
panCRISPR Toolbox — a deep learning approach to

improve CRISPR/Cas experiments

TUM Data Innovation Lab (TUM-DI-LAB)

Munich Data Science Institute (MDSI)

Technical University of Munich

&

Helmholtz AI Munich

Authors Daria Yasafova, Dennis Gankin, Yevhenii Sharapov,
Chelsea Bright, Firas Driss, Francesco Campi

Mentor(s) Dr. Lisa Barros de Andrade e Sousa, Dr. Erinc Merdivan
(Helmholtz AI Munich)

Project lead Dr. Ricardo Acevedo Cabra (MDSI)
Supervisor Prof. Dr. Massimo Fornasier (Board of Directors of MDSI)

Feb 2022

1

Abstract

The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas system
is a novel and powerful genome-editing technology. The two main components of the
CRISPR/Cas system is a user-defined guide RNA (gRNA) and a CRISPR-associated
(Cas) nuclease. The gRNA is a 20 base pair sequence specific (complementary) to the
region of interest in a genome that guides the Cas nuclease which in turns makes a cut,
knocking out the targeted gene. Thus, the user-defined gRNA must be designed specif-
ically to allow for it to locate and bind effectively to the target location. To aid in the
design of gRNAs that efficiently bind to the region of interest and simultaneously mini-
mize the number of off-target bindings, we have built a user-friendly, integrative gRNA
design toolbox which uses state-of-the-art machine and deep learning models, as well as
bioinformatics techniques, to optimize gRNA design for use in CRISPR/Cas experiments.

CONTENTS 2

Contents

Abstract 1

1 Introduction 3
1.1 Biological background . 3
1.2 Problem definition . 4
1.3 State of the art CRISPR tools . 4
1.4 Technical prerequisites . 5
1.5 Goals of the project . 6

2 panCRISPR Toolbox 6
2.1 Guide Creation Module . 6
2.2 On-target Module . 7

2.2.1 Data . 7
2.2.2 Models . 10
2.2.3 Evaluation metrics . 11
2.2.4 Results . 12

2.3 Off-target Module . 15
2.3.1 Data . 15
2.3.2 Featurization . 15
2.3.3 Models . 20
2.3.4 Evaluation metrics . 21

2.4 Guide selection Module . 22
2.4.1 Guide selection without positional encoding 22
2.4.2 Guide selection with positional encoding 23

3 Discussion 24

4 Conclusion 25

5 Outlook 26

Bibliography 27

Appendix 31

1 INTRODUCTION 3

1 Introduction

CRISPR is a technology that has been successfully harnessed to edit the genomes of
prokaryotes, humans, and many other organisms. The tool targets a specifc location of
the DNA with the goal to alter that specific piece of DNA and modify gene function (such
as switching genes on and off). CRISPR is widely used for scientific research as it is a
cheaper, faster, and easier alternative to previous gene editing techniques (i.e. TALENs
and ZFN). The tool has many potential applications including correcting genetic defects,
treating and preventing the spread of diseases and improving crops [21, 28].

Figure 1: Visualization of the CRISPR/Cas editing system. The gRNA guides the Cas
protein to the target DNA segment and binds to the target region, allowing the Cas
protein to cut the DNA and let the natural DNA repair processes take over.

1.1 Biological background

CRISPR gene editing is based on a simplified version of the CRISPR-Cas9 antiviral
defense system found in bacteria [1, 24]. The tool is made up of two main components,
the Cas protein and the guide RNA (gRNA). The gRNA is a single stranded sequence
consisting of a tracrRNA and crRNA. Both RNA and DNA are made up of building blocks
called bases/nucleotides. Unlike RNA, DNA is double-stranded, with each complementary
base from the opposite strand bound together to form a base pair. A base called adenine
(A) pairs to the base thymine (T), and the base guanine (G) pairs with cytosine (C).
RNA is made up of the same bases except for thymine, which is replaced with uracil (U),
which also pairs with adenine. The Cas protein is an endonuclease protein that catalyzes
the cleavage of the DNA. There are many types of Cas proteins found in bacteria, that
help to defend against viruses. The Cas9 protein is the most widely used in gene editing
experiments, as it can be easily programmed to locate and bind to a target region of
DNA by supplying it with a specific gRNA. In particular, the crRNA, making up part
of the gRNA, contains a 20-nucleotide sequence complementary to the target segment of
the DNA, called the single guide RNA (sgRNA), which guides the Cas protein to the
region of interest. At the target site, the Cas protein unravels the DNA helix, the weak
bonds between the base pairs of the double stranded DNA break and the 20-nucleotide
RNA sequence binds to a single strand of the target DNA by the formation of base pairs
between complementary bases. This enables the Cas protein to make a double-stranded

1 INTRODUCTION 4

break in the DNA. The targeted change is introduced by the cell’s natural DNA repair
mechanism when it repairs the cut. To prevent the Cas protein from cutting arbitrarily
in the DNA, there is a short DNA sequence called a PAM that is located adjacent to the
target DNA sequence on the opposite strand to which the sgRNA binds. If the Cas protein
does not identify the PAM next to the target DNA sequence, it will not perform a cut.
An example of a possible PAM sequence is NGG, where N can represent any nucleotide
[10]. Thus, the guide RNA needs to be designed specifically for each target DNA segment,
but this is a very delicate procedure, since the performances can vary widely for different
sgRNAs.

1.2 Problem definition

To allow for the Cas protein to successfully bind and cleave the target DNA sequence,
the user-defined RNA sequence must be designed to maximize efficiency and specificity.
Efficiency measures how well the guide RNA binds to the target DNA segment, while
specificity measures how often the guide RNA binds to regions outside of the target
location (known as off-target regions).

1.3 State of the art CRISPR tools

Several state-of-the-art machine and deep learning methods have been developed to suc-
cessfully predict on-target guide RNA activity and measure off-target effects. In [27],
the authors developed a convolutional neural network, CRISPRon, which exhibits sig-
nificantly higher prediction scores on unseen guide RNAs compared to existing methods.
For example, CRISPRon outperforms another well-performing model, DeepHF, a Bidirec-
tional LSTM (P-value < 0.001 of the two-sided Steiger’s test) [23]. Transfer learning has
also been used to try improve prediction of on-target guide RNA activity. For example, in
[4], the authors developed a model named DeepCRISPR by using unsupervised learning
to train a deep convolutionary denoising neural network-based autoencoder to automat-
ically learn the underlying feature representation of the guide RNAs. The autoencoder
was pretrained on a large-scale unlabelled guide RNA data source. The encoder was then
fine-tuned on labelled guide RNA data and its output was used as input for a CNN.

Furthermore, numerous online guide RNA design tools have been developed to predict
on-target guide RNA activity and measure off-target effects. For example, the authors
of [27] developed separate on- and off-target online prediction tools. The authors of [4]
unified their on- and off-target prediction tools into one framework to optimize guide
RNA design. Although these existing tools implement state-of-the-art models that pro-
vide accurate gRNA efficiency and specificity predictions, they have certain drawbacks.
For example, none of the tools excel when using heterogeneous data, as most models used
for predictions have been trained on cell-specific or species-specific data and the tools
cannot be customizable to different experiment settings. For example, DeepCRISPR fo-
cuses on conventional NGG-based sgRNA design for SpCas9 in humans. CRISPRon has
been extended to cater for cross-species experiments; however use cases are still limited
to experiments using NGG PAMs and SpCas9 proteins.

1 INTRODUCTION 5

The CRISPor guide RNA design tool does well in combining functonalities of multiple
existing tools and has been considered to be the best tool for designing gRNAs, as it
caters to 417 genomes and 19 PAM types, meeting the needs of most users [14]. However,
similar to most other gRNA design tools, CRISPRor lacks an integrative gRNA ranking
system that takes into account specificity and efficiency scores and gRNA competition for
the target gene location (that is, gRNAs that target the same location are undesirable
as they will compete for the same location during CRISPR experiments). In fact, to the
best of our knowledge, we have not come across a design tool that implements such an
integrative guide selection procedure.

Another notable drawback of existing state-of-the-art design tools such as CRISPRon
and DeepCRISPR is the inability to reproduce experiments using the existing software
on GitHub. For example, neither of the software tools provide both raw and cleaned
versions of the data sets they used and their associated splits to allow for reproducibility
of experiments. In addition, neither of the software tools provide extensive guidelines for
outside contribution and do not prioritize ease of use. For example, both repositories
provide very limited documentation on their source code and on how their software tools
should be used.

