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Abstract
Image segmentation can aid medical professionals by highlighting crucial structures. The
recently released Segment Anything Model (SAM) allows to use prompts for a more in-
teractive image segmentation. In this project we investigated the applicability of SAM in
the medical domain, using OCT and Organoid datasets. For both datasets the segmen-
tation results obtained with SAM out of the box proved to be suboptimal. We therefore
followed recent approaches to fine-tune SAM on our data and improved the performance
by additional techniques like pseudocoloring and topological data analysis. In the end
we obtained mean IOU scores of 43.05% on OCT data and 79.8% on Organoid data.
Moreover, we present a semi-automatic annotation process for organoid images.
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1 Introduction

1.1 Problem definition and goals of the project
Foundation models like GPT3 [1] are recently getting popular in the deep learning com-
munity. They are trained on broad sets of data and aim to be generally applicable with
minimal fine-tuning. Therefore they can be used as a foundation of task-specific models,
e.g. BioGPT [2] for biomedical data. The segment anything model (SAM) is such a foun-
dation model released in 2023 by Kirillov et al.[3]. This model is particularly interesting
for image segmentation, since it allows to use prompts, e.g. a bounding box around the
object that should be segmented.

We think this feature could be very interesting in the medical domain. Here experts like
doctors could be assisted in their diagnosis by an interactive segmentation application.
Therefore, we want to explore the effectiveness of the segment anything model on medical
image data. For this we look at optical coherence tomography data (OCT) and organoid
data. In order to fine-tune SAM we also want to incorporate topological information into
our model by using recent developments in topological data analysis. 1

In the following, we first discuss the state of the art foundation models for image segmen-
tation in Section 1.2. Then we introduce topological data analysis in Section 2. Following
this we present our results on OCT data in Section 3 and organoid data in Section 4.

Figure 1: The Segment Anything Model consists of an image encoder, a prompt encoder
and a mask decoder. Prompts can be points, boxes and text. It also has the option to
reuse masks that were previously predicted to obtain better masks and the option to return
multiple masks with corresponding confidence scores (Image source: [3]).

1Our code for OCT data can be found at https://github.com/philippendres/DILabHelmholtzOCT.
Our code for Organoid data can be found at https://github.com/enricrabasseda/DILabHelmholtzOrganoid.

https://github.com/philippendres/DILabHelmholtzOCT
https://github.com/enricrabasseda/DILabHelmholtzOrganoid
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1.2 State of the art foundation models in image segmentation
The Segment Anything Model is currently the state-of the-art foundation model for image
segmentation [3]. It was trained on a set of 1 billion masks and aims to allow instance
segmentation for any given image. SAM consists of an image encoder, a prompt encoder
and a mask decoder, i.e. SAM takes an image and a prompt as input and outputs a
segmentation mask (see Figure 1 for details). This prompt can be a bounding box or a
point in the image.

SAM’s image encoder is a Vision transformer which has 632 million parameters [3]. The
default image encoder is called ViT-Huge. There are also the variants ViT-Large and
ViT-Base with far less parameters. In our experiments we predominantly used the ViT-
Base variant, since its performance is still good and it is faster than ViT-Huge. SAMs
prompt encoder and mask decoders on the other hand are smaller models with 4 million
parameters each.

Recent papers started to fine-tune SAM on specific domains. In the medical domain Ma et
al. and Zhang et al. presented fine-tuned SAM models. Ma et al. propose to re-train the
mask decoder, since it is comparatively small and therefore allows fast training [4]. Zhang
et al. propose to use low-rank-based fine-tuning techniques to the image encoder[5]. We
mostly follow the ideas of Ma et al..
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2 Topological Data Analysis
One of the main objectives of this project has been to implement recent advancements
of topological data analysis [6, 7, 8, 9, 10]. All the techniques of this pioneer area are
nowadays extensively getting used for different tasks. More concretely, in our case, the
topological loss presented in [10] is employed.

2.1 Relevant definitions and techniques
Extracting the topological information of volumes can be done in different ways. For
the characteristics and the goal of this project, cubical complexes represent the data.
Persistent homology is used to compare topological features. Then, these topological
features are compared with persistence diagrams.

2.1.1 Cubical complexes

A given volume V , which is a d-dimensional tensor of shape n1 × · · · × nd, is represented
as a cubical complex C. This cubical complex contains individual voxels of the volume
V as vertices, and connectivity information about their neighborhoods via edges, squares
and higher-dimensional counterparts.

In the case of images, like in the data of this project, only vertices and lower-dimensional
connectivity information are considered. The concept of a volume can be understood as
a generalisation of an “image” (i. e. every image is a 2-dimensional cubical complex).

Cubical complexes provide a fundamental way to represent volume data. With them it is
possible to study topological features of different dimensions. These topological features
comprise connected components (0D), cycles (1D) and voids (2D). In our case, each entry
of a cubical complex (voxel) is the analogue of a pixel.

2.1.2 Persistent homology

Persistent homology is a technique to calculate multi-scale topological features. This tech-
nique is particularly appropriate in our setting. Our model learns a likelihood function
f : V 7→ R. To every voxel x ∈ V this function f assigns a probability of detecting an
object in the voxel.

For a likelihood threshold τ ∈ R, a cubical complex C(τ) := {x ∈ V | f(x) ≥ τ} is
obtained, and consequently a different set of topological features corresponding to this
cubical complex C(τ). Given that volumes are finite, their topology only changes at a
finite number of thresholds τ1 ≥ · · · ≥ τm, and a nested sequence of cubical complexes
∅ ⊆ C(τ1) ⊆ · · · ⊆ C(τm) = V is obtained. Computing this sequence can be computation-
ally expensive, but recent papers showed that this can also be done efficiently (see [6]).

We observe that cubical complexes are related to simplicial complexes. Indeed, cubical
complexes follow the same concept as simplicial complexes but use squares as their build-
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ing blocks instead of triangles. Thus, persistent homology can be thought as a discretized
version of simplicial homology.

2.1.3 Persistence diagrams

Figure 2: A persistence dia-
gram of 1-dimensional topolog-
ical features (cycles). Source:
[7].

Persistent homology tracks topological features across all
complexes in the filtration presented above, represent-
ing each topological feature as a tuple (τi, τj), where
τi ≥ τj, indicating the cubical complexes C(τi) and
C(τj) in which the topological feature was “created” and
“destroyed”, respectively. These tuples form a multi-
scale shape descriptor of all topological features of a
dataset.

All this information is saved in the persistence diagrams. The
tuples of k-dimensional features, with 0 ≤ k ≤ d, are stored
in the k-th persistence diagram D(k)

f of the data set. These
diagrams encode all possible thresholds τ at the same time,
thus capturing geometrical information of the data. See Fig-
ure 2 for an example. We will denote as Df the combination of all persistence diagrams’
tuples of dimensions 0 ≤ k ≤ d.

Given a tuple (τi, τj) in a persistence diagram, its persistence is defined as pers(τi, τj) :=
|τi − τj|. It measures the “duration” over which the topological feature occurs, with large
values typically assumed to correspond to more stable features. All the persistence values
of a persistence diagram can be summed, defining the degree-p total persistence:

Persp(Df ) :=
∑

(τi,τj)∈Df

pers(τi, τj)p. (1)

This measure can be understood as a statistic summary of all the topological activity.
And it is indeed considered in the topological loss presented in the next Section 2.2.

