributed similarly. For example in
NHANES, the percentage of people having diabetes is 8%, while in the synthetic wellabe
dataset it is 0.8%, which is around ten times smaller. Comparing these percentages to
official census data showed that in United States, 13.3% [16] of age 18-65 have diabetes,
while in Germany this percentage is 15.3% [16]. This however, includes both diagnosed
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and undiagnosed cases, while we only have data for diagnosed cases (when the patient
is aware of their disease and are able to communicate it). So in this case, 8-10% for
NHANES seems reasonable. The difference we observe between NHANES and synthetic
wellabe might be due to the selection bias: i.e. we know that wellabe users belong to the
corporate class and expectantly have a better health. This kind of situation might become
problematic for generative models like Naive Bayes, where we rely on priors distribution
p(y). For this kind of models there exist methods for adjusting the priors with respect to
the new (test) data.

There are two possible settings in this situation: when pwel(y) is known and when
it is unknown. In case when it is known, we can adjust the output probabilities of the
classifier by using [15]:

Pwel(yi|x) =

pwel(yi)
pNH(yi)

pNH(yi|x)∑n
j=1

pwel(yj)

pNH(yj)
pNH(yj|x)

When new priors are unknown it is still possible to estimate them for which there are
several approaches to do so. One simple approach is the confusion matrix approach which
is composed of true and false positives as well as true and false negatives [15]. Applying
this kind of adjustments for probabilities of the Naive Bayes improves recall, but severely
distorts accuracy, so eventually we made a decision not to adjust the priors. Applying
this kind of adjustment for conditional model (in contrast to generative) is questionable
and we have not found sufficient support for such methods in literature.

4.3 Concept Shift

Lastly, we would like to address the problem of concept shift. This happens when
the density distributions for the features are equal, pNH(x)=pwel(x), but [2]:

pNH(y|x) 6= pwel(y|x)

Simply speaking, the relationships between covariates and targets are different in train
and test datasets. This often happens when there is a latent variable we are not aware of.
A typical example is when some quantity depends on time of the year, but this variable is
not present in dataset and we do not account for it. In our case we can suspect that there
are certain features that might have different meaning in NHANES and wellabe. One
such example is blood pressure. It was detected that, for example, systolic blood pressure
has different relationship to age in the United States compared to Germany, which one
can observe in Figure 8.

There are several methods for fixing the concept shift which are mostly targeted at
time series data, where this problem naturally occurs. Like with all other shifts, it would
be ideal to retrain the model, but we don’t have such option. When it comes to non-series
data our options are rather limited and mostly reduce again to reweighting or resampling
methods [17] that help to filter the train datast and select only relevant samples (which
we can do using the methods from Chapter 4).

In Figure 8, we illustrate the effects of relieving the concept shift with the example
of systolic blood pressure and age at check-up. Each graph shows the relationship of the
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two features in wellabe and different subsamples of NHANES. These following NHANES
versions are shown:

1. The raw NHANES dataset.

2. Debiased data: we removed ethnicities that are not representative of the German
population and removed people taking medicine as it could be used to regulate blood
pressure.

3. Reweighted data: We used the strategies shown in Section 4.1.

4. Reweighted and de-biased: combined approaches of (2) and (3) by first de-biasing
and then reweighting the data.

Figure 8: Concept shift and effect of reweighting

Initially, it is clear that NHANES and wellabe do not preserve the same relationship
between systolic blood pressure (SYS BP) and age. Even though de-biasing the data
showed better results, reweighting had the best performance. The combined approach
gives slight improvement over the reweighting approach, but discards a lot of data, so we
generally chose to use the reweighted version of NHANES.

We haven’t found a direct method to evaluate the concept shift, so we suggest a
proxy that can help to evaluate the concept shift for categorical target variable y. The
idea is simple:

1. Select features x to be tested for the concept shift

2. Train two classifiers, f1 and f2 on train and test data respectively

3. Predict ŷtr,f1 = f1(xtr) and ŷte,f1 = f1(xte)
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4. Predict ŷtr,f2 = f2(xtr) and ŷte,f2 = f2(xte)

5. Compute percentage of instances assigned to the same class by different classifiers:

dtr =
1

|tr|
|ŷtr,f1 − ŷtr,f2|

dte =
1

|te|
|ŷte,f1 − ŷte,f2|

If the accuracy is close to 1, it means that the concept shift is unlikely in this situation.
E.g. when performing such evaluation for diabetes with features DIA BP, CREA, HDL,
CHOLESTEROL the accuracy is 0.9999, so no concept shift is detected.

This approach can be adapted to continuous targets as well. The only difference is
that instead of computing the number of matching predictions, we need to use a different
metric. In case of age, we evaluate the mean absolute distance.

Using this approach, we have experimented with the pair SYS BP and age at checkup.
The results can be seen in Table 2. Also we can observe that the suggested method for
measuring the concept shift is quite informative for measuring the concept shift. When
only one covariate is present one might simply use the correlation coefficient, however this
method becomes in handy when there is more than one covariate.

