Enhancement of clinical optoacoustic and ultrasound images

Authors: Sunita Gopal, Eva M. Höck, Fabian Pieroth, Tom H. Wollschläger

Mentors: Dr. Dominik Jüstel, Jan Kukacka MSc, (Institute for Biological and Medical Imaging, Helmholtz Zentrum München) Co-Mentor: Michael Rauchensteiner MSc

Project Lead: Dr. Ricardo Acevedo Cabra (Department of Mathematics)

Supervisor: Prof. Dr. Massimo Fornasier (Department of Mathematics)

Outline

- > Problem Statement
- Subproject 1 Ultrasound
- Subproject 1 Optoacoustic
- > Subproject 2
- > Conclusion

Ultrasound Imaging

• ultrasonic wave is emitted

detector

Ultrasound Imaging

- ultrasonic wave is emitted
- reflection is detected

• from this detected signal, the image is obtained via solution of an inverse problem

detector

Ultrasound Imaging

- ultrasonic wave is emitted
- reflection is detected

• from this detected signal, the image is obtained via solution of an inverse problem

Optoacoustic Imaging

- laser pulse is shot at the tissue
- molecules heat up and generate ultrasonic waves

Optoacoustic Imaging

- laser pulse is shot at the tissue
- molecules heat up and generate ultrasonic waves
- this wave is detected

- from this detected signal, the image is obtained via solution of an inverse problem
- in our case:

28 laser wavelengths \rightarrow 28 image channels

detector

Optoacoustic Imaging

- laser pulse is shot at the tissue
- molecules heat up and generate ultrasonic waves
- this wave is detected

- from this detected signal, the image is obtained via solution of an inverse problem
- in our case:

28 laser wavelengths \rightarrow 28 image channels

Spectrum of one pixel

• The molecules heat up dependent on their chromophore type and the laser wavelength

• We display the optoacoustic images in 3 components separately

Water

From signal to image

- To reconstruct the images from the signals, one needs model assumptions
- In our project we distinguish
 - *low quality* images (simplified assumptions, fast algorithms)
 - *high quality* images (more complex assumptions, more expensive)

Low and high quality ultrasound images

high quality

Low and high quality optoacoustic images

Low and high quality optoacoustic images

Total blood volume

Total blood volume

1961 1971 1971 1971 1971 1971 1971

Fat

Water

low quality

Water

high quality

Speed of sound models

- For the reconstruction of the location and shape inside the tissue, one needs a model for the speed of sound (sos).
- 2 simple models:
 - single/homogeneous sos model
 - dual sos model

detector ring

Speed of sound models

- For the reconstruction of the location and shape inside the tissue, one needs a model for the speed of sound (sos).
- 2 simple models:
 - single/homogeneous sos model
 - dual sos model

Figure taken from: D. Jüstel. TUM data innovation lab project: Enhancement of clinical optoacoustic and ultrasound images (internal presentation). IBMI/CBI, TUM, Helmholtz Zentrum München, 2018.

Different speed of sound models

single sos

dual sos

Problem statements of this project

Problem statements of this project

Problem statements of this project

Base Model: Fully-Convolutional Encoder-Decoder with skip connections

Thoughts behind framework

- Convolution: extract important features
- Transpose convolution: up-sample extracted features into the image
- Skip connection:
 - modeling the error term
 - help propagating the gradients
 - keep detailed information of the image

Data - Challenges

- Limited number of images
 - 100 (approx.) images
- Large data size
 - \circ Total memory required
 - Subproject 1 (US 3.6GB, OA 50.4GB)
 - Subproject 2 (US 90GB)
- High Dimensional Data
 - OA 28 channels

Ultrasound

Data - Consequences

- Limited images Used augmentations (flip, deform, crop, blur, speckle noise)
- Continuous integration of data throughout project
 - Train-Validation : 90:10
 - "Test": 2 Images
- High dimensional data
 - Cannot compute using local machine
 - Used LRZ GPU resources

Outline

- Problem Statement
- Subproject 1 Ultrasound
- Subproject 1 Optoacoustic
- > Subproject 2
- > Conclusion

1 sos **SP 1** 2 sos

lq hq

Approach

- Data: low quality input, high quality target
- Augmentations: flip, deform, crop, blur, speckle noise
- Architecture: Base Model
- 7 Conv, 7 Transpose conv layers stride 2
- Adding skip connections

