
TECHNICAL UNIVERSITY OF MUNICH

TUM Data Innovation Lab

Enhancement of clinical optoacoustic and
ultrasound images
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Abstract

Medical optoacoustic and ultrasound imaging are methods to generate im-
ages of tissue types and structures a few centimeters deep inside the tissue.
In ultrasound imaging, acoustic ultrasonic waves are emitted and their re-
flection at different structures in the tissue is recorded. For the optoacoustic
images, short laser pulses are shot at the tissue, which is warmed up by the
light absorption. This in turn generates an acoustic sound wave which prop-
agates back through the tissue and is recorded. From these recorded signals,
the two-dimensional images can be reconstructed under different model as-
sumptions, one of which is the model assumed for the speed of the acoustic
wave in the various media it passes through (speed of sound model). Low
quality images with a very simple, constant speed of sound model can be ob-
tained in real time, while higher quality images with a more complex speed of
sound model are more computationally intensive. In this project, we present
a supervised learning approach to this problem, which is based on Convolu-
tional Neural Networks. In the first part (Subproject 1), the task is to map
low to high quality images, both reconstructed with the same speed of sound
model. Here, the difference between input and target images is mostly noise.
We trained a deep Convolutional-Transpose-Convolutional model with skip
connections to be able to delete some of the noise while keeping most of
the structures in the images. Furthermore, we propose three approaches to
reduce the dimensionality of the optoacoustic data. In the second part (Sub-
project 2), the target images were reconstructed with a more complex, dual
speed of sound model. So, additionally to the denoising, the task was also
to learn the translation and deformation due to different speeds of sound.
For this, attention masks are employed, which allow to break up the param-
eter sharing in convolutional layers. In the original task of Subproject 2, the
speeds of sound are arbitrary, which poses a hard problem for a convolutional
architecture. Here, we were able to learn the deformation but were not able to
keep the details. In a relaxed version of the task, the model is presented with
two input images, each one being reconstructed with one of the two speeds of
sound assumed for the reconstruction of the target image. In this setting we
showed that our model is able to learn the deformation while increasing the
image quality. The results show that the deformations are highly dependent
on the depth of the image and that the parameter sharing is preventing the
network to learn locally different deformations. We further show that pro-
viding the network with two input images with the corresponding speeds of
sound of the target significantly improves the quality of the prediction.
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1 Introduction

Ultrasound and optoacoustic imaging is being developed and used in the medical field
to generate images of tissue and structures a few centimeters below the skin. The
clinical handheld Multispectral Optoacoustic Tomography (MSOT) Acuity device of
iThera Medical produces both of these image types simultaneously. For the ultrasound
images, acoustic ultrasonic waves are emitted and their reflection at different structures
in the tissue is recorded. For the optoacoustic images, short laser pulses in 28 different
wavelengths are shot at the tissue, which is warmed up by the light absorption. This
in turn generates an acoustic sound wave which propagates back through the tissue
and is recorded. So the combination of these two methods provides information about
the acoustic reflection properties (acoustic contrast) and the light absorption (optical
contrast) of the tissue.
From these recorded signals, the actual two-dimensional images can be reconstructed
under varying model assumptions. One of these model assumptions concerns the speed
of sound model: Calculating the location in the tissue depends on the speed of the
acoustic wave, which varies with the medium it propagates through. Examples for
simple speed of sound models are the homogeneous model, in which one constant speed
in all media is assumed, and the dual speed of sound model, which allows two different
speeds, one inside the tissue and one inside the coupling medium in the ultrasound
probe. On the iThera Medical MSOT Acuity, the reconstruction is done assuming a
constant speed of sound model and other suboptimal model assumptions, leading to low
quality images. There exist methods to obtain higher quality images assuming a more
complex speed of sound model and more suitable model assumptions, however, these are
to computationally complex for real-time applications.
In this project, we explored an supervised learning approach to this problem: Provided
with a dataset of low quality input and high quality target images, the goal was to
develop and train models to generate high quality output images from low quality input
data. The overall learning problem is presented in Section 2. In Section 3, a more
detailed discussion of the image formation process and the data used for this process is
given, alongside with an outline of the background in deep learning in computer vision,
optimization, data processing and augmentation.
The project is split into two parts:
In Subproject 1, the input and target images have been reconstructed using the same,
homogeneous speed of sound model. Here, the difference in quality stems from a large
amount of noise being present in the low quality images. In Section 4, we propose
a Convolutional Neural Network model to solve this task for the ultrasound images.
Section 5 regards the same task with optoacoustic images, which consist of 28 wavelength
channels (like color channels in an RGB image). This high dimensionality results in
computational complexity which we alleviate by compressing the data through various
means before training the same base architecture we used for the ultrasound images.
In Subproject 2 (Section 6), additionally to the difference in noise level and image quality,
the ultrasound input and target data has been reconstructed with different speed of sound
models: the low quality input data with the simple, homogeneous model, and the high
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quality target images with the more complex dual model. The difference in speed of
sound model has the effect of the image pairs being translated and deformed version
of each other. So the model not only has to denoise the input images but also deform
them to produce output images that resemble the target data. In Section 6.1, only the
speed of sound in the coupling medium is fixed for the target images, while the speed
value in the homogeneous model and the speed value in the tissue of the dual model are
considered to be arbitrary. In Section 6.2, the task is relaxed by providing the model
with 2 input images having been reconstructed with the constant speed of sound that is
assumed for the target images in the coupling medium and the tissue, respectively.
In Section 7, the results of the different subprojects are discussed before the conclusion
and outlook is given in Section 8.
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2 Problem Statement

For each of the different tasks in our project the data is generated in the following way.
There is some signal s ∈ S, where S is the signal space, which is retrieved from the
detectors. Additionally there are two reconstruction algorithms R1, R2 : S → Rd and
some abstract quality measure d : Rd → [0, 1]. The algorithms satisfy, that

d (R1(s)) ≥ d(R2(s)).

So the quality of the first reconstruction algorithm is in general higher than of the second
one. The idea is to find a mapping N : Rd → Rd and a suitable norm ||.|| (e.g. the L2-
norm) with ||N(R2(s))−R1(s)|| being small, while we achieve d(N(R2(s))) ≈ d(R1(s)).
Which means that we have similar images with almost the same quality as with the use
of R2. In the case of neural networks the norm is our loss function.

As the computational complexity of the reconstruction algorithm R1 is too high, we
need a good approximation of it. A simpler one, like R2, looses unfortunately too much
quality. So the use of classical means, like deducing an inverse mapping directly not only
needs vast knowledge of the topic, but might pose an unsolvable problem. Nonetheless,
the described problem is a classical task in computer vision, where convolutional neural
networks have shown exceptional results in the past years [13]. They have shown the
capability to extract the needed information directly from the visible structure of the
images and reconstruct the images in a high detail [20]. Therefore it is a reasonable
attempt to try to approximate the mapping N with a neural network.

Overall Approach

The dataset for our tasks is retrieved from a set of signals S = {s1, .., sn} ⊂ S through
R1 and R2 to generate our input data X = {R2(s1), .., R2(sn)} = {x1, .., xn} with
corresponding labels Y = {R1(s1), .., R1(sn)} = {y1, .., yn}. The idea is to find a suitable
mapping for all possible pairs of images that can occur with the reconstruction algorithms
R1 and R2. As we can only draw a small sample from the space of signals S and do
not know further details of the reconstruction algorithms as well as the true distribution
of the signals, we have to take up to three kinds of errors into account. Which are
optimization, estimation and approximation error [14].
The optimization error quantifies how good the optimization method that led to our
hypothesis is relative to the optimal empirical risk minimizer. This is in case of neural
networks given by the global minimum of the loss as a function of the weights. The
classical optimization method of neural networks is stochastic gradient descent or some
adjusted form of it [9], which is explained in more detail in 3.4. The success of this
method depends heavily on the quantity of the data, as well as the infrastructure for the
needed computations. The estimation error measures how well the hypothesis deduced
from empirical data can generalize to the best neural network we could produce for
this problem. The quantity of this error depends mostly on the quality and the overall
distribution of the training data. The empirical data will consist of only a very small
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sample of different patients as well as different body parts. To oppose these limitations
we need to acquire more varied data over the time of the project, which is addressed
in 3.5. Lastly the approximation error describes how good we could possibly be with
using an explicit model. Even though neural networks are capable of learning complex
non-linear relations there might be a non-trivial information loss from a given signal s
when comparing the images generated by R1(s) and R2(s).
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3 Literature Review and Background

In this section, we present the theoretical background of this project and introduce
terminology and concepts that are used throughout this document. Firstly, the basics of
image formation in ultrasound and optoacoustic imaging are outlined, with some details
on the reconstructions used to obtain the data for this project. Also, the background
in deep learning in computer vision is presented, before we explain the optimization
techniques we used. After that, some data preprocessing and augmentation methods are
introduced, to which we will refer when discussing the different subprojects in Sections
4 to 6. Lastly, the computational infrastructure that was used to train the models is
mentioned.