1.4 Technical prerequisites

We used GitHub for collaboration, code-synchronization, and potential code publication.
To prevent code conflicts, we improved each module in separate feature branches and
combined them towards the end of the project. Pre-commit hooks, i.e. autoflake, short,
black1, automatically advanced the code quality, cleanliness, and readability. In addition,
we use extensive logging in the code, to make it easier to follow and debug the pipeline.
Besides, we focus on a modular implementation into classes and simple class interfaces,
so that the framework can be easily adjusted, improved, and extended.

Moreover, we use Hydra2, a Python parameter configuration framework for simple con-
figuration and easy experimentation. The framework allows extensive configuration and
thus offers a lot of flexibility to the user. Each module is configurable by changing pa-
rameters in the corresponding configuration file. Hydra does not only simplify the use,
but also tracks parameters for each experiment, supporting reproducibility. We also in-
corporated the functionalities of the Hydra Slurm plugin, which provides a user-friendly
way of running scripts on remote computer clusters.

Since our project will be open-sourced, enabling outside contribution, we have also devel-
oped extensive documentation on all python scripts as well as a descriptive step-by-step
guide to allow easy usage of the software. All experiment datasets and their associated
splits are available for experiment reproduction. The packages needed to execute the
pipeline are installed in a conda3 environment, which can be easily cloned, to reproduce
the same results. All in all, the design choices allow easy usage and understanding of the

1isort, autoflake, black
2https://hydra.cc/
3https://docs.conda.io/en/latest/

https://pycqa.github.io/isort/
https://github.com/PyCQA/autoflake
https://github.com/psf/black
https://hydra.cc/
https://docs.conda.io/en/latest/

2 PANCRISPR TOOLBOX 6

framework, fast configuration and experimentation, and simple extensibility. This is a
very good foundation for experimental use and improvement.

1.5 Goals of the project

With the use of advanced machine learning and deep learning methods, the goal of our
project was to create a toolbox that designs highly efficient and specific guide RNAs
that can be successfully used for CRISPR gene editing experiments. Thus, our project
was divided into two main components: on-target and off-target. For the on-target and
off-target components, the goal was to utilize state-of-the-art machine and deep learn-
ing methods to accurately predict guide RNA efficiency and measure off-target effects,
respectively. Figure 2 provides an overview of the toolbox developed in this project.

Figure 2: Pipeline steps for the guide design framework

2 panCRISPR Toolbox

A framework supporting biologists in picking well-suited guides for their experiments
needs to combine multiple functionalities into one computational pipeline. This pipeline
includes the initial search for possible guides targeting a specified gene in a user-defined
genome, scoring these guides’ effectiveness and specificity, and selecting the best ones for
the user. Figure 2 depicts how the developed framework links these three steps together,
offering a complete guide design pipeline.

2.1 Guide Creation Module

Guide creation comprises three phases, specifically, data retrieval, data preprocessing and
data creation. The first stage involves setting up a persistent connection to the FTP
server of ENSEMBL, that is a main source of human genome data in the pipeline, those
are:

1. Homo sapiens.GRCh38.dna sm.toplevel.fa - contains the top level human genome.

2. homo sapiens.gtf - human annotation file, which includes information about the
position of the specific genes in the human genome.

2 PANCRISPR TOOLBOX 7

Upon retrieval of the aforementioned files, annotation file is filtered based on the user
input genes. The resulting truncated annotation is then applied to extracting the subse-
quences of the genome, which have the length of 20 bp, which are also followed by the
specified PAM sequence. Strands of the negative sign are taken into account b considering
the reverse compliment of those. The melting temperature and GC content - important
biological features are calculated as well as positional features - position of the guide and
the position of the exon. The resulting sequences are saved into the .fa files. The pipeline
utilizes state-of-the-art python packages to concurrently process the data in a parallel
manner as well as it allows simple usage by means of the agile configuration hierarchy.

The guide creation simply computes all potential guides without focusing on guide effec-
tiveness yet. Therefore, the guide scoring step tries to evaluate the potential guides to
be able to find the most desirable ones afterward. A desirable guide should be efficient
and accurate. That means, first, it should bind to the target site with a high probability
(on-target efficiency). Second, it should bind to as few non-targeted sites as possible (off-
target activity). These two effects are evaluated and predicted in separate modules and
combined afterwards.

2.2 On-target Module

The main goal of the on-target module is to estimate the knock-out efficiency of our
guides. Alternatively, such an assessment when performed experimentally requires a lot
of resources and uses complex experiments which tend to be expensive. However, ex-
clusive experimental assessment tends to be unrealistic considering the growing number
and the different area of applications of the CRISPR toolkit. Moreover, little is known on
what makes guides more efficient than other due to the lack of data available for knockout
experiments, and the lack of understanding of the whole human genome.

As an alternative, our on-target activity prediction relies on learning algorithms using the
limited amount of open-source knock-out data. These models should be able to under-
stand and to depict hidden pattern and properties of more efficient guides in terms of
on-target activity.

2.2.1 Data

Data acquisition

To train the on-target models we have used the data published in the papers of Wang
[25], Hart [8] and Doench [5],which are genetics screens performed using CRISPR-Cas9
on different human cell lines. In particular we have used the data of the following cell
lines:

Publication cell lines size of sgRNA library
Wang hl60, kbm7 ∼ 70 000 gRNA
Hart HCT116, GBM, HeLa, RPE1 ∼ 90 000 gRNA

Doench A735 ∼110 000 gRNA

2 PANCRISPR TOOLBOX 8

The datasets contain the guide RNA sequences, the gene they belong to and the relative
read counts taken at the beginning and during the experiment, where the read counts
represent the abundance of a specific gRNA. Efficient sequences show a noticeable decrease
in the read counts during experimentation. Specifically, the datasets contain the following
information about the read counts.

• Wang: read counts taken at the beginning and at the end of the experiment in 1
replica.

• Hart: read counts taken at different time stamps (e.g. after 8, 12, 15, 18 days) and
the experiments were conducted in different replicas (2 or 3).

• Doench: the data comes directly in log fold change (LFC) format, which is explained
in more detail below in (1).

Data processing

Combining datastes of different cell lines for training should provide better generalization
performances, as this prevents models dfrom learning the efficiency prediction rules of one
specific cell line. For this reason, we wanted to make the data from the three experiments
compatible, hence, we applied similar processing pipelines.

Firstly, we filtered the sequences with low initial read counts (< 200) as in [27], to ensure
that enough gRNAs was present in the experiment. Since the dataset provided by Doench
contained only the LFC, here we discarded the sequences having a high efficiency score
(> 4), as suggested by the author. In fact, from the definition of LFC mentioned in (1),
it is easy to see that low initial read counts can generate high values of LFC.
Then, the read counts were normalized with the procedure used by Doench, that is:

read countnorm =
read count× 106

sum
,

where sum is the sum of all the read counts in the same condition (e.g. initial or final)
as the read count considered.

The dataset of Hart contained more detailed information about the experiment, so we ap-
plied additional filtering strategies in order to obtain cleaner data. We chose as final time
stamp the one which showed better correlation between the different replicas and we used
as final read count the the average of the different replicas. To compare the correlation
of the different time stamps, we used both a scatter plot to have a visual representation
and Pearson correlation coefficient to have a comparable value. Generally, the best time
stamp was between 8 and 12 days.

Moreover, we considered as outliers and deleted the sequences whose difference between
the replicas was higher than a certain threshold. The threshold was chosen specifically
for each cell line such that it didn’t delete too many sequences, since small fluctuations
are admissible.

2 PANCRISPR TOOLBOX 9

To translate the read counts into a predictable value, we used as efficiency metric the log2
fold change (LFC) of the read counts, which is a common metric in the literature [5, 4,
7] and is defined as:

eff score = log2

(
read countfinal
read countinitial

)
. (1)

Then we applied the following processing steps to the efficiency scores to make them
comparable across different genes and different cell lines (fig. 3).

1. Genes having less than 3 sequences were deleted in order not to affect the final
evaluation of the models. The evaluation metrics given in Subsubsection 2.2.3 check
the similarity of the ranks of the sequences w.r.t the true efficiencies of a gene and
w.r.t. the predicted efficiencies, and with just one or two sequences also bad models
could receive good scores.

2. If the scores of the sequences of the same gene showed an extremely low variance,
than we deleted those sequences. The ranking based metrics are not suited to test
the performances of the models in these situations, since the sequences are all almost
equally good and the models wouldn’t learn from these sequences.

3. Different genes could have biased efficiency scores for several biological reasons (e.g.
how accessible is the DNA region due to DNA compaction). To reduce the bias and
to make the efficiency scores comparable across different genes we applied to them
a gene-wise median normalization.

eff scorenorm = eff score−mediangene,

where mediangene is the median of the LFC of sequences belonging to that gene.