NHANES version
Mean Absolute Differ-
ence on NHANES

Mean Absolute Differ-
ence on wellabe

Raw 1.73 1.89

Debiased 1.14 0.63

Reweighted 0.23 0.23

Debiased and Reweighted 0.16 0.18

Table 2: Mean Absolute differences on NHANES and wellabe, for various dataset versions
of NHANES

4.4 Transfer Evaluation

Although we have mentioned a few methods to evaluate if we were able to fix the
mentioned types of shifts, in a practical situation we are more interested not just in how
similar NHANES is to the synthetic welalbe dataset, but how well the model, trained on
NHANES can generalize to the real wellabe dataset, using synthetic data as a proxy for
learning the dataset shift and fixing it.

Our main metric for evaluating the transfer quality is the difference between the
performance of the model on NHANES hold out test set and real wellabe dataset, with
synthetic dataset being our validation set. The model metric itself was chosen based on
the task and model as explained in Section 5.1 and Section 6.1
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5 Age Prediction

Age prediction was chosen as one of the tasks for evaluating model transfer due to
its simplicity and ease for the result interpretation. We performed our experiments in
the following way. First, the models were trained and tested on the NHANES dataset
and verified on real wellabe. Then we reweighted NHANES using KLIEP, described in
Chapter 4, and again tested on real wellabe and reweighted NHANES.

In the case with age prediction, we have both covariate and concept shifts. The
concept shift happens when we talk about age versus systolic, diastolic blood pressures as
well as heart rate. We reweighted the samples, including the y-variable to only capture
the relevant samples, as explained in Section 4.3. This way we fixed the joint distribution
p(x, y).

Additionally, we have trained the same models directly on the synthetic dataset to
get an idea of the upper bound for the model performance.

The main metric we used for performance evaluation is Mean Absolute Error (MAE).
We chose it for its good interpretability - it is easier to reason about such outcome variable
as tangible as age because we compare the scores in terms of years.

5.1 Model and Metric Choice

We introduced a set of regression models suited for modeling the age prediction task.
We found that the ordinary linear regression model and three linear regression models
with regularization, namely, lasso regression, ridge regression, and ElasticNet, performed
the best (with results recorded in Section 5.3). We also experimented with support vector
regression (SVR), multivariate adaptive regression splines (MARS), generalized additive
models (GAM), and extreme gradient boosting (XGBoost), however, these models did not
give good model performance and thus were not tested on real wellabe. Since the overall
modeling procedure was complex having three datasets involved, we provide a general
overview of the workflow used during the course of this project (see Appendix F).

We assumed the ”simple” regression models to outperform the others due to their bet-
ter generalization capabilities on both the unsampled and resampled NHANES datasets.
This property lies in the nature of the relatively simple model constructions. Simple linear
regression models are fitted using the least squares approach only, whereas lasso regression
introduces a L1-norm and ridge regression a L2-norm penalty to the objective function.
Both lasso and ridge regressions aim to reduce variance at the cost of bias by penalizing
large weights. ElasticNet rather builds on the trade-off between both methods by incor-
porating both L1-norm and L2-norm penalties. Even though there are some variations
in the models construction, the results in Section 5.3 show that the overall performance
differences between the four models can be neglected.

5.2 Feature Choice

For multiple regression models, it is crucial to ensure that the features are not multi-
collinear. Multicollinearity suggests high intercorrelations between two or more inde-
pendent variables and can lead to misleading results when analyzing each independent
variable’s ability to predict or explain the corresponding dependent variable. Variance
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inflation factor (VIF) measures exactly the amount of multicollinearity that exist in a
set of independent variables [18]. VIFs start at 1 and have no upper bound. A VIF
value of 1 indicates that there is no correlation between one particular independent vari-
able to any others. A large VIF, with value above 5, on the other hand, indicates high
multicollinearity and requires correction.

Within the scope of above-mentioned usable features in Section 3.2.2, we performed
VIF testing and removed variables with values higher than 5 during the age prediction
task. Additionally, we also removed features that have strong pairwise correlations to
each other based on Pearson’s correlation coefficient. The remaining features are: AST,
CHOLESTEROL, CREA, DIA BP, GGT, HDL, HEART RATE, SYS BP, WAIST SIZE,
has diabetes, height, is pregnant, and sex. This set of features gave the overall best
performance for the age prediction task and was used to produce the results in Section
5.3.

5.3 Results

The results of the experiments are recorded in Tables 3 and 4. The upper bound,
obtained from training and testing the same models on the synthetic dataset has MAE
score of 8.33. We can see that we achieved this upper bound on real wellabe with all
the models after reweighting in Table 4. We observe that after reweighting, the scores
for NHANES and wellabe get closer, meaning that we ”simplified” the NHANES dataset
and made it easier to explain with our chosen models. Reweighted models reduce average
MAE from 8.765 to 8.323, which allows us to conclude that the original model was already
close to the true model that explains both NHANES and wellabe.