3.1 Image formation in ultrasound and optoacoustic imaging

One task in medical imaging is to obtain information or images of objects underneath
the surface of the skin, inside the tissue. When using optical means, the light is scattered
too much inside the tissue and therefore can not be focused. Optoacoustic and ultra-
sound imaging provide a solution for this problem by relying on acoustic waves instead
of light.
In ultrasound imaging, ultrasonic pulses are emitted from a transducer and travel through
the tissue where they are reflected. These reflections travel back to the ultrasound probe
and are recorded by detectors.
In optoacoustic imaging, short laser pulses of wavelengths in the visible or near infrared
spectrum are shot at the tissue, where the photons are scattered at or absorbed by tissue
molecules. How much of the light of a specific wavelength is absorbed is determined by
the chromophore type of the molecule (an analogue concept to color). The absorption of
photons gives the molecule more energy, which leads to thermalization, i.e. rising tem-
perature, and pressure exerted onto the neighbouring tissue. This pressure generates an
ultrasonic wave that propagates back through the tissue and is recorded by detectors.
This creation of an acoustic wave from light is called the photoacoustic effect (see [2]).
In both imaging techniques, the acoustic signal detected has to be converted into an
image of the tissue. This means going backwards in the processes described above, from
the detected signal until the reflection (ultrasound) or thermalization (optoacoustic) in
the tissue. This mathematical problem is called the acoustic inverse problem.
The speed and path of the ultrasonic wave propagating through the tissue is dependent
on the speed of sound in the different media it travels through. Since it is impossible to
model the speed of sound exactly, at every point on its way, one has to make the assump-
tion of a simplified speed of sound model. The easiest is the homogeneous speed of sound
model, in which we assume that the speed of sound is constant. A more suitable model
is the dual speed of sound model, in which two different speeds are assumed, one in the
coupling medium inside the probe (in our case heavy water), and a different, constant
speed inside the tissue. See Figure 1 for a schematic depiction of the consequently dif-
ferently reconstructed locations when assuming the homogeneous speed of sound model
(straight path) and the dual speed of sound model (refracted path).

5



In Subproject 1 of this project, both input and target images were reconstructed with

Figure 1: Refraction of the sound path due to the change of medium, figure taken from
[8]

the homogeneous speed of sound model (see Sections 4 and 5), whereas in Subproject
2 (Section 6), the target images were reconstructed under the assumption of the dual
speed of sound model. See Section 6.1.1 for a detailed problem statement of Subproject
2.

3.2 Specifics of the data used for this project

The data for this project was obtained using the clinical handheld Multispectral Op-
toacoustic Tomography (MSOT) Acuity device of iThera Medical, which generates ul-
trasound and optoacoustic data. For the optoacoustic scans, laser pulses of 28 different
wavelengths are used, leading to images with 28 channels. For every pixel, these 28
channels represent the absorption spectrum at that point, that is dependent on the type
of tissue. This spectrum can be decomposed into several base components, representing
chromophore types like water, blood and fat (see Section 5). We received two differently
reconstructed versions of the ultrasound and optoacoustic signals, which we will call low
quality and high quality data.
For the ultrasound imaging, each of the 256 ultrasound transducers is transmitting in
turn, while the others are recording the reflected signal. The low quality ultrasound
images are reconstructed using the synthetic aperture method, which is done directly on
the iThera MSOT. For the high quality ultrasound images on the other hand, each of
the 256 images is reconstructed separately using backprojection, and they are combined
to one via maximum intensity projection. See Figure 3.2 for an example of a pair of low
and high quality ultrasound images.

The low quality optoacoustic images are reconstructed with filtered backprojection,
which is a closed form inversion formula and has the drawbacks of some model assump-
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Figure 2: Example of a pair of low and high quality ultrasound images

tions that are not fulfilled, such as a complete continuous ring detector. For the high
quality optoacoustic images, a more suitable forward model is used that for instance
takes into account the discrete nature of the detector. According to this model, the
images are obtained via least squares inversion with Tikhonov regularization.
For an overview of these and other reconstruction algorithms see [16]. We do not cover
these reconstruction methods further because we do not model the differences in re-
construction with our models, rather we consider the task of generating high quality
images from low quality input to be image-to-image-translation with a strong denoising
component.

3.3 Deep learning in Computer Vision

Machine learning models suited for the scale of this task have in recent years had the
form of Deep Learning, neural network models. Even more recently, since the break-
through achieved with the AlexNet for image classification (see [10]), deep Convolutional
Neural Networks (CNNs) have been the architecture of choice for these learning tasks
in computer vision.
In convolutional neural networks, the convolutional layers are composed of convolutional
kernels of predefined height and width with learnable parameters that is applied all to
the input taking steps of predefined size stride in horizontal and vertical direction. For
example, with stride 2, the height and width of the output feature map are half of those
of the input. Such a convolutional layer produce a set of feature maps to which a non-
linear activation function is applied (e.g. ReLu which sets all negative values to 0).
As described in Section 2, all of our tasks involve image to image translation and denois-
ing of the image in some form. One popular neural network architecture for this task
is the Convolution-Transpose-Convolution model: A series of convolutional layers (con-
tracting path) with increasing number of feature maps of decreasing height and width
is followed by a series of transpose convolutional layers (expanding path) that symmet-
rically increase heigth and width and decrease the number of feature maps.
This architecture has been used in [15] for image segmentation, with the difference of us-
ing upsampling instead of transpose convolution, and in [13] for image restoration. The
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models in these papers also incorporate skip connections: Taking the output of some of
the layers in the contracting path and combining them with their symmetric counter-
parts in the expanding path. In [13], this is done by simply adding the skip connections,
in [15] by concatenating the skip connections to their counterpart and convolving.

Figure 3: Schematic depiction of the base architecture

The models we used for the different tasks are all based on the Convolution-Transpose-
Convolution model with skip connections, with adaptations according to the specific
task. See Figure 3 for a schematic depiction.

3.4 Optimization

Loss function The loss function we used is the Mean Squared Error (MSE), calculated
as the averaged squared Euclidean norm between the network prediction and the target.
We also tried using the l1 loss and a combination of the two without obtaining better
results.

Optimization algorithm The optimization in neural network training is done via gradi-
ent based iterative minimization methods. For this, the gradient of the loss function with
respect to the weights is obtained via the backpropagation algorithm which employs the
chain rule of differentiation in order to backtrack the gradient through multiple layers
of the network.
For the standard Gradient Descent algorithm, the gradient of the loss function has to be
computed using all of the data sampled which is not feasible for the scale of model and
data set we were confronted with. Instead, for variants of Stochastic Gradient Descent,
the gradient is only computed for a randomly selected mini-batch of training samples.
In particular, we used the Adam optimization algorithm (proposed in [9]), which uses
exponential moving averages of the gradient and the squared gradient in order to take
larger steps when recent gradients agree on the direction while also scaling the update
parameterwise according to the estimated variance of each coordinate.
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Learning rate schedule We used a one-cycle policy [19] during the training process.
This means varying the learning rate during training, starting at a low one, going up to
a high one for a specific number of epochs and then go back to the starting learning rate
in the same number of epochs. Afterwards, we decrease the learning rate going to zero
for a few additional epochs. Starting with a low learning rate is called warm-up phase
and helps that the gradient descent algorithm goes into the right direction, minimizing
the loss in the first iterations [4]. Then, due to the higher learning rates the algorithms
might overstep really narrow and steep minima and can land in a more wide and flat
minimum if we look at the space spanned by the weights of the network and the loss. The
decrease of the learning rate helps the optimizer to step deep into that newly found wide
minimum. For the same purpose, in the last epochs the optimizer is used with almost
vanishing rates. Furthermore, [19] has shown that with this learning rate schedule faster
convergence can be achieved.

Splitting the data set We split the data into train, validation and test data. The mod-
els are only trained with the train data. From the initial batch of data we were provided,
we took 2 test samples to have test results to compare different models. Additionally, we
were able to test the current models data from new batches we received. The validation
data is separated from the train data on runtime and used to monitor the training and
to produce the train and validation loss curve.

Regularization When training a Machine Learning model one has to keep another ob-
jective in mind: generalization, which means the performance on unseen data. During
the training, the loss of the training samples is minmized which can lead to the phe-
nomenon of overfitting, i.e. the model showing very good performance on the training
data but not being able to produce good predictions on validation or test data. One
approach to alleviate this problem is to artificially increase the number and diversity of
training samples via data augmentation, see Section 3.5.
Another approach is altering the objective function used for optimization via adding an
regularizing term like the squared l2 norm of the weights W to the loss function L:

L̃(y, f(x,W )) = L(y, f(x,W )) +
λ

2
‖W‖22

with x and y being the input and target data, f being the model and λ being the
regularization parameter. This is a simple form of Tikhonov regularization. Through
adding this regularization term to the objective function, increasing complexity of the
model punished, which helps to avoid overfitting. Applying standard stochastic gradient
descent to this altered objective function leads to the weight update having the form

Wnew = Wold − α∇WL(y, f(x,Wold))− λWold

Altering the update of the optimizer in this form is the idea of weight decay. For other
SGD variants like Adam weight decay and l2 regularization are not equivalent. In [12],
the authors propose AdamW, an algorithm to incorporate weight decay into Adam, that
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has shown better generalization performance than l2 regularization.

