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● molecules heat up and generate ultrasonic waves

● this wave is detected

● from this detected signal, the image is obtained via 

solution of an inverse problem

● in our case: 

28 laser wavelengths → 28 image channels
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Optoacoustic imaging: Spectral information

● The molecules heat up dependent on their 

chromophore type and the laser 

wavelength

● base spectra:
○ blood (Hb, HbO2)
○ fat 
○ water

● decomposition in base spectra is done via 

linear unmixing, i.e. regression

Absorption spectra of main tissue types
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Optoacoustic imaging: Spectral information

● We display the optoacoustic images in 3 components separately  



From signal to image

● To reconstruct the images from the signals, one needs model assumptions

● In our project we distinguish

○ low quality images (simplified assumptions, fast algorithms)

○ high quality images (more complex assumptions, more expensive)



Low and high quality ultrasound images
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Low and high quality optoacoustic images

regressed low quality spectrum regressed high quality spectrum
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Low and high quality optoacoustic images

low quality

high quality



Speed of sound models

● For the reconstruction of the location and 

shape inside the tissue, one needs a model 

for the speed of sound (sos).

●  2 simple models:

○ single/homogeneous sos model

○ dual sos model
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Speed of sound models

● For the reconstruction of the location and 

shape inside the tissue, one needs a model for 

the speed of sound (sos).

●  2 simple models:

○ single/homogeneous sos model

○ dual sos model

Figure taken from: D. Jüstel. TUM data innovation lab project: Enhancement of clinical optoacoustic and ultrasound images (internal presentation). 
                                 IBMI/CBI, TUM, Helmholtz Zentrum München, 2018.



Different speed of sound models

single sos dual sos
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Problem statements of this project

Subproject 1

Subproject 2
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Base Model: Fully-Convolutional 
Encoder-Decoder with skip connections



Thoughts behind framework

● Convolution: extract important features
● Transpose convolution: up-sample extracted features into the image
● Skip connection:

○ modeling the error term
○ help propagating the gradients
○ keep detailed information of the image



Data - Challenges

● Limited number of images 

○ 100 (approx.) images

● Large data size

○ Total memory required

○ Subproject 1 (US - 3.6GB, OA - 50.4GB)

○ Subproject 2 (US - 90GB)

● High Dimensional Data

○ OA - 28 channels

             Ultrasound  Optoacoustic



Data - Consequences

● Limited images - Used augmentations (flip, deform, crop, blur, speckle noise)

● Continuous integration of  data throughout project

○ Train-Validation : 90:10

○ “Test” : 2 Images

● High dimensional data 

○ Cannot compute using local machine

○ Used LRZ GPU resources
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Approach

● Data: low quality input, high quality target

● Augmentations: flip, deform, crop, blur, 

speckle noise

● Architecture: Base Model

● 7 Conv, 7 Transpose conv layers stride 2

● Adding skip connections
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Test Results
Input
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Comparison low and high quality spectra
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Base Spectra and Regression

Absorption spectra of main tissue types
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Comparison low and high quality spectra
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Approach

● Data: 

○ low quality input (201, 401, 4)

○ high quality target (201, 401, 4)

● Augmentations: flip, deform

● Architecture: Base Model

● 5  Conv, 5 Transpose conv layers stride 2
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Results - validation images
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Data Exploration

● Complete mapping information

Input image Target
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Data Exploration

● Subtle change in the upper image, stronger deformation in the lower part

Input Target
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Idea

Input Target
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Solution: Masking the image

Channel

H

W
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Used attention masks
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Results

Input Target Predict
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Relaxing the problem
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Another look on the data

● Receptive field is limited for skip connections
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Another look on the data

● Receptive field is limited for skip connections
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● Calculate the difference y based on the 

membrane difference

 

Translating one input
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Relaxed Problem - Translation

● Translated SOS tissue image

SOS couplant SOS tissue Target
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Attention mask used

lq   hq

1 sos

2 sos SP 2

SOS Couplant SOS TissueSOS TissueSOS Couplant



Model
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Approach

● Data: sos couplant, sos tissue, masks

● Augmentations: flip, speckle noise, blur

● Architecture: Base Model + Conv Net

● 5 Conv, 5 Transpose conv layers + 2 Conv
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Results
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Key facts

● Better results on relaxed problem

● Relaxed problem could still be used on the machine

● We used a computationally more complex network
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Conclusion

Subproject 1

Subproject 2

Good results as warm-up project Very good results based on our 
evaluation methods