Test Results

Input

Target

Predict

Outline

- > Problem Statement
- Subproject 1 Ultrasound
- > Subproject 1 Optoacoustic
- Subproject 2
- > Conclusion

Comparison low and high quality spectra

Base Spectra and Regression

Comparison low and high quality spectra

Approach

- Data:
 - low quality input (201, 401, 4)
 - high quality target (201, 401, 4)
- Augmentations: flip, deform
- Architecture: Base Model
- 5 Conv, 5 Transpose conv layers stride 2

Results - validation images

Total blood volume

Total blood volume

Total blood volume

Input

Water

Water

Target

Predict

Results - validation images

Total blood volume

Total blood volume

Water

Water

Total blood volume

Water

Target

Predict

Results - Comparison

Total blood volume

Target

Water

Results - Comparison

Predict

Total blood volume

Water

Outline

- > Problem Statement
- ➢ Subproject 1 Ultrasound
- Subproject 1 Optoacoustic
- > Subproject 2
- > Conclusion

Data Exploration

• Big variety in Input

Target

Data Exploration

• Big variety in Input

Target

Data Exploration

• Big variety in Target

Data Exploration

• Big variety in Target

Data Exploration

• Complete mapping information

Data Exploration

• Subtle change in the upper image, stronger deformation in the lower part

Idea

Target

Solution: Masking the image

Used attention masks

Results

Target

Predict

Results

Target

Predict

Relaxing the problem

1 sos 2 sos SP 2

lq hq

Another look on the data

• Receptive field is limited for skip connections

1 sos 2 sos SP 2

Another look on the data

• Receptive field is limited for skip connections

lq hq

Translating one input

• Calculate the difference y based on the membrane difference

$$y = d_{tissue} - d_{couplant} \approx t \cdot (c_{tissue} - c_{couplant})$$

 $t \approx \frac{d_{real}}{c_{couplant}} = \frac{0.04 + d_{couplant}}{c_{couplant}}$

Relaxed Problem - Translation

• Translated SOS tissue image

Attention mask used

Model

Approach

- Data: sos couplant, sos tissue, masks
- Augmentations: flip, speckle noise, blur
- Architecture: Base Model + Conv Net
- 5 Conv, 5 Transpose conv layers + 2 Conv

Key facts

- Better results on relaxed problem
- Relaxed problem could still be used on the machine
- We used a computationally more complex network

Outline

- > Problem Statement
- Subproject 1 Ultrasound
- Subproject 1 Optoacoustic
- ➤ Subproject 2
- > Conclusion

Conclusion

Iq hqOriginalRelaxedSubproject 21 sos
2 sos1 sos
2 sosLearned deformations at the cost of
image qualityLearned deformations with better
visual quality

Thank you for your attention!

Backup slides

- > Preprocessing, Augmentation
- Convolutional Networks
- > Optimization
- > Evaluation by experts
- > Optoacoustic approaches
- ➢ More on SP2

Data Preprocessing: Scaling

histograms of unscaled low and high quality ultrasound images

Data Preprocessing: Scaling

histograms of scaled low and high quality ultrasound images

Data Preprocessing: Scaling

histograms of unscaled low and high quality optoacoustic images

Data Preprocessing: Truncating OA images

histograms of unscaled low and high quality optoacoustic images with 0.01 and 99.99% quantiles

Data augmentation

- Generating more data from the data you have
- method to increase number of training samples, makes model more robust

Our augmentation methods:

- flip
- crop
- deform
- additional frames
- blur
- speckle noise
Augmentation: Flip

• Flips the image horizontally

augmented

low quality

Augmentation: Crop

original

augmented

 random component in side chosen and size of crop

low quality

Augmentation: Deform

- Applies an elastic deformation to the images
- inspired by U-Net, not exactly the same method
- 3 different deformations per image

original

augmented

low quality

original

Augmentation: Additional frames

- Additional frames captured shortly after each other
- cannot be considered independent

augmented

low quality

Augmentation: Blur

original

augmented

• only for US data

low quality

Augmentation: Speckle noise

original

- multiplicative Gaussian noise
- simulates speckle noise, often found in US images

augmented

• only for US data

low quality

Backup slides

- > Preprocessing, Augmentation
- Convolutional Networks
- > Optimization
- > Evaluation by experts
- > Optoacoustic approaches
- ➢ More on SP2