2.2 Topological loss
Section 2.1 above presents different techniques and topological representations of the
dataset. The remaining step is to compare topological information between data samples.
This will be done by comparing their persistence diagrams, however note that these finite
sets can contain a different number of tuples. Therefore, these are endowed with a metric
by using optimal transport.

2.2.1 Wasserstein distance

Given two diagrams D and D′ containing features of the same dimensionality (here we
drop f and f ′, but in our case each diagram indeed depends on a likelihood function),
their p-th Wasserstein distance is defined as:
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Wp(D, D′) :=
 inf

η:D−→D′

∑
x∈D

∥x − η(x)∥p
∞

 1
p

. (2)

Where η(·) denotes a bijection. As said, D and D′ have different cardinalities, but it is
considered that they contain an infinite number of points of persistence zero, i.e. (τ, τ),
thus a suitable bijection η(·) can be found with modern optimal transport algorithms.

It is relevant to know that persistence diagrams are stable to noise. There is a recent
theorem showing that Wasserstein distance between persistence diagrams of functions
is bounded by their p-norms. Additionally, persistent homology allows the calculation
of gradients with respect to the parameters of the likelihood function f . These two
properties support strongly the implementation of Wasserstein distance in the topological
loss presented below. For more information on these two attributes refer to [10].

2.2.2 Loss term construction

Given a true likelihood f and an estimated likelihood function f ′, the topology-aware loss
term is defined as

LT (f, f ′, p) :=
d∑

i=0
Wp

(
D(i)

f , D(i)
f ′

)
+ Pers

(
D(i)

f ′

)
. (3)

The first part of Eq. (3) searches for similarity between f and f ′ with respect to their
topological features, measuring their differences with Wasserstein distance of Eq. (2).
The second part can be thought as a regularisation term, which incentivizes the model to
reduce overall topological activity, measured with the total persistence of Eq. (1).

Given a task-specific geometrical loss term LG, such as Dice Loss or Cross Entropy loss,
a combined loss term is defined as L := LG + λLT , where λ ∈ R>0 is a hyperparameter
adjusted to control the topological-loss impact. In practice, to speed up calculation of this
loss term, each volume is downsampled to M ×· · ·×M voxels with bilinear interpolation.
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3 OCT

3.1 Motivation
Optical Coherence Tomography (OCT) is a non-invasive imaging method. It is wildly
used to diagnose diseases in live tissue, e. g. age-related macular degeneration in retinas
[11]. In order to aid doctors in these diagnoses, researchers are developing tools to process
these images. Especially, deep learning-based methods, e.g. for direct disease classifica-
tion or semantic segmentation, are getting more popular [11].

They have been however limited to non-interactive image processing. The emergence of
prompt-based models like SAM [3] on the other hand suggests the feasibility of an inter-
active model to process OCT images. With such prompts the doctor could for example
mark regions of interest in the image and thereby guide the model to give more accurate
predictions. Inspired by this idea, we set out to fine-tune SAM on OCT data.

3.2 Dataset
We used a private retinal OCT dataset consisting of 552 images. Each image had a
corresponding ground truth segmentation with 14 classes. A sample with corresponding
ground truth can be seen in Figure 3. We binarized the ground truth into binary masks for
each class, since we wanted to build a model that puts out a binary mask for each prompt.
We further binarized these class masks into component masks by splitting the class masks
into connected components to focus on more fine-grained details. These component masks
were our ground truth.

Figure 3: Raw OCT image (on the left) and the corresponding ground truth (in the middle)
colored according to the segmentation classes (on the right)

3.3 Methodology
3.3.1 Default SAM

We began our project by applying the pre-trained SAM [3] on our data. We noticed
that SAM is able to segment the rough structure of the image, but has problems with
fine-grained details like intraretinal fluids. We therefore looked into different methods to
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increase the performance, like incorporating adapters into the model or retraining parts
of it. In the end the success of MedSAM made us follow their idea.

3.3.2 Prompt-based SAM: Bounding boxes

Following the idea of MedSAM [4], we fine-tuned SAM’s mask decoder on our dataset.
Since default SAM does not allow for multi-label segmentation, we used multiple bound-
ing box prompts to differentiate between 14 different classes within our images. These
prompts, were created using a ground truth segmentation so that each bounding box en-
compasses the ground truth segmentation mask for the respective class.

It should be noted that such an approach likely results in some form of data leakage
during training, because our prompts are based on ground truth and therefore contain
some information about it. However, such an approach is justified, because our model is
meant to be used by medical professionals, and therefore we can expect the input prompts
to be close to the actual ground truth. The overall architecture of our pipeline can be
seen in Figure 4.

Figure 4: The pipeline of the bounding box prompt-based SAM: Boxes around the connected
components of the ground truth segmentation and images are processed by SAM. SAM’s
mask decoder is retrained.

3.3.3 Prompt-based SAM: Points

We also trained a model with point prompts. Here we sampled random points from the
the ground truth masks and put these as prompts. The pipeline can be seen in Figure 5.

Figure 5: The pipeline of the point prompt-based SAM: Points from each connected com-
ponent and corresponding images are processed by SAM. SAM’s mask decoder is retrained.

3.3.4 Automatic SAM

Since both our prompt-based models rely on ground truth, we also wanted to train a
model that does not rely on it. For this we used a bounding box around the whole image
as a prompt. The goal was to predict the original ground truth mask with 14 classes.
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However, since SAM only predicts one mask at a time, i.e. one class at a time, we modified
its architecture to be able to predict 14 masks at a time. We achieved this by duplicating
its mask-decoder 14 times, i.e. each mask decoder should predict one class. Then we
applied a softmax across the classes and compared with a one-hot encoded version of the
ground truth mask. During inference the softmax is replaced by a regular max. The
pipeline can be observed in Figure 6

Figure 6: The pipeline of the fine-tuned automatic SAM: Bounding boxes around the
whole image and the respective image are processed by SAM’s encoder. The output is then
processed by 14 mask decoders (They are clones of SAM’s mask decoder) where each has
the task to segment one class. These mask decoders are trained to segment their class.

3.3.5 Quality improvement

Figure 7: Examples of pseudocoloring schemas. Left to right: 1) Initial grayscale OCT
scan 2) Bone pseudocoloring schema 3) Rainbow pseudocoloring schema

For quality improvement we focused on 3 techniques:

1. A pseudocoloring - technique that involves the recoloring of the input images to
increase their contrast, thus, possibly, improving segmentations of small fine-grained
regions.

2. Increasing the base model size - apart from SAM ViT-Base we also used the SAM
ViT-Large model, using the SAM ViT-Huge model was discarded because of training
time constraints.
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3. Usage of topological loss - this loss penalizes topological (shape) dissimilarities be-
tween predicted and ground truth segmentation maps.

In practice, the techniques 2 and 3 are applied at every training step, thus, severely in-
creasing the overall training time of the final model. That is why the highlight of this
section is the pseudocoloring technique. It is applied during the image preprocessing
phase and therefore has little impact on the overall training time.

Since the amount of pseudocoloring schemas that are available is fairly large (e.g. 22
in OpenCV’s library) for our experiments we visually selected 2 that better highlighted
fine-grained details (e.g. small pockets of intraretinal fluid within the membrane). These
schemas were Bone (overall good contrast) and Rainbow (visually better highlighting
intraretinal irregularities). See Figure 7 for an example.