Batch normalization During Neural Network training, the distribution of inputs into
the different layers will change because the weights are adjusted in each optimizing step.
This phenomenon is called Internal Covariate Shift and can lead to instabilities, sat-
uration of the nonlinear acitivation functions and the need for very fine tuning of the
optimizer parameters as is described in [5]. As a solution, the authors propose batch
normalization, in which additional learnable parameters are introduced, which normal-
ize the data before each layer. This has the benefit of faster training and additional
regularization.

3.5 Data Preprocessing and Augmentation

Data Preprocessing

In standard image processing, the images are often represented as arrays of floats in the
range of 0 to 1 or integers between 0 and 255. The ranges of numbers in our data differ
from this convention, see the histograms of examples for each image category in Figure 4.

Figure 4: Histograms of raw ultrasound and optoacoustic images

One aspect is the ranges of input and output values differing quite a lot. This would
create the additional challenge for a neural network to have to adjust the weights to
bridge the divide between input and output before any real training can be done. Sec-
ondly, it is beneficial for the training to have data that is centered around 0 with variance
of roughly 1. (See [11])
We solved these two problems by calculating the mean value and variance for the train-
ing data set (separately for input and target images) and scaling the data by subtracting
the mean and dividing by the standard deviation. See the histograms of the scaled ul-
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trasound examples in Figure 5

Figure 5: Histograms of scaled ultrasound images

Additionally, the optoacoustic data has severe outliers (most of all the low quality
data) as can be seen in Figure 6, depicting the histogram with the vertical lines repre-
senting the 0.01 and 99.99 % quantiles. After consultation with experts on optoacoustic
data we decided to truncate the data at these quantiles before the scaling because these
values are likely to be erroneous and noisy.

Figure 6: Histograms of raw optoacoustic images with 0.01 and 99.99 % quantiles

With these methods, we are not normalizing the data in a strict sense, which would
involve scaling each pixel differently. This would enhance the importance of pixels with
low variance, which in our images are of low importance.

Data Augmentations

In neural network training, good generalization performance is often dependent on a
large number of training data samples. In the medical field, this is often hard to achieve
because data collection is expensive. We also encountered this problem and had to train
our models with about 100 base data samples each.
A way to artificially increase the number of training data samples without having to ac-
tually collect new data is data augmentation, which is most often done with image data.
In data augmentation, the data pair is transformed via various techniques to produce a
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”new” data pair. These techniques can for instance be flipping, translating or rotating
the image.

Figure 7: Original and deformed images

We selected augmentation methods be-
longing to two groups: Methods that
transform input and target image to sim-
ulate a new data pair (flipping, cropping
and deforming) and methods that dis-
tort the input image to produce a data
pair that is harder to learn (blurring and
adding noise).

Flipping Both the input image and
the target image are flipped horizontally
(around their vertical axis). We did not
flip the images vertically in order to pre-
serve their geometric structure.

Elastic deformations We implemented
elastic deformations similar to the ap-
proach described in [15]. In our version,
a point in the interior of the image is cho-
sen at random to be the deformation center, and random dislocation parameters are
generated. Dislocation parameters of 0 are assigned to a few anchor points on the
frame. The dislocations for the rest of the image are interpolated between the anchor
points and the deformation center. See Figure 7 for an example.

Cropping The lower edge and either the left or the right edge are cropped by a few
pixels. The cropping side and number of cropped pixels are chosen at random. The rest
of the image is stretched to the original size.

Figure 8: Original and blurred input images

Blurring The input image is blurred with
a gaussian filter. This technique is sup-
posed to simulate lower image quality in
the input image and consequently forces
the model to overcome a wider quality gap
between input and target. See Figure 8 for
an example.

Speckle noise Multiplicative Gaussian
noise is applied to the input image. This
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is a simple simulation of the speckle noise type that is typically seen in ultrasound images
(see [18]). See Figure 9 for an example.

Figure 9: Original and noised input images

Adding more frames For some of the
ultrasound data, we were provided with
additional image frames that were re-
constructed from signals captured shortly
after one another, about 140ms apart.
These can’t be considered independent
data samples because they are almost
identical. That is why we treated the ad-
ditional frames like augmented data and
added them to the training data set.

For each task and model we selected augmentations that are suitable for the specific
problem. For Subproject 1 Ultrasound (see Section 4), we did an augmentation test
series, testing the effect the different augmentations have for our result and discovered,
that flipping, deforming and adding more frames have the biggest effect on decreasing
the validation loss and getting the structure of the image, while blurring and speckle
noise help to refine the image quality and produce less blurry predicted images.

3.6 Infrastructure

Training deep CNNs involves heavy computation that is best done on a general purpose
graphics processing unit (GPGPU or GPU). Our code is written in Python with the
models written in PyTorch, which allows fast computation on GPUs.
Early on in the project we reached the point of not being able to train or even test the
models with our private machines. We are glad to have been able to use the infrastructure
of the Leibniz-Rechenzentrum (LRZ), most importantly their GPUs. They consist of 4
single Nvidia P100 GPUs and 2 Nvidia DGX-1s with 8 GPUs each. Virtual Machines
with access to this hardware can be booked for a certain time and can then be used to
execute the training code.
We also used the LRZ Linux Cluster Storage and the LRZ Data Science Storage to store
the data for the project and as mount devices for the GPU Servers.
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4 Subproject 1: Ultrasound

The first task that was set for us is presented in this section. We start with a detailed
problem statement, giving an outline of what our model has to be capable of. Afterwards
some more insights and illustrations are added to this point with some examples from
our data set. We follow up with the used methods, that were introduced in 3.5. After
that we will present the used network architecture which will be the core of the following
network architectures as well. Finally, some results are presented, showing the progress
made as well as some thoughts about the remaining challenges.

4.1 Detailed problem statement

Our aim is to produce a deep learning solution which can generate high quality ul-
trasound images from corresponding low quality ultrasound images. The difference in
quality of the input and target ultrasound images is due to the fact that they were ob-
tained from different reconstructions of ultrasound signals (described in Section 3.2) For
both images a homogeneous speed of sound model was used, using the same speed of
sound for the reconstruction. That means, there are no deformations from low to high.
The differences should consist of solely noise and some other artifacts such as reflections.
Therefore, our model must perform a pixel wise mapping from reconstruction R1 to re-
construction R2, which denoises the image and deletes or creates artifacts depending on
the target.

4.2 Data

For every measured ultrasound signal we obtain a low quality input image and corre-
sponding high quality target image. Our data consists of 98 input and target ultrasound
images each of dimensions 401x401. For training we use a train validation split of 90 to
10 percent of the total samples. Additionally, we set aside two samples as test data.

Data Exploration In Figure 10 in the top yellow outlined region, we see that in the
low quality image the noise is more prominent compared to the high quality image. In
the lower left region outlined in blue, one can see certain artifacts and noise in the input
which are not present in the target. On the other hand in the green region in the upper
left part, a clearly visible reflection artifact is present in the target, whereas it is not in
the input. That shows the target image is not strictly improving in all aspects compared
to the input. Nonetheless our network will try to map these artifacts correctly as well.
As there are no visible information for this in the input, we expect that this will solely
worsen the results.

4.3 Methods

Used Augmentation The number of total samples for such a complex task is small in
comparison to similar tasks [13]. To enhance the generalization capacity and lower the
estimation error (see Section 2), we perform the augmentations flipping, three different
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Figure 10: Difference between high and low quality images

elastic deformations, cropping, blurring and speckle noise (as described in Section 3.5).
For each flipped image, we further perform the other augmentations mentioned on this
image as well. Thus, we obtain an augmentation factor of 14 for each image present
in the dataset. The validation set consists solely of original image pairs without any
augmentations.

Scaling Since the range of numbers vary a lot in our dataset, we scale the training
data roughly around zero mean and variance one as described in Section 3.5 and use the
same scaling on the validation as well as the test set.

4.4 Model

The architecture used is a fully convolution encoder decoder with symmetrical skip con-
nections as proposed by Mao et al [13]. Skip connections are added from the convolution
layers to its corresponding deconvolution layer as shown in Figure11. The convolution
layers capture the image features while the transpose convolution layers upsample these
feature maps. Adding skip connections provides two benefits. They pass information of
the convolutional feature maps to the corresponding transpose convolutional layers and
as we are adding the skip connections, we are essentially modeling the error term. As
we also have a skip connection from the input directly to the output of the network, our
model is learning what needs to be deleted or added instead of completely reconstructing
the image. Furthermore, skip connections tackle the problem of vanishing gradients as
the gradient propagates back directly over the skip connection to the bottom layers.

The model we use consists of 7 convolution layers with (64,128,128,256,256,512,512)
channels and 7 transpose convolution layers (with reversed order of channels) for up-
sampling with skip connections. All the kernel sizes of convolutions have been set to
be (7,7) with stride (2,2). We also used padding of (2,2) and output padding of (1,1)

15



appropriately in order to ensure that we have same dimensions again for the feature
maps. No pooling step was performed as these could discard useful image details.