4. Finally, as in [4], we applied a descending rank based normalization to the efficiency
scores of each cell to set that high efficiency scores mean high efficiency and to shrink
the distribution of the scores to [0, 1], allowing us to combine datasets of different
experiments. Moreover, the condition eff score > 0, necessary to apply the NDCG
metric, is fulfilled.

Figure 3: The distribution of the efficiency score before preprocessing: the ranges of the
scores change between different cell lines and for this reason the scores are not comparable.
Therefore, the processing pipeline is fundamental to combine the datasets.

2 PANCRISPR TOOLBOX 10

2.2.2 Models

The models used are regression models, which aim is to predict the on-target efficiency
score of a given sequence. Since in the literature there is not yet a clear winner between
shallow models ad deep models for this specific problem [15], we trained and compared
both the architectures.

Shallow Models

The shallow model we selected is a tree-based Gradient Boosted Regressor (GBR). The
features used by the models to make the predictions are directly computed from the
sequences in the following ways.

• Positional independent features: number of occurrences of n adjacent nucleotides
(e.g. AC).

• Positional dependent features: binary features indicating whether n adjacet nu-
cleotides appear at a specific position.

• n-Gapped features: the number of times that 2 given nucleotides appear at a certain
distance (e.g. A C). These first three kind of features were used in [15].

• Important biological features (∗), namely GC content and gRNA melting tempera-
ture, were computed using Biopython4 and used in both shallow and deep models.
These biological parameters are considered key features for predicting on-target
gRNA efficiency [23, 27].

These features have different natures (binary, counting, tempretaure) and belong to dif-
ferent domains. Therefore, it is necessary to normalize the features to ensure that the
distribution of each feature in the training set has mean 0 and variance 1. This step was
implemented with the StandardScaler class of the library scikit-learn5, which computes
the normalization parameters from the training, saves them, and uses them in the evalua-
tion process to normalize the features of the input sequence. Training the StandardScaler
only on the training data does not leak any information from the training set.

Deep Models

We implemented two deep learning models, a baseline fully connected neural network
and a convolutional neural network with the same structure as CRISPRon, an existing
top-performing model in the literature [27]. The baseline neural network (baseline nn)
has two hidden layers and each linear layer (except the last layer) is followed by a Leaky
ReLu activation function and then batch normalization. Adding leaky ReLu prevents the
”dying ReLu problem”. Batch normalization aids in generalization of the model and, just
like Leaky ReLu, has been shown to accelerate training.

The convolutional neural network (CRISPRon) builds upon baseline nn by adding con-
volutional layers, whose output is flattened, concatenated with the biological features(∗),

4https://biopython.org/
5https://scikit-learn.org/stable/

https://biopython.org/
https://scikit-learn.org/stable/

2 PANCRISPR TOOLBOX 11

and fed into fully connected layers. The detailed achitecture can be seen in Fig. 4

Both these neural networks take a one-hot-encoded sequence as input and output an
efficiency score for each sequence as the final output. The one-hot-encoding (Fig. 4) is a
1-dimensional image with 4 channels, one for each nucleotide, and each pixel represents
which nucleotide has the sequence in that position (i.e. the channel corresponding to the
nucleotide is 1, the others are 0).

Figure 4: CRISPRon architecture with one-hot-encoded sequences reproduced from Xi
Xiang et. al. [27]

Training strategy

To train the models, we split the preprocessed data into train, validation, and test sets
with a splitting ratio of approximately 60/20/20. The splits have been computed w.r.t.
the genes, that is the three splits contain sequences belonging to three disjoint sets of
genes. This ensures more reliable evaluation results, as the sequences in the test and the
validation sets belong to genes completely unseen by the models.

The hyperparameters of the models were finely tuned using the evaluation metrics results
on the validation set. For the deep models, we monitored the model performance during
the training using the MSE calculated on the validation set (validation loss). To prevent
over-fitting on the training data, we implemented early stopping with a patience set to
20 such that when the validation loss does not decrease after 20 epochs, the training will
end.

2.2.3 Evaluation metrics

By definition, the on-target activity prediction task should highlight which among the
guides is more efficient. A suitable metric, should hence, attribute high scores for models
where the predicted efficiencies of a set of guides follow the same order as the actual
efficiencies of these guides. Such metrics are referred to as rank-based correlation and are
widely used in the literature such as in [5, 8, 25].

2 PANCRISPR TOOLBOX 12

The most commonly adopted correlation measure in the literature is called Spearman-
Rank Correlation Coefficient, rs, [18]. It provides a measure for the statistical dependence
between the ranking of two variables. While Spearman’s correlation assesses the mono-
tonic relationship between two variables, it uses Pearson’s correlation to assess the linear
relationship between the respective rankings of the two variables. It can be computed as
the following

rs =
R(X)R(Y)

σR(X)σR(Y)

where X,Y represents respectively the ground truth and the predicted efficiency scores.
R(.) denotes the rank function.

Another less commonly used metric is called Normalized Discounted Cumulative Gain,
NDCG [22]. It measures the ranking quality and is often used in information retrieval.
DCG can be used under the following assumption: ”highly relevant documents are more
useful when appearing earlier in a search engine result list”. It uses a rank logarithmic
discount factor to penalize relevant documents that appear at the end. The formula is as
follows:

NDCGp =
DCGp

IDCGp

, where DCGp =
n∑

i=1

effi
log2(i+ 1)

and IDCGp =

|RELp|∑
i=1

effi
log2(i+ 1)

, with RELp representing the set of the most efficient guides up to position p.

NDCG compared to Spearman correlation, can be parameterized with an integer p to only
focus on the p most efficient guides. Selecting a model with a relatively high NDCGp

means that the model is likely to perform better on the top p efficient guides. On the
other hand, Spearman Correlation considers the whole set of guides and penalizes rank
mismatches equally among all positions. In guide selection, our aim is to reduce the
number of guide candidates to a smaller, more efficient set. NDCG seems to offer an
advantage over Spearman Correlation, and hence it has been used in the evaluation of
our models.

Considering that our test sets from different cell lines contain guides targeting different
genes, we decided to run the evaluation gene-wise. That is, we calculate the correlation
scores with respect to each gene, and then we average the gene-wise score to get the final
model evaluation. Moreover, while focusing on the NDCG correlation, we set p = 1 to
put more emphasis on the top ranked gRNA.

2.2.4 Results

The models implemented were tested in two different experimental set-ups to thoroughly
investigate their performances in possible use cases.

2 PANCRISPR TOOLBOX 13

Figure 5: Results showing a comparison between the implemented models in Experiments
1 and 2. (a) Comparison of the average gene-wise NDCG scores and (b) Spearman
correlations of the implemented models trained under the setting of Experiment 1 and
tested on each cell line. (c) Box-plot (from ChallengeR) of descriptive statistics for NDCG
scores over all test sets of each model under the setting of Experiment 1. (d) Comparisons
of outcomes of five different ranking strategies (from ChallengeR) for Experiment 1. (e)
Comparison of the average gene-wise NDCG scores of the implemented models trained
under the setting of Experiment 2 and tested on each cell line. (f),(g) same as (c),(d)
for Experiment 2. (h) Boxplots comparing the distribution of the ground truth efficiency
scores of the top ranked guides with the remaining guides for the GBM cell line.

2 PANCRISPR TOOLBOX 14

Experiment 1. In this experiment we combined the training sets of all the cell lines in
one data set and used it for training. Then we tested on the test set of each cell line (fig.
5a, b). To rank our models trained on all cell lines based on their performance on each
test set, consisting of a single cell line, w.r.t. the NDCG score we utilize the challengeR
visualization toolkit [26] (fig. 5c, d). For more details about the ranking of the plots as
well as a detailed explanation of all graphs obtained using the ChallengeR toolbox see the
Appendix. Fig 5d shows the ranking of the model across different ranking strategies and
the GBR and the CRISPROn architectures are ranked as the best models, but the test
cannot determine a clear winner. However, under the first 3 conditions GBR is ranked as
first.