Model Name MAE (NHANES) MAE (wellabe) MAE (diff)

Linear 11.052 8.304 2.748
Lasso 12.055 8.932 3.123
Ridge 12.070 8.928 3.142

ElasticNet 12.034 8.896 3.138
Average 11.803 8.765 3.038

Table 3: Age prediction results with models trained on the raw NHANES dataset

Model Name MAE (NHANES) MAE (wellabe) MAE (diff)

Linear 8.388 8.346 0.042
Lasso 8.388 8.346 0.042
Ridge 8.347 8.317 0.030

ElasticNet 8.307 8.283 0.025
Average 8.358 8.323 0.034

Table 4: Age prediction results with models trained on the resampled version of NHANES
dataset using KLIEP
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6 Classification Models

After exploring NHANES, we have discovered several categorical variables that might
be of particular interest for us, which include asthma, osteoporosis, liver diseases, and so
on. Ideally, we would like to predict a score for the disease which will indicate if the client
needs to perform other tests. The only relevant variable that was present both in NHANES
and wellabe was diabetes. As we have already discussed in Section 3.2.2, glucose level
was not one of the usable features due to its high percentage of missing values (51.5%
missing after cleaning). Therefore, we were left with the challenge to predict diabetes
without the most important variable. In order to have more variety of tasks and a better
idea of transfer quality, we have also introduced several artificial categorical variables
by discretizing existing continuous variables, which include alanine transaminase (ALT),
cholesterol, and BMI (see Section 6.3). The results for each of the classification tasks are
discussed in Sections 6.2 and 6.3.

6.1 Model and Metric Choice

From the set of selected models we found, that ordinary logistic regression, Naive
Bayes, and Support Vector Machines (SVM) performed the best on the introduced datasets
(see Section 6.2). We also looked at different k-nearest neighbour (kNN) models and De-
cision Trees, none of which improved our results. We make use of the same workflow
introduced in Section 5.1 and shown in the Appendix F using the aforementioned classi-
fication models instead.

Recall ( TP
TP+FN

) was chosen as our primary evaluation metric, since the goal of health-
related feature classification is to capture as many true positives (TP) as possible and min-
imize false negatives (FN). In the case of multi-class classifications, micro-averaged recall
scores were used. Macro-average computes the recall score independently for each class
and then takes the average afterwards, meaning all classes are weighted equally. Micro-
average, on the other hand, aggregates the contributions across all classes to compute the
average recall, and is favored when there exists class imbalance [19].

The best performing models were logistic regression, SVM, and Naive Bayes. Whereas
logistic regression and SVM are discriminative models, conditioned by their predictor
variables, Naive Bayes is a generative model, aiming to estimate the underlying joint dis-
tribution of its predictors. Unlike conditional models, logistic regression and SVM, Naive
Bayes is known to be better suited for handling imbalanced datasets.

6.2 Diabetes Prediction

When modeling for diabetes we chose three models: logistic regression as a simple
baseline, Naive Bayes due to its good handling of rare events and SVM for its flexibility.
We have evaluated all three models with all the reweighted methods we have introduced in
Sections 4.1. The results are shown in Table 6. We can observe that none of the methods
are better in all cases and for all models, but all of them improve the recall score while
still maintaining reasonable accuracy.

Similar to the age prediction experiment, we also trained and evaluated these models
on the synthetic dataset to get the idea of the best achievable score, which can be seen
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in the column ”wellabe” of Table 6.
As we have mentioned, our main metric for evaluation of diabetes is recall, but at the

same time we still want our classifier to have an acceptable accuracy. The best trade-off
between accuracy and recall was achieved by Naive Bayes model with an accuracy of 0.64
and a recall of 0.27, while on raw NHANES this classifier had a recall of 0.03.

When modeling diabetes, we faced several issues which complicated the overall classi-
fication task. First, the distributions of people having diabetes in NHANES and synthetic
wellabe dataset are very different which can become problematic for generative models
like Naive Bayes as explained in Section 4.2.

Second, we apply different reweighting methods on the NHANES dataset which all
rely on learning the distributions from the synthetic dataset. Due to the limitations of
the synthetic dataset (Section 2.3), the reweighted dataset mirrors the underlying data
generating process of the synthetic dataset, which might be different from the real. We
conclude that this is a general issue for rare events, since every positive sample has a lot
of weight in modeling and after reweighting we might make this data even more sparse.