Figure 11: Architecture of proposed network

4.5 Result

We trained the network described on the P100 for 125 epochs with a batch size of 16.
The loss function used was the Mean Squared Error (MSE) obtained pixel by pixel such
that the same locations are always compared. The optimizer was Adam. We used a base
learning rate of 1e-04 with a learning rate scheduler as described in Section 3.4.

Figure 12: Training and Validation loss of SP 1 Ultrasound

The training and validation loss curve is shown in Figure 12. We see that the train
loss decreases significantly and is quite low. In the training image in Figure 13, we see
the predicted image is quite close in quality to that of the target. This shows that our
model is capable of extracting fine features in the data.
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Figure 13: Training Sample: Input, target and predicted ultrasound images

However, we see the validation curve is higher and we are actually overfitting on the
train image.Hence we can see in the test results in Figure 14 the predicted images are
not as good in quality as the target and have deficits in producing fine lines. In the
results we see that our network is capable of predicting all the important features and
deleting most of the noise and is of much higher quality than the input images.

Figure 14: Test Sample: Input, target and predicted ultrasound images
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5 Subproject 1: Optoacoustic

In this section the task concerning the optoacoustic part of the project is presented. At
the beginning we will start with an in depth description of the task, followed by a detailed
depiction of the used data. Afterwards, the methods that were used are presented and
justified. This is then followed by the different chosen approaches to tackle this task, as
well as the used network structure. The end of this chapter consists of the generated
results for each of the approaches.

5.1 Detailed problem statement

The core problem that we have to solve in this subproject is similar to the one in 4. The
retrieved signal at different wavelengths is processed by two reconstruction algorithms.
For each pixel and wavelength we get the amount of absorption, which results, using
28 different wavelengths, in a data shape of (401, 401, 28). So, for every pixel we have
an absorption spectrum, which has specific characteristics depending on the tissue type
at this pixel. Therefore, instead of capturing the visual information that is displayed
in the channels like in the ultrasound case, the relevant information, beside spatial
dependencies, is also contained in the spectral information per pixel.
The first reconstruction algorithm can be used in production, as it produces single images
in real time. Whereas the second one on the other hand takes about fifteen minutes,
which is a substantial amount of time longer. Both use the same speed of sound for the
reconstruction and therefore no deformations or shifts between pixels from one to the
other are introduced. The differences are mostly due to several approximation errors in
the faster reconstruction algorithm compared to the second. Our assumption is, that the
offsets and fluctuations in the spectra can be seen as noise. Again we call the spectra
reconstructed with the first algorithm low quality images and with the second one high
quality images.

In Figure 15 one can see what our network has to be able to do. It takes the low

Figure 15: Spectra reconstructed from the same signal at the same pixel. The left shows
the low whereas the right shows the high quality reconstruction.

quality spectral information and maps these on the high quality spectra. This problem
is comparable to denoising high definition colored pictures and focus on keeping the
color information. Neural networks have shown to be able to do that which can be seen
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in [17]. Nevertheless instead of capturing the information given in three color channels,
our case demands constructing information from 28 channels.

5.2 Data

One data sample consists of an image pair of low and high quality image. Whereas one
image is represented as array of shape (401, 401, 28), which occupies saved in the pickle
format about 36MB of storage. This results in about 72MB of storage for one data
sample.
As the data size turned out to be a problem for computation time and capacity, we
decided to restrict our studies to the upper part of the images, so the used data shape
is (201, 401, 28). To test the capability of a network to denoise these kind of data, this
is reasonable because most of the relevant information that can be captured, are in the
upper part of the image and the number of artifacts increase with depth as well.
Over the course of the project the number of total data samples increased from originally
24 to 108 in the end. For the training process of our network we made a train-validation
split of 90-10 percent of the samples and additionally took two more samples aside as
’test’ set to have comparable images between models. This results in total in a split of
95 training, 11 validation and two test images.

5.3 Methods

Due to the strongly differing type of the optoacoustic data compared to the ultrasound,
we need to consider which of the presented methods in 3.5 are sensible to use. This
especially needed adjustments for the scaling as well as selecting only the suitable aug-
mentations. Furthermore the evaluation of the results demanded new methods.

Used Scaling As described in 3.5 we want the data roughly centered around zero with
variance being about one. The values operate on a very large scale with outliers skewing
the mean or the variance of the data. Whereas we only had a single channel in Subproject
1 ultrasound, the important information is now contained in the spectra for each pixel.
Therefore we are not only truncating the data to delete outliers, but are also using only
single parameters for mean and variance for the whole training dataset.

Used Augmentations Augmentation methods like blur are motivated through experi-
ence of visual information in natural images. However, in this case we are not dealing
with natural images but with a huge amount of absorption spectra. Therefore we only
used augmentation methods that are sure to keep the spectral information as well as
the pixel wise spatial information from input to target. Namely these were flipping and
elastic deformations.

Evaluation and Visualization During the training process and for the network the used
metric determines the quality of the results. It is known that for image translation using
solely the metric to evaluate the model, one cannot be sure if the network learned to keep
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the important information and therefore performs well or not. For this reason we used
two ways to visualize the spectral information contained in input, target and prediction
as further performance measure.

Figure 16: Left shows the base spectra of tissue types that are tested on. The right
shows a low quality reconstructed spectra, with the result of the regression
of the base spectra and that of a constant model.

One applicable use case of optoacoustic imaging is to display additional information
of tissue types to the doctor during an ultrasound scan. We are going to focus on four
possible types displayed in figure 16, namely hemoglobin (HB), oxygenated hemoglobin
(HBO2), water and fat. For each of the pixels we perform a regression on the base spectra
and get therefore four regression coefficients per pixel. Additionally we run an F-test on
the null-hypothesis that the regression model is no better than any constant model (see
[1] for details). If the resulting p-value lies below 0.05 we reject the hypothesis and the
pixel is considered significant and will be taken into account for further visualizations.
From this information we create the two visualizations mentioned before. We want to
display and distinguish the main structures of different tissue types. Even though the
absorption spectra of HB and HBO2 are different, they are displaying the same kind
of structures, e.g. vessels. For this reason we add the two blood channels together.
Afterwards we display each of the three resulting channels as a single color image, see
figure 23. To combine this information into one image, we normalize each of the three
channels and display them as an RGB image, which can be seen in figure 25. Insignificant
pixels chosen through the F-Test and negative values are displayed as black in all of those
plots.

Principal Component Analysis Due to the huge data size per sample we applied in
one of our approaches the widely known principle component analysis (PCA) [7]. One
essentially fits a subspace on the data such that projecting the data points onto it,
the variance between the projected points is maximized. One wants to keep as much
information about the structure of the original data as possible. Please note that in
performing this, the data is centered around the origin. Which in our case means cen-
tering each channel individually. We fit the PCA on the target space, i.e. on the high
quality images of our training data. As the low quality images operate with a different
magnitude, we scale the data beforehand, as described above in 5.3. Afterwards we fit
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the PCA on the scaled high quality training data, transform all input and target with
it and before giving this data into our network we scale the transformed data again.
Further details to this method is explained in the next subsection 5.4.

5.4 Approaches and used Model

The first tries to run models on the whole data quickly showed that this poses a harder
problem than the denoising in the Subproject 1 ultrasound described in 4. To test our
model capacity we began this task with trying to overfit on one sample. However, when
using all 28 channels we did not even manage to overfit on one single sample properly.
Therefore instead of using the whole data size, we focused on finding compression meth-
ods or taking parts of the data to extract and learn only the most significant features.

Sliced Channels The noise and the artifacts present in all of the 28 channels posed to
be too much for our model to handle. As we are focusing on retrieving the information
of the types of tissue per pixel, we decided to choose the most significant channels from
the 28 to differentiate the different absorption spectra, shown in Figure 16. For this
we chose the channels (1, 4, 7, 11, 16, 24, 28), such that the peaks and intersections
between the different base spectra were kept, see Figure 17. By slicing the channels in

Figure 17: The base spectra with the chosen slice (1, 4, 7, 11, 16, 24, 28).

the described way, we lost a not to be neglected part of the information in one image,
which can be seen as an example in Figure 18. However, with this we only need a fourth
of the original data size and can still use the F-test to check for significance.

Regression Coefficients Whereas keeping as much information in the data as possible
is very important, our evaluation methods and described goals, are focusing on differen-
tiating between the different base tissue types. These are determined by the explained
regression and the resulting regression coefficients. Even though a lot of information is
lost performing the regression, one can assume that we are filtering out most of the noise
with it. For our next approach we are therefore performing the regression on low and
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Figure 18: The left plot uses all 28 channels for the regression, whereas on the right only
the seven sliced channels were used.

high quality images and use these as input and target of our network. Not only that we
reduce the amount of channels from 28 to four, but by our assumption we filter out most
of the noise, especially in the low quality images. This step should make it far easier for
our network to extract the main features. However, we are losing the possibility to test
for significance for each pixel. An example of the difference can be seen in Figure 19,
where especially in the upper part the picture with significance test is clearly darker.

Figure 19: Left one can see the visualization of the fat regression coefficient of all 28
channels, with the test on significance. On the right the same image was
used without the significance test.