3.4 Evaluation
3.4.1 Setup

Our 3 approaches were evaluated on our test dataset (20% of the whole datset) using 5
metrics: IoU, Accuracy, Specificity, Dice coefficient and mean AP (Average Precision).
Definition of these metrics can be found in appendix section 5. Since some of our 14
classes are irrelevant (e.g. background, imaging artefacts, image padding) we calculated
all of the metrics on a per-class basis. Metrics were calculated for each class based on
binary masks (1 - class present, 0 - other class). Each metric was also obtained using 2
different kinds of averaging:

1. Global averaging - the metric is calculated at the same time across all pixels within
all of the samples.

2. Sample averaging - the metric scores are calculated for each sample separately and
then the scores are averaged across all samples.

In other words, for any suitable metric Metric, collections of predictions and ground
truths {Pk},{GTk} for our dataset of size N and a metric-specific function Join that is
used to join ground truths and predictions into a single data array (e.g. for Accuracy
Join is equal to stacking all predictions/ground truths and flattening the resulting 4D
array) the formulas for global and sample averaging can be written as follows:

GlobalAverage = Metric(Join(P1, ..., PN), Join(GT1, ..., GTN))

SampleAverage = 1
N

N∑
k=1

Metric(Pk, GTk)

In practice, only images that contain a class were used for its metric calculation. The
final model score was obtained by averaging on per-class scores for each metric.
In the following sections we will present metric scores that were obtained using sample
averaging exclusively. The best scores will be highlighted in bold. Full tables that include
global averaging scores can be found in appendix section 5.
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3.4.2 Results: fine-tuning

IoU Accuracy Specificity Dice mAP
BB, SAM ViT-Base 0,0550 0,0836 0,9274 0,0773 0,0992

BB, MedSAM 0,0162 0,0662 0,9405 0,0273 0,0894
BB, fine-tuned 0,3660 0,5677 0,9764 0,4590 0,5216

PT, SAM ViT-Base 0,0594 0,2874 0,6436 0,0753 0,1052
PT, MedSAM 0,0323 0,0676 0,9370 0,0452 0,1135
PT, fine-tuned 0,1764 0,9388 0,8084 0,2265 0,2686

Automatic SAM 0,3237 0,3697 0,9888 0,3697 0,5623

Table 1: Comparison of untrained foundational models (SAM ViT-Base and MedSAM)
with 2 different prompt types (BB - Bounding boxes, PT - points) to our 3 fine-tuning ap-
proaches. We see that fine-tuning improves significantly improves the model performance
and the approach with BB prompts proved to be the best.

Firstly, we evaluated how well our fine-tuning approaches perform compared to the base-
line models (in our case, SAM ViT-Base and MedSAM). The results are shown in Table
1. It can be seen that for both prompt types (points and bounding boxes) fine-tuning
drastically improves prediction quality with respect to our metrics (a single exception
being specificity for point prompts, where untrained MedSAM takes the lead). It is also
interesting to note that point prompts in general perform worse compared to bounding
box prompts with regards to IoU, Dice, mAP and Specificity, while having better Accu-
racy (see the appendix for a definition of these metrices).

The reason for that is likely two-fold. First, point prompts, in contrast to bounding box
prompts, do not contain information about the size of the segmentation region, there-
fore they are by design more susceptible to ”overpredicting” the less prevalent class at
the cost of a more prevalent class. Secondly, our design of point prompts likely exacer-
bated this problem by selecting a point from each connected component. As a result,
less prevalent, but spatially irregular classes (e.g. intraretinal fluids) received much more
related point prompts compared to more prevalent, but regular classes (e.g. neurosensory
retina). Considering that most of the classes and therefore point prompts are concen-
trated in a relatively small region around the retina, this results in very radical changes
to segmentation mask sizes. Examples of that can be seen in Figure 8, where most of
the neurosensory retina is segmented as intraretinal fluid, because the latter has much
more connected components and, as a result, more point prompts associated with it are
evaluated compared to a single connected point prompt for the retina (because it only
has one connected component).

The automatic SAM approach, on its part, proved to be worse compared to the bounding-
box based fine-tuning (with regards to all metrics except Specificity), which is expected,
because it doesn’t have access to any information about the ground truth via prompts.
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Figure 8: Left to right: 1) Ground truth segmentation 2) Fine-tuning with bounding box
prompts 3) Fine-tuning with point prompts. Most of the neurosensory retina is segmented
as intraretinal fluid for point prompts because of the higher number of point prompts.

3.4.3 Results: pseudocoloring

IoU Accuracy Specificity Dice mAP
BB 0,3660 0,5677 0,9764 0,4590 0,5216

BB + Bone 0,3723 0,6848 0,9667 0,4705 0,5126
BB + Rainbow 0,3312 0,6702 0,9742 0,4183 0,4542

Table 2: Evaluation results for fine-tuning with bounding box prompts on recolored images
(Bone and Rainbow pseudocoloring schemas). The Bone coloring schema results in small
improvements, while Rainbow worsens our results.

Since our bounding box based approach yielded the best results during evaluation we
decided to further improve it with pseudocoloring technique. The results, summarized in
Table 2, were quite mixed. While the application of the Bone coloring schema resulted
in an overall improvement of the metric scores (except a small decrease in Specificity and
mAP), the application of the Rainbow coloring schema led to lower metric scores. It is
likely, that in some cases the ability of the Rainbow coloring schema to better highlight
intraretinal irregularities can confuse the model, so it will give attention to the wrong
membrane parts. An example of that can be seen in Figure 9

3.4.4 Results: topological loss

In general the application of topological loss improves IoU, Specificity and Dice metrics
at the cost of Accuracy (based on results from table 3). It should also be noted that
using topological loss yields better results alongside the pseudocoloring technique, as the
obtained improvement in case of images recolored with the Bone schema is larger than
in the grayscale case. The decrease in accuracy of predictions can be explained by the
per-class design of the metric calculation, which results in severe class imbalance in favor
of negative class, since no class occupies the majority of the image.
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Figure 9: Left to right: 1) Input with Rainbow pseudocoloring schema 2) Prediction 3)
Ground truth. Here, the subretinal fluid is predicted along red and green segments in
the recolored image, that stand out of the predominantly blue neurosensory retina, while
in reality it should be predicted along the ”blue pockets”, confined by the red and green
segments.

IoU Accuracy Specificity Dice mAP
BB 0,3660 0,5677 0,9764 0,4590 0,5216

BB+TL 0,3764 0,5621 0,9802 0,4627 0,5081
BB+Bone 0,3723 0,6848 0,9667 0,4705 0,5126

BB+Bone+TL 0,3766 0,5380 0,9836 0,4657 0,5207

Table 3: Evaluation results for the fine-tuned SAM ViT-Base with bounding box prompts
(BB) that utilizes topological loss (TL) during training. Results with Bone pseudocoloring
schema are also shown. Using topological loss results in overall metric improvements.
Topological loss also positively interacts with pseudocoloring.