Experiment 2. In this experiment, we combined all cell lines except one into a single
data set on which we trained our 2 top performing models. The left-out cell line was used
to test the transferability of the models to unseen cell lines (fig. 5e). AS above challengeR
visualization toolkit [26] (fig. 5f, g) has been used to rank the two models and GBR is
slightly better and for this reason we select it for the final pipeline.
Moreover, we used the Wilcoxon test to see if combining different cell lines gives better
transferability than using only one cell line for training for the GBR model . We trained
the model on a single cell line and tested on all the others. Our null hypothesis was that
the NDCG scores of the models trained on a single cell line are higher or equal to to the
scores obtained by the models trained using the method in this experiment. The p-values
obtained are:

Table 1: p-values for the test: combining cell lines translates to better transferability

model HCT116 HeLa GBM RPE1 hl60 kbm7 A375
GBR 0.03125 0.03125 0.078125 0.078125 0.03125 0.078125 0.78125

Finally, we wanted to visualize whether the models actually are able to detect which are
the best guides. Using the model from Experiment 1, for each gene we selected the guide
having the highest predicted efficiency score. Then we compared the distributions of the
ground truth scores of the best selected guides and of the discarded guides (fig. 5h). We
would expect that the distribution of the selected guides is shifted upwards, because this
would imply that the guides the models predict as efficient are actually more efficient
than the others.
Moreover, we used the Wilcoxon test to verify if the shift between the two distributions
is statistically significant. In particular, for each discarded guide we subtracted from its
ground truth efficiency score the efficiency score of the best guide for that gene:

eff scoreguide − eff scorebest guide

.
We tested with the null hypothesis that the median is greater or equal to 0 (i.e. the
predicted guides are worse or equivalent to the discarded ones). The p-values obtained
are:

2 PANCRISPR TOOLBOX 15

Table 2: p-values for the test: selected guides are better than discarded guides

model hl60 kbm7 HCT116 HeLa GBM RPE1 A375
CRISPROn 9.32E-86 5.59E-191 4.42E-125 4.52E-159 2.23E-218 1.65E-221 0.0

GBR 1.74E-89 1.44E-197 1.68E-140 4.71E-173 3.53E-218 4.68E-228 0.0

2.3 Off-target Module

Not only is the efficiency important in guide design but also its specificity, i.e. whether
a guide has off-targets, as off-target cleavage by CRISPR/Cas9 can cause undesired and
even harmful side-effects on non-coding regions of the genome. Due to their mismatch
tolerance, gRNAs target sequences that are similar to the target site but not identical.
These sequences are called off-target sequences (OTSs) or off-targets.
However, experimental data shows that guides don’t bind to every possible off-target
sequence, only to some of them. To this end, we train models on data produced in silico
with alignment tools and labeled using in vitro verified data to classify off-targets as true or
false, depending on whether they were found in the experimental data or not, respectively.
Trained models are then used for off-target prediction in the main framework.

2.3.1 Data

The off-target module is centered around the experimental data [29], that contains off-
targets verified in vitro with the Circle-seq method [20]. It has 3095 records of off-target
data with the following information: sgID (guide name), gRNA, OTS, Chr (chromosome,
in which OTS was found), Strand (forward or reverse strand of DNA), Mismatch (number
of mismatches), Start and End (positions of OTS in the genome). It contains 11 unique
guide sequences, and the number of mismatches varies from 1 to 7. The genome used
for the paper is the human genome (hg19). The guide RNA sequences are 23 nucleotides
long, 20 of which are the gRNA itself, and 3 are the NGG PAM sequence. Strand column
refers to the two DNA strands, the reading direction is 5’ to 3’ and hence, there exist a
forward (in 5’-3’ direction) and a reverse (in 3’-5’ direction) strand.
For our experiments we use the same guides and the same genome as the paper. We align
the guides against the human genome using alignment tools (bowtie and BLAST).

2.3.2 Featurization

This section encompasses results from bowtie and BLAST, feature computation and en-
coding.

Bowtie

Bowtie [12] is a fast end-to-end alignment tool that runs on the command line. It is geared
towards aligning short sequences (also called reads) to large genomes. Bowtie performs
an end-to-end read alignment, which means that it searches for alignments involving all
of the read characters. Bowtie allows alignments to have at most 3 mismatches.

2 PANCRISPR TOOLBOX 16

gRNA

OTS

C C A C A C G C A C A C A C T C A C T C A C C

A C A C A C A C A C A C A C T C A C T C A C T

Figure 6: gRNA and OTS with 3 mismatches found by bowtie

Bowtie configuration

We wrapped bowtie into python so we can call it within our pipeline. All arguments for
the bowtie command are passed through Hydra from a config file and then the command
is generated and passed to the bowtie wrapper. The additional parameters with which we
run bowtie are ”-a” which instructs bowtie to report all alignments for each guide, and
”-v 3” for bowtie to find all alignments with up to 3 mismatches.

Bowtie output

Standard bowtie output contains the following columns: sgID (guide name), Strand, Chr
(chromosome), Start (start position), gRNA (guide sequence), Mismatch (its content is
explained below). sgID contains the guide names we pass through the file with guides.
Strand can be forward and reverse. gRNA is strand-dependent: for a forward strand
it is reported in the 5’-3’ direction, for a reverse strand, the sequence is reported 3’-
5’ and all nucleotides are replaced by their complements. Mismatch column contains a
comma-separated list of mismatch descriptors, and a single descriptor has the format
offset : OTS − base > gRNA − base, where offset is strand-specific (has the direction
5’-3’ for a forward strand, 3’-5’ for a reverse).

Bowtie OTS

In order to train a model to classify off-targets we need to feed it both a gRNA and
an OTS, because only by having both can a model see the differences between the two.
Both bowtie and blastn don’t have OTS in their standard output. For bowtie we can
construct OTS using gRNA, Strand and Mismatch columns. Using the contents of the
Mismatch column (described in 2.3.2 Bowtie output) we can replace gRNA-base of gRNA
with OTS-base of OTS in the offsets they mismatch, taking into consideration that for
forward strands the positions/offsets are indexed in forward direction, and for reverse
strands in reverse direction, which will yield OTS.

Bowtie results

In order to compare results of bowtie with the experimental data we merge the databases
with pandas6 on the four matching columns: sgID (guide name), Chromosome, Strand,
Start. During the analysis of the bowtie output, we noticed the number of true off-
targets was incomplete. Further investigations suggested the cause was due to the 1.
Incorrect processing of the input sequencing file containing gRNAs by bowtie, and 2.

6https://pandas.pydata.org/

https://pandas.pydata.org/

2 PANCRISPR TOOLBOX 17

Figure 7: Confusion matrix of bowtie predictions for off-targets with <4 mismatches

Wrong information about the number of mismatches in the experimental data provided.
Fixing the issues gave us 220 true off-targets and drastically reduced overall number of
alignments (from 16190 to 887). To conclude, bowtie contributed the most data for off-
target models with 887 records, 220 of which were true off-targets.

BLAST

BLAST (Basic Local Alignment Search Tool) is a widely used program to efficiently align
a sequence against a database and find meaningful matches that share some similarity.
Alignments can be performed for DNA or protein sequences, but in this case, DNA se-
quences are compared (BLASTn). As visualized in figure 8, instead of computing costly
pairwise alignments with each sequence in the database, BLAST first finds high scoring
words in the database, extends those, and filters significant matches with a high score and
low e-value. For efficiency, only word pairs that are found in close proximity are extended
(two-hit method), as they are more likely to yield a high scoring extension. Lastly, gaps
are also introduced by the gapped BLAST algorithm. [3, 2]

Figure 8: BLAST sequence alignment algorithm visualization

BLAST configuration

Even though it is widely used in bioinformatics, BLAST comes with a few caveats.

2 PANCRISPR TOOLBOX 18

Firstly, BLAST aims to find functional similarity between sequences, for example to detect
gene families. Therefore, an alignment with a high similarity score represents sequences
that are likely functionally or evolutionary connected. Similarly, the e-value computed for
alignments by BLAST denotes the probability to find another alignment with a greater
similarity score in the searched database. [3, 2] According to current literature, off-target
effects do not depend on evolutionary or functional relationships, though, but on the
number and positions of mismatches as well as some molecular features (i.e. melting
temperature) [5, 16]. Consequently, BLAST by itself will not be a good indicator for
off-target activity and needs to be complemented with other ways of prediction.
Secondly, BLAST is a complex program with many parameters that adjust the search
to different use-cases. In addition, the alignment is time consuming. So, a good set of
parameters should be restrictive enough to reduce the runtime and prevent an explosion
of alignments, while at the same time allow to detect as many experimentally confirmed
off-targets as possible. A grid search determined the parameter set to be: word_size=7
and evalue=100. Nevertheless, the framework allows the user to adjust any BLAST
parameter manually in the configuration file if needed.