Principal Components The first approach in using a slice of the possible channels
unfortunately loses a big part of the information contained in the data. The second
approach is highly promising for good results, as we are directly optimizing on the infor-
mation to be displayed and are filtering out a lot of noise at the beginning. Unfortunately
beside not being able to test on significance anymore, we are restricting ourselves to the
main tissue types, given by our base spectra. So instead of taking just some slice of the
data, we are trying to find a suitable subspace, keeping as much information as possible.
The subspace spanned by the principal components of the high quality images, should
be the space where the relevant information of the low quality images should lie. So
fitting the PCA on the targets of the training samples and projecting the low quality
images into this subspace, should delete most of the noise in the input and keep the
relevant information to map to the target. The first four principle components already
keep most of the variance in the high quality images, which can be seen in 20. However,
we later want to test on a different subspace spanned by the base spectra and check for
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Figure 20: The preserved variance of high quality images by principal components.

significance. Therefore we decided to use the first seven principal components instead
of only four, which are shown in Figure 21.

Figure 21: Left shows the four most important principal components and right the fol-
lowing three.

Used Model For all of the three described approaches, we essentially used the same
model. It is a variant of the widely known U-Net with the changes described in 4.4.
Again we use skip connections from the beginning to the end of the network, so it
is essentially learning the error term between low and high quality. Furthermore we
use five convolutional layers with (128, 256, 512, 1024, 2048) channels followed by five
convolution transposed layers, with the reversed order of channels. All kernels are of
size (7, 7) with stride (2, 2). Depending on the approach, we have four or seven input
and output channels.

5.5 Results

For each of the three approaches, we trained a network with the previously described
model for 300 epochs with a batch size of eight. All of the following approaches performed
well on the training data, so we are going to focus on validation images as well as our
fixed test set to easier compare the models among each other.
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Sliced Channels The training process using the sliced channels as input shows a to be
expected training and validation curve, see Figure 22.

Figure 22: The training and validation loss of the sliced channel approach.

Both keep decreasing the entire training process, whereas the validation curve lies
above the training. Taking a close look at some of the validation images, one can see,
that we get visually closer to the target. Compare therefore Figure 23 and Figure 24.
Especially the fat and total blood volume plots show a clear improvement from the
input image. Whereas getting more significant information about the water spectra is
not captured in Figure 24. On the other hand the target shows in all of the channels a
more refined structure and sharper boundaries. The network can therefore not filter out
all of the noise.

Figure 23: Sliced Channel Approach: From top to bottom we have the order Input,
Target and Prediction of the single channel visualization of a validation image.
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Figure 24: Sliced Channel Approach: From top to bottom we have the order Input,
Target and Prediction of the single channel visualization of a validation image.

The same behavior can be observed in the RGB plot of one of the test images seen in
Figure 25. In the upper part the water is hardly present in the predicted image, only
about as much as in the Input.

Figure 25: Sliced Channel Approach: The RGB visualization of a test image.

Furthermore in the clearly visible blood vessel located in the left middle part of the
image, a hole is visible in the target, whereas it is not so much in the prediction. This is
due to the target not being significant there anymore, whereas we get significant pixels
in the prediction. In the constructed image, the network created something, that is not
present in the target, or at least not significant. Nonetheless if one uses all 28 channels
for this image, the remaining pixels of the blood vessel are all significant, again compare
Figure 18.

Regression Coefficients Again the training and validation curves look as to be ex-
pected, see therefore Figure 26.
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Figure 26: The training and validation loss of the regression coefficients approach.

The steep drop at the beginning hints at the learning rate being too high, which is
undermined by the fact, that the validation curve stops decreasing at about 170 epochs.
Now in all three plots one can see the improvement through the model, see Figure 27 and
Figure 28. Even the water channel is visually very close to the target. Nevertheless the
noise contained there is still visibly higher than in the blood volume or the fat channel.

Figure 27: Regression Coefficients Approach: From top to bottom we have the order
Input, Target and Prediction of the single channel visualization of a validation
image.
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Figure 28: Regression Coefficients Approach: From top to bottom we have the order
Input, Target and Prediction of the single channel visualization of a validation
image.

In the RGB image, seen in Figure 29, overlaying the three channels, one can hardly see
any differences at all. The brightness of the blue color, representing the water, is slightly
lower in the prediction than in the target. Furthermore the structures themselves and
their forms, are clearly defined in the prediction as well. In our testing and evaluation,
we did not encounter an instance of our network creating something without it being
there in the target.

Figure 29: Regression Coefficients Approach: The RGB visualization of a test image.

Principal Component Analysis Compared to the other loss curves, it takes longer till
the validation curve is no longer decreasing, but it is still converging. Also visible in
Figure 30, is that the total loss in the end is lower than in the sliced channel case, which
had the same number of channels in In- and Output. So we would expect the prediction
to be closer to the target than in the sliced channel approach.
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Figure 30: The training and validation loss of the principal components approach.

The enhancement of the network is clearly visible in Figure 31 and 32.

Figure 31: Principal Components Approach: From top to bottom we have the order
Input, Target and Prediction of the single channel visualization of a validation
image.
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Figure 32: Principal Components Approach: From top to bottom we have the order
Input, Target and Prediction of the single channel visualization of a validation
image.

Nonetheless in all three of the channels the target image has brighter structures com-
pared to the prediction. The difference in blood and water spectra is visually about the
same magnitude, whereas the prediction of the fat channel is closer to the target. In the
RGB images, here in Figure 33, one can only see minor differences.

Figure 33: Principal Components Approach: The RGB visualization of a test image.

For example the target shows fat in the lower part of the image, which is smoother
than in the prediction.
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6 Subproject 2

6.1 Original SP2

6.1.1 Detailed problem statement

As discussed in Section 3.1, the solution to the acoustic inverse problem and hence the
reconstructed ultrasound image depends on the speeds of sound along the way of the
acoustic wave through the tissue and the ultrasound probe. Since it is impossible to
know these speeds for each point, one has to assume a simplified speed of sound model.
In this part of the project, additionally to denoising the image, the task is also to learn
the translation and deformation between input and target images reconstructed with
different speed of sound models.
The most basic speed of sound model is the homogeneous model, in which only one,
constant speed is assumed. Under this assumption, the reconstruction is fast and simple,
however suboptimal because the model is too simple. If we have a look at the area the
acoustic wave has to propagate through in order to reach the detectors, we can divide
it into two regions: the region inside the tissue, up until the membrane of the probe,
and the region inside the probe. The tissue contains several main components like fat,
muscle, water etc. But since water is the most prominent part, one approximate value
for the speed of sound for tissue could be the one for water at around 37 degrees celsius
which is roughly 1520 m/s, which can be estimated through the formula described in
[3]. On the other hand the probe is filled with the coupling medium heavy water, which
has an approximate speed of sound of 1397 m/s. Since in each of the two regions the
speed of sound is approximately constant, but has a huge difference, it is reasonable
differentiate between those two. This is captured in the dual speed of sound model, with
one speed of sound value in the coupling medium (coupling speed of sound) and on value
for the speed inside the tissue (tissue speed of sound).
In this part of the project we want our model to learn the mapping from low quality
images reconstructed with the assumption of the simple, homogeneous speed os sound
model to high quality images with the described dual speed of sound model. We can
express our modeling task as learning the mapping:

p1, csingle, ctissue, ccouplant 7→ p2 (1)

where p1 is the reconstructed image with the acoustic homogeneous model, using csingle
as speed of sound. p2 is the image reconstructed with the dual speed of sound model
with the tissue speed of sound ctissue and the couplant speed of sound ccouplant.

6.1.2 Data

In this subproject we have an input image (low quality, csingle) and a target image (high
quality, (ccouplant,ctissue)) for the training process. The low quality image is reconstructed
with the reconstruction algorithm R1 which assumes a single speed of sound model. The
speed of sound for low quality images in this subproject we call csingle. The high quality
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Figure 34: Detection of the surface with the homogeneous speed of sound model, figure
taken from [8]

image is reconstructed with R2 which assumes a dual speed of sound model. The speeds
of sound used are ccouplant and ctissue. From the recorded signal five images are recon-
structed where csingle is drawn from a normal distribution with a mean of 1420m

s and
a standard deviation of 30m

s . Similarly, five target images are reconstructed from the
signal but under the assumption of a heterogeneous speed of sound model. The speed
of sound value ccouplant is fixed and the values for ctissue are drawn from a normal distri-
bution with mean of 1520m

s and standard deviation of 30m
s . Additionally we have one

image representing the detected membrane of the measuring device which is detected
from the homogeneous model with the speed of sound of the couplant as described in
the previous section. The membrane is extracted through checking the gradient of the
signal since the membrane results in the first strong increase in the values. An example
of the detection can be seen in Figure 34 where the white line is the membrane and the
red line is the extracted shape.

For every training pair we additionally need the speed of sound values used. These are
encoded in an image. Thus, for csingle we have one image with the used speed of sound
value in each pixel. To map to the target we need the speed of sounds and the location of
the membrane to let our model learn this mapping. We have this information encoded in
another image. In every pixel above the detected membrane we have the value ccouplant
and in each pixel below this membrane the value is ctissue. An example of one data
sample can be seen in Figure 35. The left image shows the input image, in the middle is
the mask of the membrane with the corresponding speeds of sound and in the right we
see the target image.