3.4.5 Results: SAM ViT-Large

Finally, we explored how our training pipeline and quality improvement techniques, men-
tioned in the previous sections, will work with the SAM ViT-Large model. The results
of these evaluations are shown in table 4. Here we can see that SAM ViT-Large fine-
tuned with bounding boxes has better metrics compared to the fine-tuned SAM ViT-Base
(Specificity slightly decreases, but the overall improvement is quite clear).
Additionally, techniques that improved the quality of our predictions with SAM ViT-Base
(Bone pseudocoloring, topological loss) had even more profound positive impact. For ex-
ample, from table 3, IoU improvement granted by topological loss and Bone pseudocolor-
ing was around +0,01 for SAM ViT-Base, while for SAM ViT-Large this improvement
is approx. +0,06. Similar improvements can also be seen with Dice, mAP and Accuracy.
Therefore, we conclude that our quality improvement techniques are scalable to bigger
model sizes.
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IoU Accuracy Specificity Dice mAP
BB 0,3660 0,5677 0,9764 0,4590 0,4950

BB-L 0,3731 0,7265 0,9653 0,4704 0,5146
BB+Bone+TL 0,3766 0,5380 0,9836 0,4657 0,5207

BB-L+Bone+TL 0,4305 0,6995 0,9822 0,5217 0,5652

Table 4: Evaluation results for SAM ViT-Large with bounding box prompts (BB-L) that
utilizes topological loss (TL) and the Bone pseudocoloring schema during training. The
final BB-L+Bone+TL model is the best among all that were evaluated.

Class Prevalence BB-L+Bone+TL BB-L, untrained
IoU Accuracy IoU Accuracy

background 0,4029 0,8235 0,9371 0,3958 0,5934
vitreous body 0,2398 0,2598 0,3488 0,0482 0,0785

neurosensory retina 0,1402 0,7269 0,8288 0,0050 0,0094
image padding 0,1036 0,8764 0,9469 0,2135 0,2651

imaging artifacts 0,0712 0,4881 0,6609 0.0197 0,0414
retinal pigment epithelium 0,0120 0,4302 0,7339 0,0029 0,0079

pigment epithelial detachment 0,0075 0,2568 0,5086 0,0272 0,0463
fibrosis 0,0061 0,4132 0,5884 0,0076 0,0109

subretinal fluid 0,0057 0,2841 0,4425 0,0098 0,0122
intraretinal fluid 0,0038 0,2242 0,4763 0,0106 0,0190

epiretinal membrane 0,0025 0,3959 0,6169 0,0023 0,0045
choroid border 0,0021 0,3290 0,5365 0,0133 0,0250

subretinal hyperreflective material 0,0020 0,2782 0,4349 0,0308 0,0382
posterior hyaloid membrane 0,0006 0,1507 0,4817 0,0035 0,0085

Table 5: Per-class evaluation results (only IoU and Accuracy) for the fine-tuned SAM ViT-
Large model with topological loss and bone pseudocoloring (BB-L+Bone+TL), compared
to the untrained SAM ViT-Large model. Classes are sorted by their prevalence in the
dataset. Segmentation quality for lower-prevalence classes is lower. BB-L+Bone+TL is
better for all classes compared to the original untrained model.
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3.4.6 Results: per-class metrics

As was previously mentioned in section 3.4.1, some of our classes do not contain useful
information. In addition to that, most of our classes are unbalanced, meaning that sizes
and shapes of their segmentations vary drastically. Therefore it is interesting to look at
the per-class metric values. We calculated the prevalence of every class in the datasets
as a total ratio of pixels belonging to the class over the total number of pixels within the
dataset. From table 5, it can be seen that the quality of our segmentation is dependent
on class prevalence. In general, more prevalent classes have higher IoU and Accuracy
scores. However, our best model (SAM ViT-Large fine-tuned with bounding boxes using
topological loss and Bone pseudocoloring) can obtain results that are close to the global
average even for low-prevalence classes (e.g. subretinal hyperreflective material, subreti-
nal/intraretinal fluids). Additionally, it outperforms untrained SAM ViT-Large on all
classes by a significant margin.
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4 Organoids
For the organoids dataset not only SAM was fine-tuned, but the private dataset was
labelled before the training. The objective was to create a SAM version that can deal
with organoids images, from different microscopes, and detect every organoid performing
instance segmentation by manually giving a box prompt for every organoid.

4.1 Private dataset creation
We received a private dataset of images of organoids taken from different microscopes.
However, these images were not labelled, so it was necessary to find all the organoids in
the images and create ground-truth data before fine-tuning SAM. An image example of
the private dataset can be seen in Figure 10.

Figure 10: Example of an image of our private dataset.

Our first approach was to hand-label the data by finding all organoids in every image and
recording a frame box for each one of them. However, this procedure was too complicated
and it would have taken too long, since there were images with a big number of organoids
and each box needed to be manually adjusted. Instead, after some research, we found
Grounding DINO, a recent implementation of DINO [12] that could help us in doing this
task and save a significant amount of time.

4.1.1 Grounding DINO

Grounding DINO [13] is an open-set object detection model which can detect any object
in an image based on human inputs. The model processes (Image, Text) pairs and outputs
bounding boxes for identified objects. It consists of three key components.

The model begins by extracting and enhancing features from images and text. It employs
a Swin Transformer [14] for image features and a BERT-based [15] text backbone for
textual features. These features are then fused using a Deformable Self-Attention-based
enhancer, ensuring effective capture and combination of relevant information from both
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modalities.

With enhanced text features, the model selects pertinent features based on input text.
This ensures a focus on the most relevant aspects of the image, guided by accompanying
textual information. This language-guided query selection is crucial for refining object
detection and improving localization accuracy.

In the final stage, image and text features are integrated through a sophisticated cross-
modality decoder. This decoder incorporates self-attention, image cross-attention, and
text cross-attention layers, comprehensively combining information from both modalities.
The result is a more nuanced understanding of the scene, enhancing the model’s ability
to precisely localize and identify objects in the given images.

Grounding DINO stands out as a potent tool for cross-modality information fusion,
streamlining the labeling process in our organoid dataset project. The model efficiently
integrates visual and textual inputs, providing precise object localization.

4.1.2 Prompt engineering

Grounding DINO has a good performance in almost all kinds of images and text prompts.
However, this model was trained on the COCO dataset [16], so it is not accurate on medi-
cal images and it also does not understand technical words that are not in its vocabulary.
This was a big impediment in our case, since we were dealing with organoids images and
we needed to find “organoids”, which is not a common word.

Our first idea to solve this problem was to use prompt-engineering techniques to find the
best text prompt to describe organoids. For example, we used the CLIP (Contrastive
Language-Image Pretraining) model [17] to describe organoids given an image of our
dataset. Nevertheless, the result was not good, since this model was also trained on the
COCO dataset and therefore giving misleading descriptions like: “a group of frisbees sit-
ting on a table”.

The second approach was to use Bio-GPT [2], a recent Generative Pre-trained Transformer
for Biomedical Text Generation and Mining implemented by Microsoft. We implemented
it into the Grounding DINO model. 2But the modification of the architecture of Ground-
ing DINO was too complicated and this implementation did not secure success.

Finally, we opted for the option of manually trying different text prompts and finding the
best one. After many different tries we found out that the best text prompt that detects
the biggest number of organoids in an image was: “dark rounds”.

2An example of the generated text from BioGPT for organoids is as follows “Organoid is an emerging
technique where three dimensional organoid can be differentiated and grown in vitro. The organoid can
be generated in vitro from normal cells as well as from cancer cells through the formation of organoids,
and this is an important tool for investigating cancer biology in a three dimensional culture system.“
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(a) Raw Image (b) Pseudo-color Image

Figure 11: Using HSV colormap on a grey image from our private dataset.