BLAST parsing

BLAST returns the alignments and corresponding features, such as the alignment position,
its score and e-value, in a tab separated file. The format and returned features differ from
the output generated by bowtie. So, to combine results from both programs, the BLAST
data needs to be parsed and processed accordingly. First, BLAST does not necessarily
align the whole sequence, but it can align parts of it. Thus, the parsing step recomputes
the reported number of mismatches to incorporate the whole guide.
Second BLAST only reports sequence positions instead of returning the aligned sequences
themselves. Therefore, we developed a way to read out the sequences from the genome’s
fasta file, similar to section 2.1. This approach is much faster than using the built in
blastdbcmd tool. The sequences are retrieved from the genome fasta file in three phases:
1. Load annotation file: The annotation file provides indexing for the genome fasta
file for quick access with information about where certain nucleotide ranges are saved in
the fasta file.
2. Map ranges to OTS: Next, to know which ranges to access, they need to be mapped
to sequences lying in these ranges. Using pandas7, the sequence dataframe can be merged
with the range dataframe to achieve the mapping. But as the files are large we merge the
dataframe in chunks and decrease the allocated memory.
3. Load data from fasta file: Lastly, we load the identified ranges from the fasta
file and extract the OTS at the correct positions. Overall, this procedure decreases the
runtime compared to blastdbcmd by 50 to 100 times depending on the number of OTS,
and allows a feasible OTS retrieval.

BLAST results

Comparing BLAST alignments with experimentally confirmed off-targets from [29], proves
the shortcomings of BLAST. The confusion matrix in figure 9 shows that BLAST finds

7https://pandas.pydata.org/

https://pandas.pydata.org/

2 PANCRISPR TOOLBOX 19

both a lot of false off-targets, and also only a small percentage of the experimentally
confirmed off-targets.
At the same time, the feature correlation matrix in Figure 10 indicates the correlation
between some BLAST features and the alignment being an experimental off-target. So,
the off-target effect seems to have no obvious relation with the features reported by
BLAST.

Figure 9: Confusion matrix for BLAST
off-target prediction on experimental
data from [29].

Figure 10: Feature correlation matrix
for BLAST features, using standard cor-
relation coefficient.

As a result, BLAST on its own, cannot be used to predict off-target effects reliably. But
BLAST offers one advantage compared to bowtie: it reports alignments with more than
three mismatches. Thus even, with its shortcomings, it provides important additional
data for data preprocessing.

Features

As part of the feature engineering process, gRNA and OTS are selected to be used later
for training models, as they carry the most relevant information. Additionally, GC-
content and melting temperature are computed for both the gRNA and OTS, as important
biological features that were shown to impact off-target activity of guides. GC-content
is the percentage of G and C nucleotides in a sequence. Melting temperature refers to
the temperature at which a DNA double helix dissociates into single strands. There are
several formulas for computing melting temperature for a sequence, we use the one based
on nearest neighbor thermodynamics. Both the biological features are computed using
Bio.SeqUtils8 package of Biopython.

gRNA-OTS pair encoding

The gRNA and OTS are encoded as a pair using a 6-bit encoding scheme, that leverages
directional encoding [13]. Each sequence pair is considered as a fixed length vector with the
four-bit channel (A, G, C, T) and two-bit direction channel. The four-bit channel preserves
the nucleotides of the on-target site and the off-target site while the direction channel

8https://biopython.org/docs/1.75/api/Bio.SeqUtils.html

https://biopython.org/docs/1.75/api/Bio.SeqUtils.html

2 PANCRISPR TOOLBOX 20

is designed to identify the mismatch directions; for example, ”00110-10” represents the
mismatch ”G −→ C” (”G” is the on-target site and ”C” is the off-target site) while ”00110-
01” represents the mismatch ”C −→ G”. The proposed encoding schema significantly
reduces the coding length from eight bits to six bits, which can be advantageous given
the amount of the off-target data we have.

Figure 11: 6-bit encoding scheme

2.3.3 Models

Both shallow and deep models were trained for the binary classification task of whether
an off-target found by the alignment tools is true or not.

Shallow Models

Several shallow models were trained, including a support-vector machine (SVM), a deci-
sion tree, a multilayer perceptron (MLP) with a few hidden layers, and a random forest.
All shallow models utilized the 6-bit encoding scheme described in 2.3.2. The features
with GC-content and melting temperature were normilized.

Deep Models

A deep convolutional neural network was trained to hierarchically learn the weights of
the positional features and combine them with the output of the fully connected network,
that processes the non-positional features. The features are first encoded, by means of
one-hot-encoding of the sequences of the base pairs (single nucleotides, pairs, triplets
and so on). For the sake of dimensionality reduction only singletons were taken into
consideration. The positional features are then processed by the deep convolutional neural
network, combined with dropout and parametric relu. A fully connected neural network
was trained in parallel to combine its output with the output of the convolutional neural
network and eventually produce the logits using the final fully connected layer on the end.

2 PANCRISPR TOOLBOX 21

Figure 12: Convolutional neural network

Training strategy

The models were trained using the split over the training samples of 80/20 and the held-
out sample for testing. A standard cross validation was used to split the data into n
shards and validate on the cut-out shard. The models were then being compared based
on the mean metric over the splits. For training the deep neural network, a weighted
categorical cross entropy was used - specifically weights of [1., 2.] for non-binding and
binding. Due to the high risk of the over-fitting certain approaches were used. To prevent
over-fitting the following advanced approaches and techniques were utilized:

1. stochastic weight averaging - a technique to store the last models during the epoch
and consider the exponential moving average of those;

2. learning rate reduction on plateau;

3. early stopping based on the validation metric;

Combining Models

During the training many models were taken into the consideration. After conducting
hyperparameter optimization and choosing the best candidates for the deep and shallow
models we arrived at the point where the models were close in their metrics. The final score
of the models was about 0.73 F1 score. To reduce the variance of the models the weighted
average over the predicted probabilities was employed, which allowed contemplating the
models as an ensemble to be used during the final scoring phase.

2.3.4 Evaluation metrics

To meticulously estimate the probabilities of the OTS, is is essential to choose the pref-
ference of minimization between the false positives and false negatives to fall onto the
second one. Since any unintended cleavage site may cause severe consequences for the
experiment it is crucial to evaluate how well the model predicts those. One shouldn’t also

2 PANCRISPR TOOLBOX 22

Figure 13: Occlusion of the guide, including the PAM sequence

forget about the false positives, since they can tarnish the experimental potential of the
guide sequence by compromising it with the over-estimated number of the possible sites.
This brings us to idea, that multiple classification metrics are to be applied. In this work
we opted above all for F1-score, recall and precision. We were also monitoring the general
confusion matrix.
To evaluate how well did the models actually learn the underlying specifics of the off-
target effects, we tried to plot heatmaps of the occlusion of the nucleotides. This means,
some of the nucleotides of the true OTS were hidden from the model and then it was
offered to classify it. The higher the value of the nucleotide is, the more relevant was the
occlusion of the gene to the final decision.
Figure 7 demonstrates, that indeed, removing the PAM sequence, dramatically reduces
the probability of the OTS. At the same time some of the border nucleotides also play a
decisive role as opposed to those in proximity of the middle point.

2.4 Guide selection Module

Following the guide creation, on- and off-target activity prediction, the guide selection
step aims to filter out guides according to the trade-of higher on-target activity versus
lower off-target activity. However, some guides might be competing over the same target
sequence position of the genome. The latter might lead to experimental issues, hence we
need to make sure the selected guides do not compete on the the binding sites. However,
we also found out experiments where competing guides are allowed, especially the type of
experiments where they optimize for activation. Below, we introduce our guides selection
method for each use-case.

2.4.1 Guide selection without positional encoding

In the case where we allow competing guides, the selection problem becomes linear, and
it suffices to pick the guides that shows the highest on-target activity and the lowest
off-target activity. Considering two real numbers 0 < a, b < 1 representing respectively
on-target and off-target factors, we formulate the problem for n candidate guides as
follows:

2 PANCRISPR TOOLBOX 23

x∗ =arg max
x=[xk]k=1..n

xT (ason − bsoff)

subject to Σixi = p
(2)

Where x is a binary vector and each element xi encodes whether i
th guide is picked, son

and soff denote respectively the normalized on-target and off-target scores, and p is the
number of selected guides. a, b are initially set to 0.5 each, and can be fine-tuned when
running the pipeline. On an implementation level, we calculate the overall score for each
candidate guide as the linear formula ason − bsoff . The p best scoring guides are then
selected.

2.4.2 Guide selection with positional encoding

Adding the positional encoding in the objective function to avoid competing guides, in-
creases its complexity to be quadratic. Before we dive into the new selection problem, we
first present the conflict matrix M = [Mi,j]1≤i,j≤n for n candidate guides.

Mi,j =

{
1 if ith and jth guides are conflicting

0 else

M is symmetric by definition and Mi,i = 1 for every i in 1...n. In addition to the on-target
and off-target factors a, b we also introduce a conflict penalty factor λ. The matrix M is
created using the binding position information that was generated along with the guide
creation step.
The main objective function is then defined as the following

x∗ =arg max
x=[xk]k=1..n

xT (ason − bsoff)− λxTMx

subject to Σixi = p
(3)

where again x is a binary vector and each element xi encodes whether i
th guide is selected,

son and soff denote respectively the normalized on-target and off-target scores, and p is
the number of selected guides.
The term xTMx represents the sum of the pairwise conflicts between guides. Clearly
higher values of λ lead to less conflicting set of guides. However, λ should be carefully
tuned so that the term λxTMx will not be dominant in the objective function. The de-
fault value is set 0.5 that is equal to default values a, b.
In the following we present our attempts to solve the optimization problem.