From every recorded signal we get five input images and five target images. We can
use every input–target pair as training sample and get 25 combinations of input and
target.

Additionally to the mapping from Section 4, the model now has to learn the defor-
mation based on the speed of sound models. In Figure 36 we can see two images where
the different reconstruction algorithms were used. In the left image we have the simple
reconstruction while in the one on the right the deformation due to the refraction is
accounted for. In general we can see the the structures of the target are slightly lower
on in the vertical axis. We can observe that in the upper area the deformation is not
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Figure 35: Training sample. Left: input image, middle: boundary mask, right: target
image

Figure 36: Images produced with different reconstruction algorithms. Left: input image
(R1, csingle). Right: target image (R2, (ccouplant, ctissue)).

as apparent as in the lower regions. The bone in the lower right of both images, on the
other hand, was visibly more deformed. One can see that the curvature of this structure
is stronger and the difference in location is greater than the differences in the upper
areas. This is due to the different modelling processes of the wave propagation, the
further the sound waves are propagated into the tissue, the higher the difference of the
calculated paths.

In this subproject we also have the in Section 4 already described characteristics of
noise and artifacts. Thus, the model has to learn the deformation on the noisy images
while increasing the image quality.
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Figure 37: Schematic depiction of a convolution applied on the masked input image

6.1.3 Methods

The difficulty of this part of the project is training the neural network learn the de-
noising mapping as in Section 4 and additionally the deformation. As our target is
already deformed and less noisy, we cannot decouple these tasks in the learning process.
Therefore the noise in the input image hinders the learning process of the deformation
mapping. The network has to extract the feature representation of the tissue and then
use the information of the dual speed of sound mask to map the features onto the correct
locations. These deformations could be learned by a fully-connected layer since they are
linear and otherwise only depend on the refraction. Important factors are the distance
traveled in the respective media and the neighbouring tissue information. However, in
our case a fully-connected layer would have too many parameters since we would map
from the vectorised input image to the vectorised target. Thus, we would map from
160,801 to 160,801 nodes which results in more than 1e10 parameters which are too
many to train. In literature these kind of deformations on images are often performed
with spatial transformer networks [6]. In this framework the features of an image are
extracted and localised. Then a transformation matrix is learned and then is applied to
the original image. With our image content it could be hard to learn the deformation on
a smaller convolved feature map or lower resolution since especially in the lower areas of
the image, quite thin structures are present. These structures could prevent the network
from learning the correct deformations in these areas since on the smaller feature maps
the true local information could be lost already. Furthermore, in implementations of
the network, the deformations matrix is also learned with several fully-connected layers
which is still not quite feasible after two convolutions. Thus, the tradeoff between lo-
cal information and number of parameters makes this approach not ideal for our task.
Another approach called locally connected neural networks where there is no parameter
sharing at all. So for each applied kernel we get a new set of weights. If we assume a
kernel of size 7x7 then this would already result in 7, 879, 249 parameters for one layer.
Since many deformations go further than 7 pixels in the vertical directions this kernel
would still be too small. Thus, the high number of parameters also makes this approach
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Figure 38: Mean image of training input images reconstructed with homogeneous speed
of sound model

not feasible for the current problem.
To tackle the tradeoff between number of parameters in the network and quality of

the learned deformation, we want to apply the same transformation over some parts
of the image. Specifically, we want to use the same filter over the whole width of the
image and up to a specific depth. To achieve this we duplicate the input image and
stack the duplicates together in the channel dimension. Then we mask every channel
to contain specific parts of the image and set the rest to zero. Thus, when we apply a
convolution over this input we have an own parameter set per channel. As an example,
if the convolution is at the location as shown in Figure 37, then the results would only
depend on the convolution of the input image with the parameters of the kernel of
channel two. All other channels are zero and not contributing to the result. If we now
backpropagate the gradient, the parameters of the middle channel are only updated
at the non-zero parts of the image since it did not contribute to the other areas. In
this example case we could learn three different deformations which are applied over
the whole width and one third of the height. After this convolution step we mask the
resulting feature representation again but start overlapping the non-zero areas step by
step to enable a smooth transition of the different deformations in our predicted image.

Based on the overlaid image of the training data, as shown in Figure 38, we chose
four regions. The first one being the part of the image down to the membrane. In this
area only the couplant medium was present and thus we have no important structures
to learn. As second area we took the membrane since it is the transition of the media.
Then we took the middle part of the image: starting below the membrane down to
approximately 250 pixels. There most of the structures are present and we wanted to
keep these in one slice. The rest of the image is in the last slice. Thus, in the beginning
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we have four different parameter sets for the image to apply four different deformations.
Throughout the network one can imagine the masking as having four groups of channels.
In the beginning each contains a specific area of the image and with each convolutional
layer this area is increased. These groups of channels do not have to be evenly distributed
inside the network, which is why we also included a parameter how the distribution of
the groups should be.

In this subproject we used only the flip, blur and speckle noise as augmentation
techniques. Since we have to map a deformation already, introducing an additional
deformation to the image would make it more difficult for our network to learn the
original. Therefore, we only performed blurring and adding speckle noise on the original
input as well as on the flipped version of the input resulting in an augmentation factor
of six. Which results, with 100 original samples in training and six in validation, in a
training set of 25*6*100 image pairs.

6.1.4 Model

The foundation of the model used for this project is the one introduced in Section 4.
This fully convolutional encoder decoder framework with symmetric skip connections is
the main part. However, this approach has drawbacks for the additional deformation
task in this subproject. Forwarding and adding the feature maps with the symmetric
skip connections onto the already upscaled transformed feature maps, introduces the
original localizations of the non- or less deformed feature maps. Thus, instead of adding
these together we stack the maps in the channel dimension to have the next transposed
convolution fuse them. Thus, the transpose convolution kernels can learn to fuse the
information of slightly different locations, depending on the kernel size. Special emphasis
lies on the usage of the details of the first input image. The obstacle is that this image
is never transformed and thus the difference due to the deformation between that image
and the last feature map is greatest. Dealing with this issue we stack the duplicated and
masked input image to the transformed feature map after the last transpose convolution
and perform one additional convolution on to the result. We want to fuse the details of
the forwarded map on the correct locations of the transformed one. We used five convo-
lutional layer with (64, 128, 256, 512, 1024) channels, kernel size (7,7), stride (2,2) and
padding (2,2). These layers are followed by the corresponding transpose convolutional
counterparts to have the same image resolution as in the beginning. Additionally we
used output padding of (1,1) at the third and sixth layer. In the end the last convolution
had a kernel size of (7,7), stride of (1,1) and same padding to keep the resolution.

6.1.5 Result

The masks which are used for this run have the following fractions of the image starting
from the top downwards: [0.125, 0.375, 0.375, 0.125] and cover the parts of the image as
discussed previously. Furthermore, we used an exponential increase in the overlapping.
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Figure 39: Model for Subproject 2. Base structure is the Conv-TranspConv model with
attention masks. The input image and the transformed feature map are fused
with another convolutional network

The overlapping ratio for the l’th layer is calculated as follows:

ratio = exp(l −Nlayer) (2)

Where Nlayer denotes the number of consecutive convolutional layers. This ratio means
that starting from the chosen slices from the beginning we expand those by the ratio of
the remaining part of the image. This results in almost no overlapping in the first layer to
complete overlapping after the last convolutional layer and thus before going into the first
transpose convolution. To avoid overfitting we use weight regularization, see Section 3.4.

In Figure 40 we can see the loss curves. Furthermore, we can visually evaluate how
our model performed on the test images in Figure 41. As we can see, the model has
learned to apply the deformation. However, the quality of the predicted images is de-
creased compared to the results seen in Section 4.

There are many explanations on why we end up with these results. This task is more
difficult than just the image translation from Subproject 1. Now the model additionally
has to learn the deformation. Thus, some pixels are noise and have to be deleted while
others are important structures and have to be shifted. Differentiating between those
tasks is challenging for the model. The resulting image is very noisy and blurry. Loss-
wise this result is preferably better since some pixels with high values are now in the
same positions as the transformed ones.
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Figure 40: Trainings and validation loss of the run of Subproject 2 with varying learning
rate. The left axis determining the values of the loss while the right axis
shows the values of the learning rate for the respective epoch

Figure 41: Results for the run. Left: input, middle: target, right: prediction
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6.2 Relaxed SP2

6.2.1 Detailed problem statement

One could see in the previous subsection, that the learning a suitable mapping from a
homogeneous to a dual speed of sound model is hard. As we could not achieve satisfying
results with the original problem, we relaxed it, to possibly boost the performance of
our network.
Before we had to learn the mapping of a reconstruction with some sampled single speed
of sound model to one with a dual speed of sound forward model where the tissue speed
of sound is sampled. To relax the problem we now use two input images reconstructed
with R1. The values for the reconstruction are the couplant and tissue speed of sound
for the two input images respectively. With this input we can then let the network learn
the mapping to the reconstruction with a dual speed of sound with the same values for
couplant and tissue as in the input. The general applicability of the system however,
is not decreased. While measuring with the iThera Medical MSOT Acuity device, the
user can just set the values for the single speed of sound at will. Furthermore, for the
extraction of the membrane the couplant speed of sound has to be used either way. Thus,
the user only has to have another scan with the tissue speed and the necessary input
data would be constructed.