Accuracy Recall
Model Reweighting nhanes real wellabe nhanes nhanes real wellabe nhanes

wellabe diff wellabe diff

Raw 0.74 0.91 0.17 0.81 0.04 0.78
NN 0.7 0.68 0.02 0.82 0.18 0.64

LogReg LogReg 0.83 0.84 0.54 0.01 0.91 0.14 0.56 0.77
KLIEP 0.75 0.88 0.13 0.8 0.09 0.71
BDT 0.73 0.71 0.02 0.75 0.1 0.65
Raw 0.79 0.89 0.09 0.63 0.08 0.55
NN 0.74 0.73 0.03 0.81 0.13 0.68

SVM LogReg 0.9 0.83 0.68 0.01 0.81 0.11 0.33 0.7
KLIEP 0.75 0.76 0.06 0.85 0.13 0.72
BDT 0.73 0.71 0.04 0.83 0.16 0.67
Raw 0.86 0.94 0.09 0.35 0.03 0.32
NN 0.72 0.63 0.09 0.72 0.25 0.47

NB LogReg 0.83 0.79 0.98 0.04 0.8 0.1 0.01 0.7
KLIEP 0.54 0.5 0.04 0.83 0.38 0.45
BDT 0.61 0.64 0.03 0.8 0.27 0.53

Table 5: Diabetes prediction results with models trained on the resampled version of
NHANES dataset using different resampling methods.

Third, we found the glucose level biomarker to be the one most important predictor
for a person to have diabetes (Appendix E). Due to the high sparsity of this feature over
all year-buckets in NHANES we had to drop it and thus could not use it for modeling
(Section 3.2).

Lastly, the nature of the target variable itself is problematic. The presence of diabetes
is established based on questionnaires, so it only reflects the cases when the disease is di-
agnosed and the respondent knows about it. Therefore, it is inherently hard to find a good
classifier, since the ground truth labels contain false negatives (undiagnosed diabetes).

We conclude that reweighting NHANES improves the performance for all models.
However, the recall scores are generally low, even when trained directly on synthetic
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dataset. so even if we find the region that is closest in feature space to wellabe, the data
might still not be close enough or even not good enough for explaining the target variable.

6.3 Discretized Features

6.3.1 BMI, ALT, and CHOLESTEROL Predictions

In order to create classes in features, discretization of features was necessary. This
was done in accordance with the normal healthy ranges, as discussed in Section 3. For
example, if the target variable was HEART RATE, patients below the normal range were
given a value 0, if they were within the range, the value given was 1 and above the range
was 2. The goal was to see if we could train a model on NHANES that could predict
whether a patient in wellabe had a normal, low or high resting heart rate.

The chosen features to discretize were: BMI, CHOLESTEROL and ALT. We chose
these features in order to get a well-rounded perspective of all the overlapping features
between NHANES and wellabe. It is important to note that all features mentioned above
lead to more balanced classes, which gives better starting conditions than diabetes. The
features were also chosen in accordance to the number of years that the biomarker was
collected in NHANES; the more years, the better (see Appendix A). For this reason,
spirometry data was not considered.

BMI was chosen to represent all the features that are calculated from other biomark-
ers. This served as a baseline prediction to see whether a directly correlated feature can
be discretized and predicted; it will not only serve as an evaluation for model transfer,
but as an assessment of discretization in medical data.

Accuracy and Recall
Target Reweighting nhanes real wellabe nhanes

wellabe diff

Raw 0.89 0.79 0.1
NN 0.85 0.79 0.06

BMI LogReg 0.99 0.64 0.7 0.35
KLIEP 0.86 0.78 0.08
BDT 0.88 0.75 0.13
Raw 0.93 0.86 0.07
NN 0.88 0.87 0.01

ALT LogReg 0.99 0.63 0.85 0.36
KLIEP 0.96 0.83 0.13
BDT 0.86 0.86 0.0
Raw 0.59 0.67 0.08
NN 0.71 0.71 0.0

CHOL LogReg 0.98 0.69 0.72 0.29
KLIEP 0.69 0.71 0.02
BDT 0.54 0.67 0.13

Table 6: Discretized BMI, ALT, and CHOLESTEROL prediction results with logistic
regression models using different reweighting methods for the NHANES dataset.

Next, CHOLESTEROL shows perspective on biomarkers that fluctuate often, in the
sense that a change in diet or stress can result in a change of cholesterol levels in as
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short as a couple of weeks. This feature is very important to see how other biomarkers
change in a shorter timespan and whether there exists a minimal set that can predict this
fluctuation. Moreover, a high cholesterol value is strongly correlated to stress, a problem
faced often in wellabe’s demographic - the corporate space.

Finally, ALT was chosen as the biomarker that can detect organ problems. ALT is
an enzyme that breaks down proteins in the liver for example, and its release into the
bloodstream indicates organ problems. Predicting this biomarker acts as an example of
getting indications in a patient regarding a very specific illness or disease (in our case
organ failure). Many of the features in the metabolism group follow the same structure
as ALT and accurately represented the majority.

6.3.2 Results

In Figure 6, the results for the discretized model predictions are shown. The table
shows the target variables, as described above, and the accuracy/recall scores for each
of the reweighting methods applied. In our case of micro-averaging, the accuracy and
recall scores have the same value. The models were trained on the NHANES dataset
with the reweighting methods described in Chapter 4, and tested on both NHANES and
the real wellabe dataset - the differences between these two scores was also recorded.
Additionally, the column labelled ”wellabe” is the result for the logistic regression model
that was directly trained and tested on the synthetic wellabe dataset. It therefore serves
as our benachmark for model performance.