4.1.3 Pipeline to generate the dataset

Given the best text prompt to Grounding DINO, the model was capable to generate fram-
ing boxes for almost all organoids in our dataset. However, there were some organoids
that were not detected, and some detected objects were no organoids. We solved this
issue with four additional steps in our procedure.

The first step was to use image preprocessing techniques on the original image: gamma
correction and pseudo-coloring. These enhanced the performance of Grounding DINO in
a large percentage of the private dataset’s images.

Gamma correction is a technique to make the image and its shades look brighter or darker.
This helped to make the organoids darker and the background lighter. Given an image
I ∈ RH×W , where each pixel x ∈ I has bounded values 0 ≤ x ≤ 255, we computed this
correction pixel-wise as Ĩ = (I/255)1/γ · 255, where γ ∈ R>0 is a hyperparameter.

Pseudo-colouring, also known as false-colouring, is a technique for enhancing data visu-
alisation by specifying colours to represent different values or features. This method is
commonly applied to image or graphical representations to highlight specific features or
patterns that are not easily discernible in greyscale.

In object detection, pseudo-colouring can be used to map the original greyscale image to
a colour image. The logic behind this is that Grounding DINO and SAM were primarily
trained using colour images. Therefore, better performance can be expected on colored
images. For our objective, the colormap HSV has been used on the grey images. An
example of a raw image and an HSV pseudo-colored image can be observed in Figure 11.

The second step was to delete all boxes with a significant overlap with the Non-Maximum
suppression algorithm [18].

The third step was to manually delete all the boxes corresponding to objects that were
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Figure 12: Pipeline to obtain masks for the images of the private dataset. On the left,
the original image; in the middle, the boxes found with Grounding DINO; on the right the
masks given by SAM ViT-Large using the boxes of the second image as prompts.

not organoids, most of these wrong boxes were framing cells.

In the fourth step we did the opposite, we manually created framing boxes for all organoids
in the image that were not detected by Grounding DINO.

Finally, for every image of organoids, we obtained a set of framing boxes that surrounded
all organoids in this image. To get the ground-truth, we used SAM ViT-Large to detect
each of the organoids giving its corresponding framing box as a prompt to the model.
Therefore, for every image, we obtained one mask and one framing box for each of the
organoids present in the picture.

However, the images in our dataset also had a high resolution and SAM expects images
of resolution 1024 × 1024. If the image does not have this resolution, SAM automati-
cally employs bilinear interpolation to get the objective resolution. The mask output of
SAM always has size 256 × 256, we used bilinear interpolation to resize every mask to the
original image size. One example of the final result for one image can be seen in Figure 12.

We also split every original image in the dataset into different patches and adapt the
found boxes and masks to every patch size. These patches were obtained with a sliding
window with no overlapping. For every image 48 patches of size 324×324 were generated,
with their corresponding boxes and masks. This step did not only help to deal with the
image resizing of SAM, but also drastically reduced the size of the dataset.

4.2 Dataset collection and curation
The procedure explained in Section 4.1 was done for every image provided to us in the
private dataset. These manual steps costed a big effort and time, but it was important to
do the best possible job with every image and obtain a high-quality dataset, which would
lead to a competitive model. Detailed information about the datasets can be seen in the
Appendix.

After we got patches for every image, we obtained the largest dataset up to this day in
organoid detection. We did research and found other open datasets of organoids. On
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one hand we found semantic segmentation datasets such as OrganoID and OrganoSeg
[19, 20]. On the other hand we found another instance segmentation dataset: OrgaQuant
[21]. Some of these datasets were used as hold-out test datasets to see the performance of
our model on non-seen organoid data. See the Appendix to observe some image examples
of these datasets.

OrgaQuant [21] included intestinal organoid pictures and framing boxes for every organoid.
These pictures had resolution 300 × 300 and 450 × 450. Therefore, SAM follows the same
preprocessing of rescaling them to 1024 ×1024 and putting out masks of size 256 × 256
that are later rescaled to the original size of the image. We obtained one mask for every
bounding box of the original dataset using SAM ViT-Large.

OrganoSeg [20] presented a dataset containing colon and colorectal-cancer organoid mor-
phologies. These pictures had a resolution of 864 × 648. Every picture had a semantic
segmentation mask containing all organoids in the image with the same resolution. First,
we generated 4 patches with a sliding window that overlapped for every image with a final
square resolution of 432x432. We did the same for the masks. Then, we employed con-
nected component analysis to obtain one unique mask for every organoid from the original
instance segmentation mask and a framing box. We saved every organoid instance in one
of the three dataset’s split randomly: train (60%), validation (20 %) and test (20 %).

4.3 Model training
The training of the model followed the approach of the most recent developments of fine-
tuning SAM in the Medical Imaging field. We took inspiration of MedSAM and SAMed
[4, 5]. Moreover, we implemented pioneer techniques such as the topological loss presented
in Section 2.

4.3.1 Architecture of the model

As mentioned before in Section 1.2, SAM is composed of an image encoder, prompt en-
coder and mask decoder. In terms of training, it is sufficient to freeze the encoders’
parameters and only train the mask decoder.

In our case, we only fine-tuned the SAM ViT-Base version. This is the smallest version
of SAM but provides surprisingly good results when fine-tuned to a particular dataset.
To fine-tune larger versions of SAM significant computational resources are needed.

4.3.2 Prompt in training and specifications of training

First, different experiments were done to decide which types of prompts provide better
results in the training. We used boxes and points as prompts. Moreover, we gave these
prompts with some generated artificial noise and without any noise. These different ap-
proaches were validated and compared on 10% of our total private dataset.

For the training, after experimenting, we loaded every mask from our private dataset with
its corresponding image and bounding box. We added noise to the edges of the box and
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Figure 13: Training schema of our model.
We add noise to the box prompt and freeze
the encoders.

Figure 14: Inference schema of our model,
including the two possibilities: noised box
prompt or ground-truth box prompt.

gave it as a prompt to SAM to find the mask. Figure 13 shows the procedure to train the
model.

Later we compared the output mask of SAM with the ground-truth mask using a com-
bination of geometrical loss and topological loss L = LG + λLT . As geometrical loss LG

we used a mix of Dice and Cross Entropy loss. For more information regarding the loss
functions see the Appendix. The chosen optimizer for the training was Adam.

Experimentally, we found out that it is best to use a small λ for the topological loss. We
used bilinear interpolation to reduce the size of the masks when computing the topological
loss and geometrical loss to 50 × 50 and 150 × 150, respectively, to save computational
effort. The hyperparameters used to train the model can be found in the Appendix.

4.3.3 Inference

For inference the user needs to give a box prompt, jointly with the image, to the fine-tuned
model. The model will then compute the logits for every pixel to be a mask.

We used binary interpolation to resize the given mask from size 256 × 256 to the given
image’s size. Later, the sigmoid activation function was used and a threshold of 0.5 pixel-
wise to provide a binary mask. Figure 14 shows the inference procedure. As it can be
seen, two different inference procedures can be done. One takes ground-truth boxes as
prompts and the other adds some noise to the ground-truth boxes and later gives them
as prompts.

4.4 Evaluation
4.4.1 Setup

Our model was tested on a hold-out test split consisting approximately of 17% of our
private dataset and 2 hold-out datasets: test splits of OrgaQuant and OrganoSeg. We
compared the fine-tuned version of SAM ViT-Base model using topological and geometri-
cal loss to the original foundational SAM model versions, MedSAM model and fine-tuned
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Figure 15: Visual example of the results of the models. From left to right: 1) Original
mask with the ground-truth bounding box, 2) Mask given by our fine-tuned version of SAM
ViT-Base using topological loss, 3) Mask given by MedSAM, 4) Mask given by SAM ViT-
Base.