Polynomial Constrained Boolean Optimization:
In order to solve the constrained optimization problem we used the python library qubovert9.
The library provides a solver for Polynomial Constrained Boolean Optimization which can
be used to solve the optimization problem. However, the solver considers the problem as

9https://github.com/jtiosue/qubovert

https://github.com/jtiosue/qubovert

3 DISCUSSION 24

combinatorial and brute force through all combinations, hence its complexity is exponen-
tial. We also noticed that from around 30 guides the solver starts to take considerable
amount of time, and by increasing it further the solver did not terminate running on an
average computer.

Greedy Approach:
Alternatively, and since the last approach suffers from exponential running time, we de-
cided to implement a greedy approach. Our solution considers the best scoring guide at
every position and discard conflicts, and is detailed in the Appendix, Algorithm 1.
The function DiscardConflicts, shown in 1, ensures that in every iteration all the guides
conflicting with the best selected guide are discarded from the pool. Although this ap-
proach doesn’t surely converge to the global maximum, it runs much faster, hence can be
useful in some cases.

3 Discussion

Overall, the on-target models showed promising results in performance and transferabil-
ity. The differences in performance, shown in (fig 5a, b) in Subsubsection 2.2.4, are an
indicator of the issues of the Spearman correlation related to our purpose, highlighted in
(2.2.3). For this reason, we have considered only the NDCG score for the second experi-
ment (Fig d).

The ranking results of the challengeR visualization toolkit [26] (fig. 5c, d, f, g) show
that the GBR model is the most promising one, however CrisprOn has very similar per-
formances and there is no statistical evidence in choosing the GBR. However, GBR, as
a shallow model, is more suitable for an explainablility analysis, which is left for future
investigations.

In Table 1, the p-values show that for 6 out of 7 cell lines the null hypotheses (the models
trained on a single cell line have better transferability), can be rejected with a confidence
level of 0.08. Given this, a model trained in Experiment 1 is likely to be the best when
used with unseen cell lines, since it uses all the cell lines available in our data set. There-
fore, it has been used to train the model that provides the efficiency predictions in the
final framework.
The p-values in Table 2 are extremely low. This shows that the shift of the two distribu-
tions in fig. 5h is statistically significant and that, on our data, the gene-wise selection
of the guides based on our model’s predictions chooses guides that are at least above the
average. This result is very encouraging because it gives a guarantee about the reliability
of the predictions made by our models. Moreover, the performances obtained in Experi-
ment 1 and Experiment 2 are, apart from A375, extremely close to each other. Hence our
models show a surprisingly good transferability to unseen cell lines.

The ranking of the off-target models was based on the comparison on the test sample,
allocated beforehand. To score the models, the results were compared to those of the
alignment based approaches to certify that the machine learning methods do indeed re-

4 CONCLUSION 25

veal concealed patterns.

In the period many models had been considered. Among those to be mentioned were
support vector machine, utilizing different positional encodings and biological features.
Those models performed significantly worse than those of the models offered in the work.
We conducted the tests to verify, the models had outperformed the non-machine learning
methods. This allows us to conclude, that the offered approaches could be used as an
alternative to the commonly used alignment methods. To check the models generalization
capacity, several approaches were used. For example guides occlusion during the training
and verifying on the unseen guides.

From a technical perspective, only a few requirements limit the framework’s usage. The
limiting factors are mainly runtime and storage. There must be at least enough space
for the genome and BLAST and bowtie databases on the disc. This can be a lot for
personal computers, becasue e.g. computation on the human genome requires more than
100GB disc space. At the same time, especially the BLAST runtime increases quickly
with the amount of guides. While only a few guides take seconds to align, hundreds of
guides can lead to a BLAST runtime of 30 minutes or more, decreasing the framework’s
practicability.

4 Conclusion

To conclude, in this project we developed a full-fledged, and flexibly configurable frame-
work for CRISPR guide design. While there are multiple approaches in the literature
on both off-target and on-target prediction, only a few known platforms combine this
with a guide creation and guide selection step to enable a complete pipeline from target
selection to the selection of the best guides. Thus, we implemented guide creation, guide
scoring and guide selection modules and streamlined them into a single pipeline. The
guide scoring module follows state-of-the-art approaches for on- and off-target prediction
by training and comparing several shallow and deep models in both cases. As often done
by similar programs [11], the guide selection module ranks guides based on their score.
But on top, the module offers selection algorithms to pick best guides without target
overlaps, too.

Besides its functionality, the framework stands out from other tools because of its archi-
tecture and coding practices, too. First of all, the project is open source and due to its
modularity, configurability, and clean code, the framework can easily be improved and
built upon by anyone. This does not only provide reproducibility, but also an excellent
experimental playground for researchers in this field, to test new models quickly. With the
inference pipeline completely connected, developers can adjust or exchange each module
separately, taking advantage of the framework’s great extensibility.

5 OUTLOOK 26

5 Outlook

Future work can focus on improving each separate module. First, by adjusting the guide
creation step one can allow more specific target selection possibilities. For example, the
module can offer targeting only certain PAMs, sub-regions of genes or sub-regions of ex-
ons or pre-filtering guides by optimal GC-content ranges. Second, testing more models
and training on additional data from other species [6, 9] or from more human CRISPR
screening databases [19, 17] can increase prediction model accuracy. Also, including other
types of features, such as epigenetic marks or gene expression data, might enhance the
model performance.

In addition, code improvements for robustness against exceptions and runtime reduction
would lead to a smoother user experience. Thus, each module should tolerate wrong user
input and missing files or parameters with more argument and sanity checks before execu-
tion. Adding a testing framework and automating unit and integration tests can support
in eliminating errors and uncovering edge cases. Optimizing the BLAST execution is the
most important task to reduce the overall runtime, because the alignment tool takes up
most of the pipeline’s execution time. To do so, BLAST could be run in parallel mode
and with more RAM, or a larger wordsize and smaller evalue could be chosen. Besides,
several pipeline steps, such as the off-target and on-target prediction are parallelizable.

While the current framework solely focuses on the guide design for CRISPR knockout
experiments, extensions could offer guide designs for other CRISPR experiments, too.
CRISPRi and CRISPRa experiments, for example, require different guide properties,
which need be addressed by adjusted prediction and selection modules.
Lastly, apart from improving the framework’s performance, adding visualization, a graph-
ical user interface, and explainability tools will be crucial for the tool to become helpful
to biologists in their daily work.

Bibliography

[1] Mazhar Adli. The CRISPR tool kit for genome editing and beyond. Nat Commun
9: 1911. 2018.

[2] Altschul et. al. “Basic local alignment search tool”. In: Journal of molecular biology
215.3 (1990). issn: 0022-2836. doi: 10.1016/S0022-2836(05)80360-2.

[3] Camacho et. al. “BLAST+: architecture and applications”. In: BMC bioinformatics
10 (2009), p. 421. doi: 10.1186/1471-2105-10-421.

[4] Guohui Chuai et al. “DeepCRISPR: optimized CRISPR guide RNA design by deep
learning”. In: Genome biology 19.1 (2018), pp. 1–18.

[5] John G Doench et al. “Optimized sgRNA design to maximize activity and minimize
off-target effects of CRISPR-Cas9”. In: Nature biotechnology 34.2 (2016), pp. 184–
191.

[6] Wataru Fujii et al. “Efficient generation of large-scale genome-modified mice using
gRNA and CAS9 endonuclease”. In: Nucleic Acids Research 41.20 (Aug. 2013),
e187–e187. issn: 0305-1048. doi: 10.1093/nar/gkt772. eprint: https://academic.
oup.com/nar/article-pdf/41/20/e187/25361999/gkt772.pdf. url: https:
//doi.org/10.1093/nar/gkt772.

[7] Maximilian Haeussler et al. “Evaluation of off-target and on-target scoring algo-
rithms and integration into the guide RNA selection tool CRISPOR”. In: Genome
biology 17.1 (2016), pp. 1–12.

[8] Traver Hart et al. “High-resolution CRISPR screens reveal fitness genes and genotype-
specific cancer liabilities”. In: Cell 163.6 (2015), pp. 1515–1526.

[9] Vivek Iyer et al. “Off-target mutations are rare in Cas9-modified mice”. In: Nature
methods 12.6 (June 2015), p. 479. issn: 1548-7091. doi: 10.1038/nmeth.3408. url:
https://doi.org/10.1038/nmeth.3408.