It is important to note that in the case of reweighting with LogReg (see Section
4.1.2.2), the accuracy and recall tested on NHANES increases to almost perfect, while
the accuracy and recall tested on wellabe drastically decreases. In this case, we have
resampled NHANES and trained to overfit the model, which explained less of the wellabe
dataset. This is because the resampling method of dataset prediction made the NHANES
variety much smaller, and easier to fit.

When looking at the model predicting the BMI feature, we saw that simply using
only the raw NHANES dataset to train performs significantly better on the real wellabe
dataset than training on the wellabe dataset. This is an example where the model trained
on the NHANES datset, which we consider more global in the sense that it accounts for the
true population, is better than training on a local model. Additionally, when we resample
the NHANES dataset using NN, KLIEP and BDT (see Section 6), our performance on
the real wellabe dataset is still better than our wellabe benchmark. The same argument
is made for ALT.

Next, we can see for all of the discretized models, excluding reweighting using Lo-
gReg, the difference between the NHANES and wellbabe scores are relatively small. This
means that both the model transfer and predicting discretized features is possible when
considering these two datasets. Additionally, the fact that reweighting showed minor im-
provements in comparison to the raw data, indicates that we achieved close to the true
model that can predict these discretized features.

Finally, we see for CHOLESTEROL that reweighting with the NN and KLIEP
method performs significantly better and similarly on NHANES and wellabe, and almost
attains the upper bound that we have set for training and testing on wellabe (0.72).
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7 Beyond wellabe: New Labels

To further benefit from the richness in variables that NHANES offers, we decided to
include additional labels for classification modeling for two main reasons. Firstly, we can
predict further diseases that are recorded in NHANES and make use of additional features
which are not available in wellebe. In other words, those variables to include can act both
as target variables as well as features for classification. Based on feature importance, if a
group of features can explain a certain disease well and is not present in wellabe, we could
suggest those features to be included in order to add values to the wellabe dataset in the
future. For this purpose, we chose asthma as our target variable (explained in Section
7.1). The other main objective is to identify possible risk-factors that the wellabe samples
have, but are not recorded. For this task, we modeled the medication status, specifically if
prescribed medication was used within the last 30 days (see Section 7.2). We noticed that
wellabe does keep track of sample’s medication usage, but only a limited set. Ideally, if the
classification model can perform well on NHANES using the features that exist in both
wellabe and NHANES datasets, we can reason about how well the model can potentially
transfer to wellabe, base on our previous transfer evaluations mentioned in Chapter 6.
A good performing model could add insights and recommend wellabe to further check
samples who are classified as medication takers, but with no medication history recorded.

To identify the most suitable target variables to model, we included 20 disease or
lifestyle-related labels to the NHANES dataset, which have values in at least five year-
buckets. The set of additional features we added include, for example, asthma, arthritis,
bronchitis, days feeling physically unwell, medicine used during the last 30 days, and
number of hours using computer, and so on.

Furthermore, we researched on the medical meanings for each disease label, and
mapped each disease to its most relevant biomarkers (see Appendix E). We used the
same sources and procedure described in section 3.1. If there is a medically approved re-
lationship between a feature and and a certain disease, then 1 is labelled in that respective
row and column, whereas empty space suggests no significant medical relation. We used
this table to make sense of the generated predictors, particularly for asthma prediction.

7.1 Asthma Prediction

For the asthma classification task, the target variable is a binary label containing
information if a person has ever been diagnosed with asthma by doctors. We chose this
task not only because there are almost no missing values in NHANES from the years 1999
- 2018, but wellabe has a general interest in this label and already incorporated it into
their questionnaires. To include as many respiratory features as possible (their importance
in relation to asthma is shown in the mapping under Appendix E), we only used the
NHANES data from 2007 until 2012 due to respiratory features’ limited availability (shown
in Appendix A). Furthermore, we chose and imputed features with less than 5% missing
values in the above-mentioned year range from all the available features we had. In the
end, logistic regression gave the best overall model performance with an accuracy score
of 0.66 and a recall score of 0.63 on the NHANES testset. Coefficients of this model can
be found in Figure G under Appendix G. Based on the coefficients, we observed that
in the additionally added labels, only bronchitis and medicine used in last 30 days were
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good indicators for identifying asthma history. However, based on the coefficients, the
feature-disease mapping was supported. In other words, features like DIA BP, FEF25,
and MAP contributed greatly to identifying asthma in the model.

7.2 Medication Prediction

We found, that wellabe tracks some data about the medication status of their patients
within a questionnaire. They ask for specific medications such as anti-diabetes tablets
or insulin, antihypertensive drugs, blood lipid lowering drugs (statins), blood thinner,
thyroid medication, painkiller, cholesterol lowering drugs or others. This motivated us to
predict if a survey participant in NHANES took prescribed medicine in the last 30 days.
We propose the resulting model to wellabe, to use it for identification of patients taking
any medication which is not so far tracked in the questionnaire. Additionally the model
can be used to infer information about a patients current medication status in the future.