Ultrasound Optoacoustic

Learned deformations at the cost of 
image quality

Learned deformations with better 
visual quality

Original Relaxed

lq   hq

1 sos

2 sos

SP 1

lq   hq

1 sos

2 sos SP 2



Thank you for your attention!
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Data Preprocessing: Scaling

histograms of unscaled low and high quality ultrasound images



Data Preprocessing: Scaling
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Data Preprocessing: Scaling

histograms of unscaled low and high quality optoacoustic images



Data Preprocessing: Truncating OA images

histograms of unscaled low and high quality optoacoustic images with 0.01 and 99.99% quantiles



Data augmentation

● Generating more data from the data you have
● method to increase number of training samples, makes model more robust

Our augmentation methods:
● flip
● crop
● deform
● additional frames
● blur
● speckle noise



Augmentation: Flip

● Flips the image horizontally

low quality    high quality
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Augmentation: Crop

● Crops the lower and either the 
left or the right side

● random component in side 
chosen and size of crop

low quality    high quality

original

augmented



Augmentation: 
Deform

● Applies an elastic deformation 
to the images

● inspired by U-Net, not exactly 
the same method

● 3 different deformations per 
image

low quality    high quality

original

augmented



Augmentation: 
Additional frames

● Additional frames captured 
shortly after each other

● cannot be considered 
independent

low quality    high quality

original

augmented



Augmentation: Blur

● Blurs the low quality image 
with a gaussian filter

● only for US data

low quality    high quality

original

augmented



Augmentation: 
Speckle noise

● multiplicative Gaussian noise
● simulates speckle noise, often 

found in US images

● only for US data

low quality    high quality

original

augmented
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Convolution and Transpose Convolution
 Convolution Transpose-Convolution

[1] Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning 

https://arxiv.org/abs/1603.07285
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Weight regularization

2 popular forms: 

● l2 regularization:  L(predict, target) = L(predict, target) + reg_param/2*||weights||²

● weight decay: directly change the step the optimizer takes: 

new_weights = weights - normal_update - reg_param*learn_rate*weights

● for standard SGD, these are equivalent, not so for Adam

AdamW: implementation of weight decay for Adam (Loshchilov, Hutter 2017)



Learning rate schedule - One Cycle



Loss function evaluation

Smooth L1 Loss:



Loss function evaluation

L1 Loss:



Loss function evaluation

MSE Loss:
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Doctors are presented with a series 
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● image quality
● image content
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Proposal for the evaluation by professionals

image quality

“Taking the left image as a baseline 
(quality score 0), how would you rate 
the quality of the right image on a 
scale from -10 to 10?”

 -10         0            10



Proposal for the evaluation by professionals

image content

“Are there differences in the content of 

the images? (apart from noise)

For example: 
● something present in the right that isn’t 

there in the left 
● something missing in the right that is 

present in the left image

If so, please describe the difference and its location in the images.”
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● image content: read comments, look at images
● image quality: 

○ produces data like this
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target pred.
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Proposal for the evaluation by professionals

How to interpret results:

● image content: read comments, look at images
● image quality: 

○ produces data like this
○ we want to test that our images are not 

worse than the target images
○ can be tested with a noninferiority test

target pred. pred.-target

Scan 1 4 3 -1

Scan 2 6 6 0

Scan 3 2 3 1

... ... ...
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Optoacoustic - PCA Approach

● PCA fitted on high quality training data

● almost all of the variance kept with 4 

components



Optoacoustic - PCA Approach

● PCA fitted on high quality training data

● almost all of the variance kept with 4 

components

Frist four principle components Following three principle components



Optoacoustic - PCA Approach
Input Target Predict



Optoacoustic - Sliced Approach
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Optoacoustic - Sliced Approach
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Subproject 2 - Extended Relaxed Approach

Main Differences:

● Individual Calculation of the needed translation of the input tissue speed of sound

● Passing over the whole input to the large convolutions in the end

● Using no block attention masks, but the membrane mask of each sample

● Long training process → Used weights from previously trained model



Subproject 2 - Extended Relaxed Approach

New Attention Masks



Subproject 2 - New Results



Subproject 2 - Old Results



Relaxed Problem - Approach 2

● Assume deformation of membrane is 

linear in the difference of speed

● → 

●

y

dY



Relaxed Problem - Approach 2



SP2: Linear Deformer

- linear layer between input and output

- manually set the weights outside the diagonal and one 

above and below to zero

- to get it into memory we still need to make the image 

smaller:

- → conv - linear - deconv

- conv with kernel(4,4) and stride 4



SP2: Linear Deformer - Test Results



SP2: Linear Deformer - Test Results



Locally Connected

Own filter for each pixel



Model

● New model class: test models in a fast and easy way
● Second approach: dilated convolution



Dilated Convolutional Model



Approach 1



Convolutional Spatial Transformer

[1] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In Advances in Neural Information Processing Systems (NIPS), 2015.

[1]



Attention mask used - fewer animations
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