[10] Fuguo Jiang and Jennifer A. Doudna. “CRISPRâ€“Cas9 Structures and Mecha-
nisms”. In: Annual Review of Biophysics 46.1 (2017). PMID: 28375731, pp. 505–
529. doi: 10.1146/annurev-biophys-062215-010822. eprint: https://doi.org/
10.1146/annurev-biophys-062215-010822. url: https://doi.org/10.1146/
annurev-biophys-062215-010822.

[11] Kornel Labun et al. “CHOPCHOP v3: expanding the CRISPR web toolbox beyond
genome editing”. In: Nucleic Acids Research 47.W1 (May 2019), W171–W174. issn:
0305-1048. doi: 10.1093/nar/gkz365. eprint: https://academic.oup.com/nar/
article-pdf/47/W1/W171/28880274/gkz365.pdf. url: https://doi.org/10.
1093/nar/gkz365.

[12] Ben Langmead et al. “Ultrafast and memory-efficient alignment of short DNA se-
quences to the human genome”. In: Genome Biology 10.3 (Mar. 2009), R25. issn:
1474-760X. doi: 10.1186/gb-2009-10-3-r25. url: https://doi.org/10.1186/
gb-2009-10-3-r25.

[13] Jiecong Lin et al. “CRISPR-Net: A Recurrent Convolutional Network Quantifies
CRISPR Off-Target Activities with Mismatches and Indels”. In: Advanced science
7.13 (2020).

27

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1093/nar/gkt772
https://academic.oup.com/nar/article-pdf/41/20/e187/25361999/gkt772.pdf
https://academic.oup.com/nar/article-pdf/41/20/e187/25361999/gkt772.pdf
https://doi.org/10.1093/nar/gkt772
https://doi.org/10.1093/nar/gkt772
https://doi.org/10.1038/nmeth.3408
https://doi.org/10.1038/nmeth.3408
https://doi.org/10.1146/annurev-biophys-062215-010822
https://doi.org/10.1146/annurev-biophys-062215-010822
https://doi.org/10.1146/annurev-biophys-062215-010822
https://doi.org/10.1146/annurev-biophys-062215-010822
https://doi.org/10.1146/annurev-biophys-062215-010822
https://doi.org/10.1093/nar/gkz365
https://academic.oup.com/nar/article-pdf/47/W1/W171/28880274/gkz365.pdf
https://academic.oup.com/nar/article-pdf/47/W1/W171/28880274/gkz365.pdf
https://doi.org/10.1093/nar/gkz365
https://doi.org/10.1093/nar/gkz365
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25

[14] Guanqing Liu, Yong Zhang, and Tao Zhang. “Computational approaches for ef-
fective CRISPR guide RNA design and evaluation”. In: Computational and Struc-
tural Biotechnology Journal 18 (2020), pp. 35–44. issn: 2001-0370. doi: https:
//doi.org/10.1016/j.csbj.2019.11.006. url: https://www.sciencedirect.
com/science/article/pii/S2001037019303551.

[15] Ali Haisam Muhammad Rafid et al. “CRISPRpred (SEQ): a sequence-based method
for sgRNA on target activity prediction using traditional machine learning”. In:
BMC bioinformatics 21.1 (2020), pp. 1–13.

[16] Muhammad Naeem et al. “Latest Developed Strategies to Minimize the Off-Target
Effects in CRISPR-Cas-Mediated Genome Editing”. In: Cells 9 (2020).

[17] Benedikt Rauscher et al. “GenomeCRISPR - a database for high-throughput CRISPR/-
Cas9 screens”. In: Nucleic Acids Research 45.D1 (Oct. 2016), pp. D679–D686. issn:
0305-1048. doi: 10.1093/nar/gkw997. eprint: https://academic.oup.com/nar/
article-pdf/45/D1/D679/8847389/gkw997.pdf. url: https://doi.org/10.
1093/nar/gkw997.

[18] C Spearman. Tthe proof and measurement of association between two things, Amer-
ican J. 1904.

[19] Florian StÃ¶rtz and Peter Minary. “crisprSQL: a novel database platform for CRISPR/-
Cas off-target cleavage assays”. In: Nucleic Acids Research 49.D1 (Oct. 2020),
pp. D855–D861. issn: 0305-1048. doi: 10 . 1093 / nar / gkaa885. eprint: https :
//academic.oup.com/nar/article-pdf/49/D1/D855/35364360/gkaa885.pdf.
url: https://doi.org/10.1093/nar/gkaa885.

[20] Shengdar Q Tsai et al. “CIRCLE-seq: a highly sensitive in vitro screen for genome-
wide CRISPR-Cas9 nuclease off-targets”. en. In: Nat Methods 14.6 (May 2017),
pp. 607–614.

[21] Fathema Uddin, Charles M. Rudin, and Triparna Sen. “CRISPR Gene Therapy:
Applications, Limitations, and Implications for the Future”. In: Frontiers in On-
cology 10 (2020). issn: 2234-943X. doi: 10.3389/fonc.2020.01387. url: https:
//www.frontiersin.org/article/10.3389/fonc.2020.01387.

[22] Hamed Valizadegan et al. “Learning to Rank by Optimizing NDCG Measure”. In:
Jan. 2009, pp. 1883–1891.

[23] Daqi Wang, Chengdong Zhang, Bei Wang, et al. “Optimized CRISPR guide RNA
design for two high-fidelity Cas9 variants by deep learning”. In: Nature communi-
cations 10.4284 (2019).

[24] Haifeng Wang, Marie La Russa, and Lei S Qi. “CRISPR/Cas9 in genome editing
and beyond”. In: Annual review of biochemistry 85 (2016), pp. 227–264.

[25] Tim Wang et al. “Genetic screens in human cells using the CRISPR-Cas9 system”.
In: Science 343.6166 (2014), pp. 80–84.

[26] Manuel Wiesenfarth et al. “Methods and open-source toolkit for analyzing and
visualizing challenge results”. In: Scientific reports 11.1 (2021), pp. 1–15.

[27] Xi Xiang et al. “Enhancing CRISPR-Cas9 gRNA efficiency prediction by data in-
tegration and deep learning”. In: Nature communications 12.3238 (2021).

28

https://doi.org/https://doi.org/10.1016/j.csbj.2019.11.006
https://doi.org/https://doi.org/10.1016/j.csbj.2019.11.006
https://www.sciencedirect.com/science/article/pii/S2001037019303551
https://www.sciencedirect.com/science/article/pii/S2001037019303551
https://doi.org/10.1093/nar/gkw997
https://academic.oup.com/nar/article-pdf/45/D1/D679/8847389/gkw997.pdf
https://academic.oup.com/nar/article-pdf/45/D1/D679/8847389/gkw997.pdf
https://doi.org/10.1093/nar/gkw997
https://doi.org/10.1093/nar/gkw997
https://doi.org/10.1093/nar/gkaa885
https://academic.oup.com/nar/article-pdf/49/D1/D855/35364360/gkaa885.pdf
https://academic.oup.com/nar/article-pdf/49/D1/D855/35364360/gkaa885.pdf
https://doi.org/10.1093/nar/gkaa885
https://doi.org/10.3389/fonc.2020.01387
https://www.frontiersin.org/article/10.3389/fonc.2020.01387
https://www.frontiersin.org/article/10.3389/fonc.2020.01387

[28] Yuanyuan Xu and Zhanjun Li. “CRISPR-Cas systems: Overview, innovations and
applications in human disease research and gene therapy”. In: Computational and
Structural Biotechnology Journal 18 (2020), pp. 2401–2415. issn: 2001-0370. doi:
https : / / doi . org / 10 . 1016 / j . csbj . 2020 . 08 . 031. url: https : / / www .

sciencedirect.com/science/article/pii/S2001037020303846.

[29] Jifang Yan et al. “Benchmarking and integrating genome-wide CRISPR off-target
detection and prediction”. In: Nucleic Acids Research 48.20 (Nov. 2020), pp. 11370–
11379. issn: 0305-1048. doi: 10.1093/nar/gkaa930. eprint: https://academic.
oup.com/nar/article-pdf/48/20/11370/34368248/gkaa930.pdf. url: https:
//doi.org/10.1093/nar/gkaa930.