The mapping that the network now has to learn can be expressed as:

p1,ccouplant
, p1,ctissue , ccouplant, ctissue 7→ p2 (3)

where p1,ccouplant
is the image constructed with R1 using couplant speed of sound, p1,ctissue

is the image reconstructed with R1 using tissue speed of sound, ccouplant is the couplant
speed of sound, ctissue is the tissue speed of sound and p2 is the image reconstructed
with R2 and ccouplant, ctissue.

6.2.2 Data

With the reformulated problem, we now have two single speed of sound images. One
constructed with ccouplant and one with ctissue. For each of the single speed of sound
values we have one image with the values encoded in each pixel. Furthermore, we have
the dual speed of sound mask as described in section 6.1.2. These images are used as
input data. The target is, as before, one image reconstructed with the given dual speed
of sound mask.

In Figure 42 we can see the three different images. One reconstructed with ccouplant,
one with ctissue and one with both. In this sample we can see that the difference be-
tween both single speed of sound images is big. The shift in the upper and lower regions
is multiple pixels. That would require a big receptive field for the network to fuse the
details of the right areas of these images.
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Figure 42: Left: input image with a couplant speed of sound. Middle: input image with
a tissue speed of sound. Right: reconstructed image with dual speed of sound.

6.2.3 Methods

The analysis of the data shows that a big receptive field is necessary. Furthermore, the
important information is possibly many pixels apart. To overcome this issue, we decided
to apply a translation to the image reconstructed with ctissue, such that the membrane is
at the same location as in the one reconstructed with ccouplant. In Figure 43 we can see an
image reconstructed with ctissue and the dual speed of sound mask. We want to translate
the image by an approximation of the difference between the membranes, denoted as y.
To detect the boundary between couplant and tissue for the dual speed of sound model,
it is detected using the couplant speed of sound ccouplant. Therefore the membrane of the
dual speed of sound image is at the same location as in the reconstructed input image
using ccouplant. The distance from the top to the membrane in the mask is denoted as d
while the distance from the top to the membrane of the image with ctissue is denoted as
Y . We can express the distance y as the following:

y = Y − d ≈ (ctissue − ccouplant) · α (4)

where we approximate α as a constant factor. We calculated the factor for 30 training
images and used the mean as our fixed constant. With this information we can translate
the images which are reconstructed with ctissue for y pixels and add zeros at the missing
end. In Figure 44 we can see the result of the translation. As one can see, the locations
of the structures are approximately on the same level. Thus a smaller receptive field is
sufficient to extract the information.

As an outlook, we will suggest a more sophisticated way to calculate the translation
for each image. The difference y can be expressed as

y = dtissue − dreal = t · ctissue − t · ccouplant = t · (ctissue − ccouplant) (5)

where dreal is the distance from the detector to the membrane. t is the time that the
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Figure 43: Left: image reconstructed with ctissue. Right: dual speed of sound mask.

Figure 44: Processed sample. Left: input image reconstructed with ccouplant. Middle:
input image reconstructed with ctissue and shifted. Right: target image re-
constructed with dual speed of sound.

sound wave needs to propagate to the membrane and is given by

t =
dreal

ccouplant
=

0.04 + d

ccouplant
(6)

Since the detector is four centimeters above the image. The t is now the factor we ap-
proximated before, but now we have it with higher precision since the distance to the
membrane d is extracted from the image with the couplant speed of sound model.

In this subproject we mask the images with attention masks as well, similar as in
Section 6.1.3. However, in this case the first two slices were taken from the image
reconstructed with the couplant speed of sound. The first one only contains the noise
above the membrane, whereas the second is the area containing the membrane and skin

40



layer. The structures present up till the end of the second slice are closer to the target
since we have the same speed of sound up to the membrane. The deeper we are into the
tissue, the stronger the deformation compared to the dual speed of sound. That means,
the shape of the membrane of the input image with couplant speed of sound is exactly
the same as in the target and still close just below the skin. The last two slices are
used from the image reconstructed with tissue speed of sound and take up about three
quarters of the whole height of the image. The representation of the tissue should be
closer to the one in the target since it has the same speed of sound for that area. We
used the same augmentations as described in Section 6.1.3.

6.2.4 Model

For this relaxed problem we used a similar model as the one presented in Section 6.1.4.
Since we shifted the image which is reconstructed with tissue speed of sound, a smaller
receptive field is sufficient, see Section 6.2.3. Thus, we now alternated stride one and two
for each layer. That way, we keep more details in the feature maps and have a smaller
receptive field. The deformations can be up to around 40 pixels, thus we take a large
kernel to enable the network getting the information over large distances. In order to
preserve resolution we use stride one and same padding.

The details of the model we used are: five convolutional layers with (64, 128, 256,
512, 1024) channels, kernel size (7,7) and stride [(1,1), (2,2), (1,1), (2,2), (1,1)] for the
respective convolutional layers. We used padding of (2,2) and output padding of (1,1)
at the third and sixth layer. These layers are followed by the corresponding transpose
convolutional counterparts to end with a feature map of the same output dimension. In
the end we have two additional convolutional layers with (8, 1) channels and kernel size
(41,11), stride (1,1) and same padding.

6.2.5 Result

We trained the described model for about 40 epochs. The results of the loss curves are
shown in Figure 45. As one can see the losses are still strongly decreasing, even though
the validation loss started to drift away from the training, one can expect better results
if one continues the training. Unfortunately one epoch takes a bit more than two hours
to train, that is the reason why we were not able to finish the full run until this point.
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Figure 45: Training and validation loss of the run of the relaxed problem

Nevertheless, one can already see a significant improvement compared to the results
of the original problem presented in Subsection 6.1.5. In Figure 46 one can see that
not only the membrane at the top is at the correct position, but also the other main
structures are clearly visible together with most of the details. Furthermore even a lot
of the noise was filtered in our prediction, which can be seen especially in the center of
the image.
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Figure 46: Result of a validation image. The two input images reconstructed with the
couplant and tissue speed of sound are depicted on the left, followed by the
target and prediction.

Another example is the test image shown in Figure 47. Here, even the very fine
structures at the top of the target image, just below the membrane, is strikingly clear
in the prediction. Which shows the great improvement compared to the results of the
original problem of subproject 2.
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Figure 47: Result of a test image. The two input images reconstructed with the couplant
and tissue speed of sound are depicted on the left, followed by the target and
prediction.
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7 Discussion

Subproject 1 Ultrasound

The task of denoising the ultrasound images in Subproject 1 should give us insights to
the data and the general problem of image to image translation. Even here we could
already see that the denoising is hard for our chosen network structure. Although our
predicted results are visually better than the input, there is still an obvious gap in qual-
ity compared to the target.
The performance on the training data is really good, so we can assume that the op-
timization error, i.e. the error to the optimal empirical risk minimizer introduced in
Section 2, is quite low. Still, the huge gap between the loss curves might result from
a high estimation error. That means that the generalization capacity of our model is
not sufficient. However, one has to keep in mind that the ability to generalize strongly
depends on the characteristics of the training data in the overall feature space of the
problem. The training data probably cannot cover much of that space, which means the
validation set might lie outside of the covered feature space. Therefore our training set
might not be rich enough for the trained model to be able to generalize well. To prevent
biasing our network too strongly on the training set, regularization techniques might be
useful.
This gap might shrink substantially with a growing data set, but to further boost the
performance one would need to put more thought into the parameter choice and some
structural adjustments as well. Also, acquiring more data does not always lead to better
results. We tried to include an older study into our data set, but as there has been a
former software update, the quality varied from our original data. The difference was so
big, that including this additional data worsened our result instead of boosting it.
As one could observe in Figure 10, there is not only the difference in image quality be-
tween input and target data. There are also some artifacts in the target images that are
not present in the input. Our model therefore tries to learn unwanted characteristics.
This fact also hints that the approximation error, which encodes the error between the
best model we can build and the true underlying distribution, is probably not negligible.
All in all this task was thought as a warm up, as we more or less could only focus on
denoising the image and got reasonable results for that. Furthermore, the generalization
capacity will probably increase with a larger data set, even using the same network,
given that the data is retrieved under similar conditions as before. Even though more
optimization would be needed to get better insights, we decided to focus our effort on
the other subprojects, as these are of higher interest concerning the overall result of
the project. Besides, we might not even be able to solve it completely due to the high
approximation error.