Convolution and Transpose Convolution

Convolution

Transpose-Convolution

Backup slides

- > Preprocessing, Augmentation
- Convolutional Networks
- > Optimization
- > Evaluation by experts
- > Optoacoustic approaches
- ➢ More on SP2

Weight regularization

2 popular forms:

- **I2 regularization:** $\mathcal{L}(\text{predict, target}) = L(\text{predict, target}) + \text{reg_param}/2^*||\text{weights}||^2$
- weight decay: directly change the step the optimizer takes:

new_weights = weights - normal_update - reg_param*learn_rate*weights

• for standard SGD, these are equivalent, not so for Adam

AdamW: implementation of weight decay for Adam (Loshchilov, Hutter 2017)

Learning rate schedule - One Cycle

Loss function evaluation

Smooth L1 Loss:

Loss function evaluation

L1 Loss:

Loss function evaluation

MSE Loss:

Backup slides

- > Preprocessing, Augmentation
- Convolutional Networks
- > Optimization
- > Evaluation by experts
- > Optoacoustic approaches
- ➢ More on SP2

Doctors are presented with a series of image pairs

and are asked questions about:

- image quality
- image content

Doctors are presented with a series of image pairs

and are asked questions about:

- image quality
- image content

image quality

"Taking the left image as a baseline (quality score 0), how would you rate the quality of the right image on a scale from -10 to 10?"

image content

"Are there differences in the content of the images? (apart from noise)

For example:

- something present in the right that isn't there in the left
- something missing in the right that is present in the left image

If so, please describe the difference and its location in the images."

How to interpret results:

• **image content:** read comments, look at images

How to interpret results:

- image content: read comments, look at images
- image quality:
 - produces data like this
 - we want to test that our images are not worse than the target images
 - can be tested with a **noninferiority test**

	target	pred.
Scan 1	4	3
Scan 2	6	6
Scan 3	2	3

How to interpret results:

- image content: read comments, look at images
- image quality:
 - produces data like this
 - we want to test that our images are not worse than the target images
 - can be tested with a **noninferiority test**

	target	pred.	predtarget
Scan 1	4	3	-1
Scan 2	6	6	0
Scan 3	2	3	1

Backup slides

- > Preprocessing, Augmentation
- Convolutional Networks
- > Optimization
- > Evaluation by experts
- > Optoacoustic approaches
- ➢ More on SP2

Optoacoustic - PCA Approach

- PCA fitted on high quality training data
- almost all of the variance kept with 4 components

Optoacoustic - PCA Approach

Optoacoustic - PCA Approach

Optoacoustic - Sliced Approach

Optoacoustic - Sliced Approach

Target all channels

Target sliced channels

Optoacoustic - Sliced Approach

Input

Target

Predict

Backup slides

- > Preprocessing, Augmentation
- Convolutional Networks
- > Optimization
- > Evaluation by experts
- > Optoacoustic approaches
- ➤ More on SP2

Subproject 2 - Extended Relaxed Approach

Main Differences:

- Individual Calculation of the needed translation of the input tissue speed of sound
- Passing over the whole input to the large convolutions in the end
- Using no block attention masks, but the membrane mask of each sample
- Long training process \rightarrow Used weights from previously trained model

Subproject 2 - Extended Relaxed Approach

New Attention Masks

Relaxed Problem - Approach 2

- Assume deformation of membrane is linear in the difference of speed
- $\rightarrow y = (sos_{tissue} sos_{couplant}) * \alpha$

•
$$Y - d = (sos_{tissue} - sos_{couplant}) * \alpha$$

Relaxed Problem - Approach 2

SP2: Linear Deformer

- linear layer between input and output
- manually set the weights outside the diagonal and one above and below to zero
- to get it into memory we still need to make the image smaller:
- \rightarrow conv linear deconv
- conv with kernel(4,4) and stride 4

SP2: Linear Deformer - Test Results

SP2: Linear Deformer - Test Results

Locally Connected

Own filter for each pixel

Model

- New model class: test models in a fast and easy way
- Second approach: dilated convolution

Dilated Convolutional Model

Approach 1

Convolutional Spatial Transformer

[1] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In Advances in Neural Information Processing Systems (NIPS), 2015.

Attention mask used - fewer animations