Reweighting Accuracy Recall

Raw 0.71 0.72
NN 0.64 0.65

LogReg 0.79 0.76
KLIEP 0.69 0.66
BDT 0.66 0.66

Table 7: Prediction whether a person took medication in the last 30 days.

When transfering the model trained on NHANES, we can not directly validate its
performance on wellabe due to the lack of a comparable target variable in the wellabe
dataset. Therefore, we use the test results of NHANES in combination with the knowledge
gained in terms of model transfer from diabetes and the discretized features in Section
6.2 and Section 6.3. To model the classification task, we applied logistic regression, since
it performed well on all previous classification tasks. The set of features we use contains
ALT, CHOLESTEROL, CREA, DIA BP, GGT, HDL, HEART RATE, WAIST SIZE, sex,
age at checkup and is pregnant. Again we make use of the synthetic wellabe datasets joint
distribution by reweighting NHANES using NN, LogReg, KLIEP, and BDT.

The results in Table 7 show that the model trained on the raw and reweighted
NHANES datasets all have a good accuracy and recall scores and thus are suited for
predicting the medication status in the NHANES dataset. From the prediction models
in discretized features in Section 6.3, we saw that after resampling, the difference in
accuracy and recall scores for NHANES and wellabe decreased. This was true in all of the
reweighting methods except for LogReg. From this we saw in the discretized case that a
drop in accuracy and recall after resampling, would increase the accuracy and recall on
wellabe. We can expect that the reweighting method would perform similarly on the real
wellabe dataset for the medication status.

The final evaluation of the model performance on real wellabe can not be covered
within the scope of this project and thus is left for future work.
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8 Conclusions

The core focus of this work was to investigate the possibility and limitations of
transferring a model from one dataset to another. The key problem that we were facing
was the dataset shift. Although both NHANES and wellabe are subsets of the global
human population, finding a true model that will explain the whole population is not
always possible. Hence, we had to address this problem using methods, explained in
Chapter 4.

Our main conclusion is that even though reweighting methods can be quite effective
as we demonstrated in Section 4.1.3, this is not a universal tool which can be applied for
all problems. We see that if the concept is generally learnable from the synthetic data
(which we estimated by training and evaluating on the synthetic dataset), then the model
will transfer well. However, if the concept is not explainable by the subset of population
that we have, reweighting might give only slight improvement or sometimes even make
the performance worse. This is especially problematic with rare events that are not well
represented in the data, as discussed is Section 6.2.

We also discovered that sometimes simple, naive methods can work surprisingly well.
Even though we found and tried different sophisticated methods, the nearest neighbour
approach suggested in Section 4.1.2.1, provided the best improvement for learnable con-
cepts like discretized BMI, CHOLESTEROL, and ALT.

In the case of hard concepts, like diabetes, NN significantly improves the trade-off
between accuracy and recall. After resampling, we were able to detect 18% of the people
who actually have diabetes instead of 4%, while still providing reasonable accuracy.

However, NN is very computationally expensive due to the necessity of computing
all pairwise distances between the two datasets, as shown in Section 4.1.2.1. Therefore,
we also offered a variety of second best methods. There is no specific second best winner,
but KLIEP and BDT both provided rather good results, with BDT being significantly
faster than NN. Hence, we would suggest BDT as a second best choice when resampling
when NN is not feasible.

Results for the dataset prediction method are rather contradictory. Although on a
hard task it provides reasonable improvement, for easier tasks it focuses the model too
much on the part of the NHANES dataset that matches the synthetic dataset, which
results in significant improvement of accuracy on NHANES but poor results on wellabe.

The scarcity of medical data and the importance of medical accuracy makes this an
ongoing challenge where the quality of patient diagnosis is consistently being improved
using machine learning. Whether it is incorporating more data from rich datasets such
as NHANES, or trying to expand to a different demographic region, we have shown that
being able to transfer a model from a different source with the provided methods of this
project is possible.
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Appendices

A Feature Availability in NHANES

Year
Body Mea-
surements

Biochemistry
Profile

Body
Impedance

ABI Spirometry DEXA

1999-2000 X X X X

2001-2002 X X X X

2003-2004 X X X X

2005-2006 X X

2007-2008 X X X

2009-2010 X X X

2011-2012 X X X X

2013-2014 X X X

2015-2016 X X X

2017-2018 X X(except TRIGLY) X

SYS BP, DIA BP,

HEART RATE,

WEIGHT,

WAIST SIZE,

height

GLUCOSE LEVEL,

TRIGLYCERIDES,

CHOLESTEROL,

HDL, AST, ALT,

GGT, CREA

BODY WATER,

BODY FAT,

FAT KG

ABI L,

ABI R

FVC L,

FEV1 L,

PEF L, FEF25

BONE

MINERAL

MASS

Table 8: Availability of the feature groups in NHANES across all years
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B Feature Description and Normal Ranges

Feature Description
Normal Range
(Male)

Normal Range
(Female)

SYS BP
Systolic Blood Pressure: The amount
of pressure that the heart puts on the
arteries with each beat.