Private OrgaQuant OrganoSeg
Model IoU Dice Sens AP IoU Dice Sens AP IoU Dice Sens AP

MedSAM 0,606 0,711 0,695 0,860 0,644 0,763 0,688 0,953 0,626 0,751 0,651 0,942
SAM ViT-Base 0,701 0,796 0,891 0,876 0,945 0,967 0,970 0,992 0,801 0,881 0,840 0,929
SAM ViT-Large 0,722 0,811 0,914 0,899 1,000 1,000 1,000 1,000 0,807 0,886 0,847 0,945
SAM ViT-Huge 0,723 0,811 0,924 0,894 0,969 0,982 0,988 0,995 0,810 0,889 0,857 0,948

Fine-tuned SAM ViT-Base with Geom loss 0,792 0,864 0,899 0,953 0,670 0,790 0,989 0,942 0,742 0,837 0,895 0,926
Fine-tuned SAM ViT-Base with Topo+Geom loss 0,798 0,869 0,895 0,956 0,690 0,804 0,991 0,952 0,754 0,849 0,917 0,939

Table 6: Table of the results for inference given the ground-truth box prompt. Contains all
the metrics on the evaluation datasets for every model (bold best, underline second best).
MedSAM did not work with organoid images and the foundational SAM models had the
best performance on most of the organoid images.

version of SAM ViT-Base but only with geometrical loss and not topological loss.

The metrics used to compare the models were Dice Coefficient (Dice), Average Preci-
sion (AP), Intersection over Union (IoU) and Sensitivity (Sens). For every dataset, these
metrics were computed on each mask and we took the average on all the masks. The def-
initions of these metrics can be found in the Appendix. Other metrics such as Specificity
(Spec) and F1 Score (F1) were evaluated. See the Appendix for the complete results.

4.4.2 Results: ground-truth box prompts

The first study was done for the case of giving ground-truth boxes to the models. Eval-
uation results can be checked in Table 6. The first conclusion was that MedSAM did
not work well with organoid images. The second conclusion is that original foundational
models could detect organoids well given a perfect bounding box. Especially, larger ver-
sions of the foundational SAM models such as SAM ViT-Large and SAM ViT-Huge gave
nice results.

For SAM ViT-Large it was not surprising to see the metrics obtained on the OrgaQuant
dataset. This perfect performance was due to the way the masks were generated for this
dataset, explained in Section 4.2.

Regarding our fine-tuned version of SAM, we got the best results on the private dataset
hold-out test split. Due to the training pipeline (see Figure 13) our model was fine-tuned



4 ORGANOIDS 26

Private OrgaQuant OrganoSeg
Model IoU Dice Sens AP IoU Dice Sens AP IoU Dice Sens AP

MedSAM 0,510 0,621 0,574 0,793 0,502 0,634 0,538 0,881 0,546 0,681 0,566 0,922
SAM ViT-Base 0,636 0,737 0,801 0,823 0,704 0,775 0,733 0,850 0,733 0,831 0,769 0,904
SAM ViT-Large 0,663 0,757 0,827 0,847 0,686 0,751 0,707 0,865 0,737 0,834 0,774 0,927
SAM ViT-Huge 0,674 0,768 0,860 0,851 0,738 0,801 0,764 0,911 0,770 0,860 0,813 0,936

Fine-tuned SAM ViT-Base with Geom loss 0,783 0,857 0,892 0,951 0,671 0,789 0,980 0,928 0,734 0,830 0,886 0,912
Fine-tuned SAM ViT-Base with Topo+Geom loss 0,790 0,863 0,890 0,953 0,688 0,801 0,983 0,942 0,740 0,835 0,900 0,917

Table 7: Table of the results for inference given a noised box prompt. Contains all the
metrics on the evaluation datasets for every model (bold best, underline second best).
MedSAM did not work on organoid images. Large versions of the foundational SAM
models had a good performance. The model trained with topological loss was better than
the one only trained with geometrically loss and worked well on all datasets.

to deal with more flexible prompts instead of ground-truth boxes. However, these fine-
tuned model got better results than MedSAM. For a more visual example, see Figure
15 to compare the output of the different models. More examples can be seen in the
Appendix.

4.4.3 Results: noised box prompts

The second study was done for the case of giving noised box prompts to every model.
This approach tried to imitate a real case usage, where a doctor will not draw perfect
boxes for every organoid, since this person will not have computer precision, but will draw
framing boxes close to the ideal ones.

The results, which can be seen in Table 7 are promising. Again, MedSAM did not work
well on organoid images with noised prompts (even though the model was trained with
noised framing boxes).

On one hand, for the private dataset, our fine-tuned version of SAM had the best perfor-
mance on all the metrics. On the other hand, for the hold-out datasets, we saw that the
SAM ViT-Huge model had the best performance. However, our fine-tuned version of SAM
had close evaluation metrics to this larger SAM version and was also faster. Moreover,
as it can also be seen above in Table 6, fine-tuning with topological loss indeed improved
the performance of the resulting model compared to only using geometrical loss.
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5 Conclusion
In this project we fine-tuned the Segment Anything Model [3] on medical data. We saw
that this improved the performance for OCT and Organoid data. Furthermore, incorpo-
rating topological data analysis led to slight improvements.

Regarding OCT data, we mostly focused on the model design. Our main problem was
how to deal with multiple segmentation classes where some were much more prevalent
than others. We presented two ways to solve this problem. Firstly, we used prompts to
segment one class at a time. Secondly, we modified SAM’s architecture such that it pro-
duces segmentations for each class and superposes them in the end. We saw that the first
approach performs better and fine-tuning on it shows significantly superior performance
compared to the default SAM.

Regarding organoid data, we had to label the images first. For this we created a semi-
automatic pipeline that combines Grounding DINO and pseudo-coloring techniques. The
fine-tuned version of SAM using topological loss showed a competitive performance against
SAM ViT-Large and SAM ViT-Huge on our private and other public datasets. Our fine-
tuned model is a promising fast tool to segment organoid images and is able to deal with
flexible box prompts.

For both datasets, OCT and Organoids, the results showed a significant improvement on
the fine-tuned models if topological loss is employed. Furthermore, simple image prepro-
cessing techniques such as pseudo-coloring enhanced the power of the models.

Finally, our results suggest further research on foundation models in the medical domain.
We also look forward to future developments in topological data analysis.
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Loss functions for segmentation
Here we give a short summary of common geometric segmentation losses. In our experi-
ments we use a combination of Cross entropy loss and Dice loss called DiceCELoss.
Cross entropy loss is defined for multiple classes like

LCE := − 1
N

N∑
i=1

C∑
c=1

yi,c log(pi,c),

where yi,c denotes the ground truth assignement, i.e. it is 1 if pixel i belongs to class c
and 0 otherwise, and pi,c denotes the prediction logit.

Dice loss is defined for binary segmentation as

LD := 2 ∑N
i=1 pigi∑N

i=1 p2
i + ∑N

i=1 g2
i

,

where gi is the binary ground truth at pixel i and pi is the predicted logit. So, the nu-
merator is the total number of pixels correctly predicted and the denominator is the total
number of pixels predicted and ground truth pixels.