29

https://doi.org/https://doi.org/10.1016/j.csbj.2020.08.031
https://www.sciencedirect.com/science/article/pii/S2001037020303846
https://www.sciencedirect.com/science/article/pii/S2001037020303846
https://doi.org/10.1093/nar/gkaa930
https://academic.oup.com/nar/article-pdf/48/20/11370/34368248/gkaa930.pdf
https://academic.oup.com/nar/article-pdf/48/20/11370/34368248/gkaa930.pdf
https://doi.org/10.1093/nar/gkaa930
https://doi.org/10.1093/nar/gkaa930

Appendix

Algorithm 1: Greedy approach for guides selection

function GreedySelection
scores← a ∗ son − b ∗ soff
sorted← sort(scores)
p← number of selected guides
selectedGuides← []
for 0 ≤ i ≤ p do
guide← sorted[−1].guide
sorted← DiscardConflicts(guide, sorted)
selectedGuides← selectedGuides+ guide
end
return selectedGuides

ChallengeR Results

To rank our models trained on all cell lines based on their performance on each test set,
consisting of a single cell line, we utilize the challengeR visualization toolkit [26]. Figures
14 and 15 give visualizations on the rankings of the models. The models are ordered
based on a test-based ranking scheme. In particular, the ranking is made according to
the number of significant one-sided test results for each model where the significance test
used is Wilcoxon signed-rank test. In what follows, we give a brief description of each
graph that the challengeR toolbox outputs. As this only serves as an explanation of the
types of graphs, we have have only considered the setting of Experiment 1.

Figure 14 shows a box-plot representing descriptive statistics for the NDCG scores over
all test sets (the multi-coloured points) of each model considered.

Figure 15 shows a podium plot for ranking the considered models based on their NDCG
scores. Each model is colour coded and each coloured dot represents the NDCG score of
a test set for the respective model. The lines connect the NDCG scores corresponding
to the same test set but different models. The models are ranked from left to right on
the x-axis. For each test set the models are ranked and each coloured dot is assigned to
a podium based on the rank the model received for each test. The bars at the bottom
represent the frequency of each coloured dot assigned to the respective podium.

Figure 16 shows the outcomes of five different ranking strategies. Methods meanThen-
Rank and medianThenRank aggregate the metric values across test sets for each model
using the mean and median, respectively. The models are then ranked based on the ag-
gregation value. Methods rankThenMean and rankThenMedian first rank the test sets
based on their metric score for each model and then aggregate the ranks (using mean and
median, respectively) of test sets to obtain the final rank. The method testBased is the
one-sided Wilcoxon test as described above. This allows us to evaluate the robustness of
ranking across different ranking methods. Each coloured line represents a separate model.

30

Figure 14: Box-plot of descriptive statis-
tics for NDCG scores over all test sets of
each model considered.

Figure 15: Podium plot for ranking the
considered models based on their NDCG
scores.

Figure 16: Comparisons of outcomes of
five different ranking strategies.

For each ranking method listed on the x-axis, the height of line represents the model’s
corresponding rank. Horizontal lines indicate identical ranks for all methods.

31

Detailed timeline of the panCRISPR Toolbox project

Week(s) Module Detailed explanation

Week 1-4

Implementation

1. Researched implementation tools (pytorch,
pyscaffold, Pytorch lightning, Sklearn,
Hydra, Optuna)

2. Created project directory structure
3. Set up git repository and design git

workflow (Structure consists of using
Hydra config files to conveniently change
parameters in the python scripts. This
facilitates the model training step and
makes results reproducible.)

4. Tested LRZ architecture with Hydra
Submitted launcher plugin

On- and off-target

1. Get the basics of molecular biology
needed for the project

2. Read on CRISPR/Cas9 technology
3. Reviewed literature on on- and off-target

prediction
4. Reviewed existing tools for on- and

off-target prediction
5. Reviewed literature on datasets
6. Found data for on- and off-target pipeline

32

Week 5-9 On-target

1. Searched for state-of-the-art datasets of
on-target efficiency scores

2. Conducted data preprocessing.
3. Challenges:

(a) Many research papers using the
same data did not give adequate
details of their data preprocessing
steps, preventing us from
reproducing their experiments.

(b) In each dataset there were
differences in how on-target
efficiencies were calculated. This
required us to search the raw read
counts and compute the efficiency
scores manually for each dataset

4. Conducted featurization of sequence data
for shallow models and one-hot-encoding
of input for deep models

5. Split datasets into train, test, and validation
with respect to the genes (to train and test
on different sets of genes) and save to
repository to allow for reproducibility of
experiments.

6. Created data modules for shallow and
deep models

7. Created model classes for shallow and
deep models using Sklearn and Pytorch
lightning

8. Created configuration files for each data
module and model class to allow for
convenient parameter tuning

9. Set up logging tools for training models.
(We use Weights and Biases to track our
training and validation losses). Again, we
set up Hydra config files for logging and
callbacks (such as early stopping) so that
we do not have to hardcode in the Python
scripts.

10. Added class and config file for evaluation
of models. Research different evaluation
metrics to use.

11. Tested evaluation pipeline and obtain first
results on deep and shallow model
performance.

33

Week 5-9 Off-target

1. Developed the roadmap of the project
2. Studied bowtie and blast, their differences,

pros, cons and limitations.
3. Found sample guides from the literature

search
4. Performed queries to bowtie and BLAST.
5. Found the best configuration for BLAST

and bowtie
6. Created wrappers for bowtie and blast to

run them within our pipeline
7. Created configuration files for BLAST and

bowtie
8. Got output from alignment methods and

parsed it
9. Compared results from bowtie with

experimental data
10. Created guide generating pipeline
11. Set up the remote workspaces
12. Performed EDA
13. Created Querying tools for blastn to

retrieve the ots from the genome files
14. Created FTP download interface

34

Week 10-14 On-target

1. Optimized data preprocessing: decrease
preprocessing time and implement steps
to obtain cleaner data to improve model
performance

2. Improved model performance by using
Optuna sweeps for hyperparameter tuning
(Automatically sweeps through different
choices of parameters specified in config
file to find optimal hyperparameters)

3. Shallow models implemented so far:
Baseline linear regressor, support vector
regressor, gradient boosting machine

4. Deep models implemented so far:
a. baseline neural network (2 fully

connected hidden layers, ReLu
activation function, and batch
normalization for generalization)

b. CrisprOn model from literature
(CNN with ReLu activation function
and dropout for generalization).

5. Added more evaluation plots for better
visualization of results

6. Added additional guide RNA features from
Biopython library (GC content/ melting
temperature) to improve shallow and deep
model performance. Examine the
relevance of these features for both deep
and shallow models.

7. Compared performance of shallow models
using positional features of different
orders.

8. Investigated model transferability between
cell lines (train on one cell line and test on
another)

35

Week 10-14 Off-target

1. Solved issues with bowtie, improving its
results

2. Created OTS for BLAST and bowtie
3. Computed GC-content and melting

temperature, adding them to the list of
features

4. Split datasets into train and test and saved
to repository for reproducibility of
experiments.

5. Trained models on bowtie data
6. Created modularized classes of alignment

methods, added them to the off-target
module

7. Created Cross Validation pipeline
8. Created NGRAM and 6-bit encoders
9. Created data Preprocessing pipelines
10. Created deep convolutional models

estimate the off-target score of the guide
11. Created shallow models: svm, random

forest and others to estimate the off-target
score of the guide

12. Created Scoring methods
13. Integrated all submodules into inference

pipeline and creating modularized classes

36

Week 15-18 On-target

1. Compared different evaluation metrics
(Spearman correlation and NDCG)

2. Considered feature selection algorithm for
shallow models

3. Incorporated different ranking methods to
rank models. Visualize ranking results
using ChallengeR toolkit

4. Combined on-target and off-target
pipelines to create a full working pipeline
that takes a gene as input, generates a list
of relevant guide RNAs and predicts
efficiency and specificity scores for each
guide using the best on-target and
off-target models, respectively.

5. Implemented knapsack algorithm to rank
the guide RNAs taking into account both
efficiency and specificity scores as well as
guide RNA overlap (we do not want the
chosen top ranked guide RNAs to be
competing for the same position on the
DNA.)

6. Continued to improve performance of
models:

a. Combine datasets and train on
multiple cell lines

b. Augment training data to improve
generalization

Week 15-18 Guide selection

1. Created guide selection module
2. Merged on- and off-target scores
3. Researched possible ranking algorithms

with and without positional constraints
4. Implemented weighted sum, simple

knapsack algorithm, greedy algorithm,
quadratic optimization for guide selection

37

	Abstract
	Introduction
	Biological background
	Problem definition
	State of the art CRISPR tools
	Technical prerequisites
	Goals of the project

	panCRISPR Toolbox
	Guide Creation Module
	On-target Module
	Data
	Models
	Evaluation metrics
	Results

	Off-target Module
	Data
	Featurization
	Models
	Evaluation metrics

	Guide selection Module
	Guide selection without positional encoding
	Guide selection with positional encoding

	Discussion
	Conclusion
	Outlook
	Bibliography
	Appendix