90-120 mm Hg 90-120 mm Hg

DIA BP
Diastolic Blood Pressure: The pressure
in the arteries in between each heart-
beat

60-80 mm Hg 60-80 mm Hg

PP

Pulse Pressure: The difference be-
tween the Systolic Blood Pres-
sure and Diastolic Blood Pressure

PP = SY S BP − DIA BP

40-60 mm Hg 40-60 mm Hg

MAP

Mean Arterial Pressure: The
average arterial pressure

MAP =
SY S BP + 2(DIA BP )

3

70-100 mm Hg 70-100 mm Hg

ABI
Ankle-Brachial Index: The ratio of
blood pressure in the arm and the ankle

1.0-1.5 1.0-1.5

HEART RATE
Resting Heart Rate: Number of heart
beats in 60 seconds while the patient is
at rest.

60-100 bpm 60-100 bpm

GLUCOSE LEVEL
Glucose Level: Measures the blood
sugar level.

70-125 mg/dL 70-125 mg/dL

CHOLESTEROL

Cholesterol: Found in the body
tissue, it is used to build cells,
produce hormones and vitamins

CHOLESTEROL = HDL +
LDL + 0.2(TRIGY CERIDES)

100-200
mg/dL

100-200
mg/dL

TRIGLYCERIDES
Triglycerides: Fat (lipid) level in the
blood.

<150 mg/dL <150 mg/dL

HDL
High-Density lipoproteins: Responsible
for removing excess cholesterol in the
blood.

>40 mg/dL >50 mg/dL

ALT

Alanine Aminotransaminase: An en-
zyme used in the liver to break down
proteins. It is often released into the
blood when liver problems occur

7-40 U/L 7-35 U/L

AST

Aspartate Aminotransaminase: Similar
to ALT, it is an enzyme found in the
liver, heart, kidneys, lungs and various
muscles

8-48 U/L 8-48 U/L

GGT
Gamma-Glutamyl Transferase: Similar
to ALT, it is an enzyme common in the
liver and other organs.

8-61 U/L 5-36 U/L

CREA
Creatinine: An amino acid stored in
muscles used for energy

0.8-1.3 mg/dL 0.6-1.1 mg/dL
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Feature Description
Normal Range
(Male)

Normal Range
(Female)

FLI

Fatty Liver Index: Indica-
tor of fat levels in the liver

Constant=0.953(TRIGLY CERIDES)+0.139(BMI)

+0.718(logeGGT )+0.053(WAIST SIZE)−15.745

FLI =
eConstant

1 + eConstant

<30 <30

OXYGEN SATURATION
Oxygen Saturation: The percentage
of oxygen that circulates through the
body

95-100 % 95-100 %

FVC L
Forced Vital Capacity: The maximum
amount of air that can be exhaled.

FEV 1 L
FV C

> 0.7 FEV 1 L
FV C

> 0.7

FEV1 L
Forced Expiratory Volume in 1 Second:
The amount of air that can be exahled
in one second.

FEV 1 L
FV C

> 0.7 FEV 1 L
FV C

> 0.7

PEF %
Peak Expiratory Flow as a Percentage:
The expiratory flow percentage of the
maximum achieved expiratory flow .

80% or higher 80% or higher

PEF L
Peak Expiratory Flow in Litres: Maxi-
mum expiratory flow.

7.5-11.5 L/s 5-8 L/s

FEF25
Forced Expiratory Flow at 25% of the
Lung Volume: The flow of exhaled air
after 25% has already been exhaled.

50-60% and
higher of the
predicted
value based on
age and height

50-60% and
higher of the
predicted
value based on
age and height

height Body Height: Measured in centimeters
Depending on
age

Depending on
age

WEIGHT Body Weight: Measured in kilograms
Depending on
HEIGHT

Depending on
HEIGHT

VISCERAL FAT
Visceral Fat Level: The amount of fat
near the organs in the abdomen

Depending on
waist size

Depending on
waist size

DAILY CALORIC NEEDS
Daily Caloric Needs: Recommended
number of calories needed per day

2000-3000 1600-2400

MUSCLE MASS
Muscle Mass: Percentage of weight
that is muscle

31-44% 26-33%

FAT KG
Body Fat Mass: The weight of fat in
the patient

Depending on
BODY FAT

Depending on
BODY FAT

BODY FAT
Body Fat Percentage: The percentage
of fat in the body

8-25% depend-
ing on age

14-32% de-
pending on
age

BODY WATER

Body Water Percentage: Per-
centage of water in the body

BODY FAT =
FAT KG

WEIGHT
× 100

43-73% 41-63%

BODY MINERAL MASS
Bone Mineral Mass: Amount of miner-
als contained in the bone

2.5-3.2 kg 1.8-2.5 kg

HIP SIZE Hip Size: Measured in centimeters
Depending on
the hip size

Depending on
the hip size

WAIST SIZE Waist Size: Measured in centimeters
Depending on
the waist size

Depending on
the waist size

30



Feature Description
Normal Range
(Male)