DiceCELoss is defined then as:

LDCE := λdLd + λceLce

with hyperparameters λd and λce that balance the weight of the two loss functions on the
global loss function.
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Metrics for segmentation
The metrics implemented to evaluate the models have been the following:

• Intersection over Union (IoU): Measures the overlap between the predicted (A) and
ground truth (B) masks.

IoU(A, B) = |A ∩ B|
|A ∪ B|

.

• Accuracy

Accuracy = True Positives + True Negatives
Negatives + Positives .

• Dice Coefficient (Dice): Similar to IoU, measures the overlap between the predicted
and ground truth masks.

Dice(A, B) = 2 · |A ∩ B|
|A| + |B|

.

• Specificity (Spec): Ability of the model to correctly identify negative instances.

Spec = True Negatives
True Negatives + False Positives .

• Sensitivity (Sens): Ability of the model to correctly identify positive instances.

Sens = True Positives
True Positives + False Negatives .

• Average Precision (AP): considers the precision-recall curve and provides a summary
measure of the model’s performance across different confidence thresholds. It is
computed by integrating the precision-recall curve.

• F1 Score (F1): Harmonic mean of precision and recall. Offers a balanced measure
of the model’s performance.

F1 = 2 · Precision · Recall
Precision + Recall .
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OCT
More images from the dataset and some more evaluation results

Training hyperparameters

Hyperparameter Value
Train split images 440
Validation split images 112
Batch size 2
Epochs 10
Learning rate 1e-4
Topological loss: dimensional
topological features included 0 and 1

Topological loss: L-p in
Wasserstein distance L2-loss

Topological regularisation None

Table 8: Hyperparameters for the models trained with topological and geometrical loss
and box or point prompts.

Hyperparameter Value
Train split images 440
Validation split images 112
Batch size 2
Epochs 10
Learning rate 1e-3

Table 9: Hyperparameters for the model trained with geometrical loss.

Hyperparameter Value
Train split images 440
Validation split images 112
Batch size 8
Epochs 10
Learning rate 1e-3

Table 10: Hyperparameters for the automatic SAM models.
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Detailed evaluation results

IoU Accuracy Specificity Dice mAP
Global Sample Global Sample Global Sample Global Sample Global Sample

BB, SAM ViT-Base 0,0736 0,0550 0,1251 0,0836 0,9307 0,9274 0,1167 0,0773 0,1197 0,0992
BB, MedSAM 0,0174 0,0162 0,0369 0,0662 0,9395 0,9405 0,0328 0,0273 0,0785 0,0894
BB, fine-tuned 0,4487 0,3660 0,7135 0,5677 0,9767 0,9764 0,5819 0,4590 0,5745 0,5216

PT, SAM ViT-Base 0,0462 0,0594 0,3069 0,2874 0,6440 0,6436 0,0784 0,0753 0,0651 0,1052
PT, MedSAM 0,0281 0,0323 0,0643 0,0676 0,9365 0,9370 0,0507 0,0452 0,0761 0,1135
PT, fine-tuned 0,1783 0,1764 0,9138 0,9388 0,8076 0,8084 0,2572 0,2265 0,2795 0,2686

Automatic SAM 0,3357 0,3237 0,3771 0,3697 0,9885 0,9888 0,3927 0,3697 0,5637 0,5623

Table 11: Comparison of untrained foundational models (SAM ViT-Base and MedSAM)
with 2 different prompt types ( BB - Bounding boxes, PT - points) to our 3 fine-tuned
approaches.

IoU Accuracy Specificity Dice mAP
Global Sample Global Sample Global Sample Global Sample Global Sample

BB 0,4487 0,3660 0,7135 0,5677 0,9767 0,9764 0,5819 0,4590 0,5745 0,5216
BB + Bone 0,4557 0,3723 0,8313 0,6848 0,9673 0,9667 0,5870 0,4705 0,5730 0,5126

BB + Rainbow 0,4349 0,3312 0,7857 0,6702 0,9744 0,9742 0,5584 0,4183 0,5300 0,4542

Table 12: Evaluation results for fine-tuning with bounding box prompts on recolored
images (Bone and Rainbow pseudocoloring schemas).

IoU Accuracy Specificity Dice mAP
Global Sample Global Sample Global Sample Global Sample Global Sample

BB 0,4487 0,3660 0,7135 0,5677 0,9767 0,9764 0,5819 0,4590 0,5745 0,5216
BB+TL 0,4606 0,3764 0,7131 0,5621 0,9804 0,9802 0,5911 0,4627 0,5671 0,5081

BB+Bone 0,4557 0,3723 0,8313 0,6848 0,9673 0,9667 0,5870 0,4705 0,5730 0,5126
BB+Bone+TL 0,4805 0,3766 0,6715 0,5380 0,9837 0,9836 0,6073 0,4657 0,6150 0,5207

Table 13: Evaluation results for SAM ViT-Base with bounding box prompts (BB) that
utilizes topological loss (TL) and Bone pseudocoloring during training.

IoU Accuracy Specificity Dice mAP
Global Sample Global Sample Global Sample Global Sample Global Sample

BB 0,4487 0,3660 0,7135 0,5677 0,9767 0,9764 0,5819 0,4590 0,5745 0,4950
BB-L 0,4591 0,3731 0,8686 0,7265 0,9660 0,9653 0,5872 0,4704 0,5980 0,5146

BB+Bone+TL 0,4805 0,3766 0,6715 0,5380 0,9837 0,9836 0,6073 0,4657 0,6150 0,5207
BB-L+Bone+TL 0,5168 0,4305 0,7910 0,6995 0,9824 0,9822 0,6415 0,5217 0,6639 0,5652

Table 14: Evaluation results for SAM ViT-Large with bounding box prompts (BB-L) that
utilizes topological loss (TL) and Bone pseudocoloring schema during training.
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Class Prevalence IoU Accuracy
Global Sample Global Sample

background 0,4029 0,8454 0,8235 0,9470 0,9371
vitreous body 0,2398 0,9272 0,2598 0,9683 0,3488

neurosensory retina 0,1402 0,8019 0,7269 0,9386 0,8288
image padding 0,1036 0,9570 0,8764 0,9878 0,9469

imaging artifacts 0,0712 0,6353 0,4881 0,8706 0,6609
retinal pigment epithelium 0,0120 0,2696 0,4302 0,7511 0,7339

pigment epithelial detachment 0,0075 0,3969 0,2568 0,6976 0,5086
fibrosis 0,0061 0,4692 0,4132 0,6523 0,5884

subretinal fluid 0,0057 0,4376 0,2841 0,5672 0,4425
intraretinal fluid 0,0038 0,4243 0,2242 0,7409 0,4763

epiretinal membrane 0,0025 0,1956 0,3959 0,7160 0,6169
choroid border 0,0021 0,1525 0,3290 0,5802 0,5365

subretinal hyperreflective material 0,0020 0,4979 0,2782 0,6631 0,4349
posterior hyaloid membrane 0,0006 0,2213 0,1507 0,5743 0,4817

Table 15: Per-class evaluation results (only IoU and Accuracy) for fine-tuned SAM ViT-
Large model with topological loss and bone pseudocoloring (BB-L+TL+Bone), sorted by
class prevalence.