Subproject 1 Optoacoustic

During the course of the optoacoustic subproject, we realized that our used structure
is not capable of extracting and reconstructing the significant information when all 28
channels were used. More precisely, we did not even manage to properly overfit on a
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single sample. That is the reason why we performed certain changes on the data, to be
able to focus on special aspects. This has also led to different possible use cases and
results for each of the approaches.
Firstly we took only a subset of the channels, which reduced the data size and com-
plexity substantially. However, we lose a lot of information in the slicing step, which
strongly limits the quality of the predictions. That is why we decided to learn on the
regression coefficients as the second approach. This not only reduces the data size, but
also deletes some of the noise in the input. In comparison to the sliced approach, we are
therefore keeping all of the information in the images that is needed for the visualization.
Unfortunately we lost the possibility to check each pixel for significance and also biased
ourselves strongly on the four base tissue types, introduced in Figure 16. There might
be some other tissues of interest that are completely neglected in this approach. These
would be detected in the reconstruction of the signal, but deleted with extracting the re-
gression coefficients in the beginning. Therefore we chose yet another approach. Instead
of taking a fixed subset of the channels, we performed a PCA to extract the principal
components in the target images, and projected input and target data onto this space.
With this, we are keeping more of the data structure than in the sliced approach, but also
possibly delete a lot of the noise in the input and some in the target. This showed much
better results than just taking a slice of the channels and we can even back-project into
the 28 dimensional space to check for significance. However, as the first four extracted
principle components are close to the spectra of the main tissue types, almost all pixels
are depicted as significant (compare Figure 16 and Figure 21). Hence this approach is
also not suited to keep the information about significance. Furthermore as we are fitting
the principal components to the training data, we are biased to the main tissue types in
the data.
For all of the loss curves the difference in validation and training loss is relatively high.
One explanation for that might be a high estimation error, again due to the small num-
ber of samples. Nonetheless, the approximation error is not negligible, especially not in
the PCA approach, as we are deleting a lot of information to bias on the target images.
On the other hand, the performance on the training data is reasonably good for all three
approaches. Hence we can assume that the optimization error is quite low.
Another possible use case for optoacoustic imaging in general is detecting injected con-
trast agents, which can possibly have a completely different absorption spectrum than
the base tissue types. If we are only using the regression coefficients of the base tissue
types, we completely rule out the possibility to detect some contrast agents. On the
other hand one can include the absorption spectrum of the contrast agent in the regres-
sion in the beginning. In the PCA approach, this would only be detected, if the contrast
agents would be adequately represented in the training data, such that it is not neglected
when fitting the PCA. To extract important features for this, this aspect would also be
important for all approaches. However, we had no such data for our project and these
ideas could not be verified.
All in all, we achieved reasonable results for the problem that is biased on the base spec-
tra. Concerning the whole problem of optoacoustic imaging, it cannot be sufficiently
covered with this amount of data and strong focus on the main tissue types. So, more
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research has to be done in this aspect.

Subproject 2 Original Problem

At the beginning of this new task, besides denoising, we especially needed to figure out
how to capture the additional deformation from the input to the target image. It became
clear that our network used for the denoising in Subproject 1 was not sufficient to capture
this, because the filter parameters in convolutional layers are shared and hence optimized
over the whole image. Therefore, we duplicated our input and introduced masks to focus
the attention on different areas of the images to enable extracting features without other
areas interfering with the extraction process. Without this, the network was not able
to capture any deformation at all, which is due to the varying kinds of deformations
depending on the depth inside the tissue. Some of these deformations might be reversed
for the upper and lower part respectively, erasing the learned deformations of the other.
However, using the attention mask approach, we can now see that the needed defor-
mation is being learned. This is visible through the main structures, especially the
membrane, shifting accordingly to the target, as seen in Figure 41. Nonetheless, the fine
structures and other details are lost in our prediction. That is due to the fact, that our
idea of learning the error term from Subproject 1 is no longer valid. For this approach
to work, one would need the comparison of the deformed input image and the target,
to detect the noise inside the target. Unfortunately, we were not able to decouple those
tasks accordingly, as described in Section 6.1.5.
Adding the last convolutional layer with stride one and convolving the masked input
image with the deformed feature map increased the quality of the prediction visibly, but
unfortunately not to a satisfying level. The problem with that layer is that the difference
of the structures in the original image and the deformed map can very well be 40 pixels
and thus we would need a bigger receptive field.
This is also clearly visible in the loss curves, showing that the network might capture
specific shifts in the training data, but is not able to generalize to the validation set.
That is probably the reason why the train and validation loss are drifting apart very
early in the training process. Here we obviously cannot keep the estimation error under
control, as the network is not able to extract the significant features.
From this we concluded that learning the deformation is possible with putting attention
to different areas. But we were not able to keep the details in this step, as the spatial
differences between input and target structures are too big. This gave rise to the idea
of the relaxed problem.

Subproject 2 Relaxed Problem

In this last part of our project, we proposed a relaxation of the original problem of Sub-
project 2. Instead of trying to learn the mapping from any homogeneous speed of sound
to any dual speed of sound, we are now only mapping from two homogeneous speed of
sound input images to the dual speed of sound model, which uses the same speeds as the
two input images. Even though there is still a non-trivial deformation of main structures
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from input to target, these are now closer together. The assumption is that learning the
deformation like in the original problem of Subproject 2 and then trying to extract the
details from the input images, should now be a lot easier, because the structures are not
so far apart.
And as a matter of fact, we can see that the results are way better, as the details are
also kept in the validation and test images. The feature extraction of the training set
seems to be vastly more significant for the validation set, than it was possible to achieve
in the original problem. This can also be seen in the validation loss staying close to the
training loss for longer in the training process.
Even though creating the input is computationally more complex than for the original
problem of Subproject 2, as two homogeneous speed of sound images have to be pro-
duced, it is still feasible for the use case of achieving real time imaging. However, we
not only changed the problem statement, but also used a different network. Compared
to the model used in the original problem there are two major differences. The first is
the usage of stride (1,1) for every second layer and the second is adding a last convolu-
tional layer to the very end, again with stride (1,1) and same padding. This resulted in
a computationally very costly training phase, which takes about two hours per epoch.
Additionally, the size of the model is probably too large for real time imaging on a single
GPU that is available in the machine.
Nevertheless, we did not perform any further tests or optimization of the network and
code structure. To finalize the evaluation of this approach, this would be surely needed
and it may very well be, that one could lower the computational time sufficiently to
enable real time imaging.
Most likely, this network structure would also boost the results for the other tasks of
this project, such as those of original problem of Subproject 2. However, due to the time
constraints of this project we were not able to test this anymore.
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8 Conclusion & Outlook

With optoacoustic and ultrasound imaging, it is possible to do fast and non invasive
clinical imaging of stuctures and tissue up until a few centimeters below the surface of
the skin. High quality image reconstruction in this field however is too slow for real time
applications. In this project, we propose deep learning solutions to map low quality,
easily accessible images to their high quality counterparts.
In Subproject 1, the task was mainly about denoising and we used the ultrasound part
of this subproject as a warm-up phase and stepping stone to the other, more complex
tasks. In being confronted with high-dimensional optoacoustic images, the limitations
of the computational resources and the base model became apparent for the first time
and we developed several approaches in order to alleviate these problems. In both the
optoacoustic and the ultrasound part, we achieved improvement of image quality. How-
ever, we were not able capture all of the details in the ultrasound images and could not
develop a generic approach to cover all possible use cases of the optoacoustic imaging.
In Subproject 2, additionally to denoising the images, we had to bridge the divide be-
tween different speed of sound models, which meant learning deformations. For standard
convolutional networks, this is hardly possible because of the parameter sharing and the
local focus of convolutional layers. However, introducing fully connected layers, or even
locally connected layers, would increase the number of parameters to an unmanageable
amount. As a compromise, in our approach the parameters of the convolution are only
shared among certain regions and very large convolutional filters are applied at the end
of the network. Even with these model adaptations, mapping between arbitrary speed
of sound values proves to be very difficult: We were able to produce the rough defor-
mations but lost most of the image content. In a relaxed version of the task, the model
input includes images reconstructed with a homogeneous speed of sound model with
the respective target speed of sound values. The deformation from input to target is
still non-trivial, but it is locally closer together, which eases up the task significantly.
Additionally we only have to learn the mapping from already matching single speed of
sound images to the corresponding dual speed of sound and not the generalized form of
any single to any dual speed of sound image. Performing small adjustments to the used
network architecture resulted in a significant improvement of the results. We not only
could learn the deformation but keep most of the content as well. The results in the dis-
cussed subprojects and tasks proved that enhancement of ultrasound and optoacoustic
images w.r.t. image quality and speed of sound model with a deep learning architecture
is possible. However, the task at hand has to be analyzed thoroughly and the model
adjusted according to specific domain knowledge.
The domain of interest for further research concerning the applications for ultrasound
imaging lies clearly in the tasks of Subproject 2. There are several points to improve
our results of the relaxed problem. One was already mentioned in Section 6.2.3, where
one can calculating an image specific translation and not the same approximated for all
images. Additionally the used network architecture can be optimized further to enhance
quality and lower computational complexity. Our results in optoacoustic imaging gave
insights to the general task of multispectra image translation. However, one would need
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to further specify use cases and additional suitable evaluation techniques to gain further
insights to this problem. Especially to extend our work to targets reconstructed with a
dual speed of sound model, similar to the task in Subproject 2.
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