Normal Range
(Female)

BMI

Body Mass Index: Indi-
cator of Body Fatness

BMI =
WEIGHT

(HEIGHT/100)2

18.5-24.9 18.5-24.9

Table 9: Feature names, descriptions, and their normal ranges

C wellabe and NHANES Features Availability Comparison

Feature Group Wellabe Feature Feature Label
Available
in
NHANES?

Blood Sugar GLUCOSE LEVEL X
Cholesterol CHOLESTEROL X
Triglycerides TRIGLYCERIDES X
High-Density Lipoproteins HDL X

Metabolism Alanine Aminotransaminase ALT X
Aspartate Aminotransaminase AST X
Gamma-Glutamyl Transferase GGT X
Creatinine CREA X
Fatty-Liver Index FLI X
Systolic Blood Pressure SYS BP X
Diastolic Blood Pressure DIA BP X

Cardiovascular System Pulse Pressure PP 7

Mean Arterial Pressure MAP 7

Ankle-Brachial Index ABI X
Resting Heart Rate HEART RATE X
Oxygen Saturation OXYGEN SATURATION 7

Forced Vital Capacity FVC L X
Respiratory System Forced Expiratory Volume in 1 Second FEV1 L X

Peak Expiratory Flow as a Percentage PEF % 7

Peak Expiratory Flow in Liters PEF L X
Forced Expiratory Flow at 25% FEF25 X
Body Height HEIGHT X
Body Weight WEIGHT X
Visceral Fat Level VISCERAL FAT 7

Daily Caloric Needs DAILY CALORIC NEEDS 7

Muscle Mass MUSCLE MASS 7

Body Composition Body Fat Mass FAT KG X
Body Fat Percentage BODY FAT X
Body Water Percentage BODY WATER X
Bone Mineral Mass BODY MINERAL MASS X
Hip Size HIP SIZE 7

Waist Size WAIST SIZE X
Body Mass Index BMI X
Age at Check-up age at checkup X
Diabetes has diabetes X
Health Score health score 7

Recent Excercise excercised recently 7

Various Review Score review score 7

Pregnancy is pregnant X
Recheck recheck 7

Table 10: List of features in the wellabe datasets and their availability in NHANES
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D Cleaning Rules

Feature NHANES wellabe Cleaning Procedure

CHOLESTEROL X X Remove samples with value < 60
TRIGLYCERIDES X Remove samples with values > 3165
GGT X Remove samples with value > 1000
CREA X Remove samples with value > 10
CREA X Convert values < 0.1 to NaN

BMI X
Remove samples with value> 62.87 (more
than 5 SDs from the mean)

BMI X Remove samples with value < 12
DIA BP X Set values < 1 to NaN
HDL X Convert values < 10 or = 124 to NaN
ALT X Remove samples with value < 4
AST X Remove samples with value < 7
WEIGHT X Convert values < 20 to NaN
WAIST SIZE X Convert values < 50 to NaN
ABI R, ABI L X Convert values < 0.12 to NaN
HEART RATE X Convert values < 30 to NaN
PP X Remove samples with value < 6
FVC L X Remove samples with value < 1
FEV1 L X Remove samples with value < 0.75
FEF25 X Remove samples with value < 0.15
PEF X Remove samples with value < 0.9

FEF25, PEF X
For samples with FEF25 > PEF, set
FEF25 to 40% of PEF

Table 11: Data cleaning rules for both NHANES and wellabe datasets
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E Feature-Disease Mapping

Feature
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SYS BP 1 1 1 1 1

DIA BP 1 1 1

PP 1 1 1 1

MAP 1 1 1

ABI 1 1

HEART RATE 1 1

GLUCOSE LEVEL 1 1

CHOLESTEROL 1 1

TRIGLYCERIDES 1 1 1 1

HDL 1

ALT 1 1 1

AST 1

GGT 1 1 1

CREA 1 1 1

FLI 1 1

FVC L 1 1 1

FEV1 L 1 1 1

PEF L 1 1 1

FEF25 1 1 1

height 1 1 1

WEIGHT 1 1 1 1 1 1 1

BODY FAT 1 1 1

BODY WATER 1

BODY MINERAL MASS 1

WAIST SIZE 1 1

Table 12: Mapping of the features in NHANES to newly identified disease target variables
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F Modeling Flowchart

Figure 9: Flowchart of the general modeling procedure used for this project
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G Asthma Classification

Figure 10: Logistic regression model coefficients and features used for asthma classification
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