Class Prevalence IoU Accuracy
Global Sample Global Sample

background 0,4029 0,4249 0,3958 0,6407 0,5934
vitreous body 0,2398 0,1919 0,0482 0,3154 0,0785

neurosensory retina 0,1402 0,0057 0,0050 0,0129 0,0094
image padding 0,1036 0,2530 0,2135 0,3857 0,2651

imaging artifacts 0,0712 0,0316 0,0197 0,0723 0,0414
retinal pigment epithelium 0,0120 0,0005 0,0029 0,0054 0,0079

pigment epithelial detachment 0,0075 0,0423 0,0273 0,1276 0,0463
fibrosis 0,0061 0,0143 0,0076 0,0264 0,0109

subretinal fluid 0,0057 0,0060 0,0098 0,0100 0,0122
intraretinal fluid 0,0038 0,0143 0,0106 0,0269 0,0190

epiretinal membrane 0,0025 0,0003 0,0023 0,0033 0,0045
choroid border 0,0021 0,0023 0,0133 0,0159 0,0250

subretinal hyperreflective material 0,0020 0,0730 0,0308 0,1391 0,0382
posterior hyaloid membrane 0,0006 0,0054 0,0035 0,0151 0,0085

Table 16: Per-class evaluation results (only IoU and Accuracy) for untrained SAM ViT-
Large model, sorted by class prevalence.
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Organoids
Additional images of the datasets

Figures 16, 17, 18 and 19 show more examples of the organoid images in the datasets
used for the training and the evaluation of the model.

Figure 16: Orange image from the private
dataset.

Figure 17: Black and white image from the
private dataset.

Figure 18: Image with intestinal organoids
from Orgaquant dataset.

Figure 19: Image with colon organoids
from OrganoSeg dataset.

Datasets information

Table 17 shows number of organoids in each split of every dataset used to evaluate and
fine-tune the model.
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Split
Dataset Train Validation Test Total

Private 16134 4630 4399 25163
OrgaQuant 13004 - 1135 14139
OrganoSeg 999 350 374 1723

Table 17: We have employed 3 different datasets. The private one has been used in
the training. OrgaQuant and OrganoSeg have been hold-out datasets involved in the
evaluation of the model.

Training hyperparameters

Table 18 and 19 specify the configuration and hyperparameters selected to fine-tune SAM
ViT-Base with Topological Loss and Geometrical loss or only Geometrical loss, respec-
tively.

Hyperparameter Value
Train split images 16134
Validation split images 4630
Batch size 5
Epochs 10
Learning rate 5e-5
Weight decay 1e-4
Topological loss: λ 0.1
Topological loss: dimensional
topological features included 0 and 1

Topological loss: L-p in
Wasserstein distance L2-loss

Topological regularisation None

Table 18: Hyperparameters for the model trained with topological and geometrical loss.

Hyperparameter Value
Train split images 16134
Validation split images 4630
Batch size 5
Epochs 10
Learning rate 5e-5
Weight decay 1e-4

Table 19: Hyperparameters for the model trained with geometrical loss.

Metrics results

Table 20, 21 and 22 provide all metric results for the hold-out test splits of private,
OrgaQuant and OrganoSeg datasets. These are the mean over the metrics computed at
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every mask of each corresponding dataset.

Model IoU Dice Sens Spec AP F1
Ground-truth box prompt

MedSAM 0,606 0,711 0,695 0,993 0,860 0,711
SAM ViT-Base 0,701 0,796 0,891 0,972 0,876 0,796
SAM ViT-Large 0,722 0,811 0,914 0,976 0,899 0,811
SAM ViT-Huge 0,723 0,811 0,924 0,972 0,894 0,811

Fine-tuned SAM ViT-Base with Geom loss 0,792 0,864 0,899 0,991 0,953 0,864
Fine-tuned SAM ViT-Base with Topo+Geom loss 0,798 0,869 0,895 0,994 0,956 0,869

Noised box prompt
MedSAM 0,510 0,621 0,574 0,993 0,793 0,621

SAM ViT-Base 0,636 0,737 0,801 0,971 0,823 0,737
SAM ViT-Large 0,663 0,757 0,827 0,975 0,847 0,757
SAM ViT-Huge 0,674 0,768 0,860 0,971 0,851 0,768

Fine-tuned SAM ViT-Base with Geom loss 0,783 0,857 0,892 0,991 0,951 0,857
Fine-tuned SAM ViT-Base with Topo+Geom loss 0,790 0,863 0,890 0,993 0,953 0,863

Table 20: Evaluation metrics for the hold-out test split of private dataset.

Model IoU Dice Sens Spec AP F1
Ground-truth box prompt

MedSAM 0,644 0,763 0,688 1,000 0,953 0,763
SAM ViT-Base 0,945 0,967 0,970 1,000 0,992 0,967
SAM ViT-Large 1,000 1,000 1,000 1,000 1,000 1,000
SAM ViT-Huge 0,969 0,982 0,988 0,999 0,995 0,982

Fine-tuned SAM ViT-Base with Geom loss 0,670 0,790 0,989 0,996 0,942 0,790
Fine-tuned SAM ViT-Base with Topo+Geom loss 0,690 0,804 0,991 0,997 0,952 0,804

Noised box prompt
MedSAM 0,502 0,634 0,538 0,998 0,881 0,634

SAM ViT-Base 0,704 0,775 0,733 0,999 0,850 0,775
SAM ViT-Large 0,686 0,751 0,707 1,000 0,865 0,751
SAM ViT-Huge 0,738 0,801 0,764 0,999 0,911 0,801

Fine-tuned SAM ViT-Base with Geom loss 0,671 0,789 0,980 0,996 0,928 0,789
Fine-tuned SAM ViT-Base with Topo+Geom loss 0,688 0,801 0,983 0,997 0,942 0,801

Table 21: Evaluation metrics for the hold-out test split of OrgaQuant dataset.

Additional visual examples of results

Figure 20, 21 and 22 show the outputs from our fine-tuned version of SAM, MedSAM
and SAM ViT-Base on images from different datasets.
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Model IoU Dice Sens Spec AP F1
Ground-truth box prompt

MedSAM 0,626 0,751 0,651 0,999 0,942 0,751
SAM ViT-Base 0,801 0,881 0,840 0,999 0,929 0,881
SAM ViT-Large 0,807 0,886 0,847 0,999 0,945 0,886
SAM ViT-Huge 0,810 0,889 0,857 0,999 0,948 0,889
Fine-tuned SAM ViT-Base with Geom loss 0,742 0,837 0,895 0,996 0,926 0,837
Fine-tuned SAM ViT-Base with Topo+Geom loss 0,754 0,849 0,917 0,995 0,939 0,849

Noised box prompt
MedSAM 0,546 0,681 0,566 0,999 0,922 0,681
SAM ViT-Base 0,733 0,831 0,769 0,999 0,904 0,831
SAM ViT-Large 0,737 0,834 0,774 0,999 0,927 0,834
SAM ViT-Huge 0,770 0,860 0,813 0,999 0,936 0,860
Fine-tuned SAM ViT-Base with Geom loss 0,734 0,830 0,886 0,995 0,912 0,830
Fine-tuned SAM ViT-Base with Topo+Geom loss 0,740 0,835 0,900 0,995 0,917 0,835

Table 22: Evaluation metrics for the hold-out test split of OrganoSeg dataset.
.

Figure 20: Different model outputs on image of the private dataset.

Figure 21: Different model outputs on image of OrgaQuant dataset.

Figure 22: Different model outputs on image of OrganoSeg dataset.
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