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CRISPR/Cas

GUIDE RNA

GENOME
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Guide design

efficiency

binding to desired site

with high probability (on-target)
specificity

unlikely to bind to other sites
in the genome (off-target)
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State-of-the-art guide design tools

On-target tools Off-target tools

- CRISPRoN - CRISPRoff

- CRISPRater - Cas-OFFinder

-  CRISPRpred - MIT

- DeepCpfl - FlashCry
methods: rule based, SVM, methods: search based,
deep models etc. scoring based, deep models

Combined tools
- CHOPCHOP
- DeepCRISPR
- uCRISPR
- Synthego

- trained on very specific data -
- bad documentation
- not all open source -

not reproducible, nor
generalizable
almost no combined ranking
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Project goal: panCRISPR tool

Guide creation

Find all possible
guides targeting
specified position in
genome
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Guide creation

1. user specifies genome
and genes
1. download genome file

.

1. identify targets (gene)

‘Guide creation

Find all possible
guides targeting
specified position in
genome

Q

On-target scoring

2. compute possible guides ! (20 base pairs)
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On-target scoring
@
Guide creation prediction model '—b Guide selection
Find all possibie Combine on-target
guides targeting and offtarget scores
specified position in and select ihe best
genome guides overall
- l I Passible Scored &
d d f
Q quides Off-target scoring } guides g@
@ ®
Alignment based of-target o

N candidates
methods prediction model

BLAST, bowtie

Genomic DNA RE PAM

Problem: determine how well a guide RNA bounds to its target (efficiency) OO G XDO

chNA/ o C ‘ \

e In-vitro approaches use complex experiments which tend to be expensive A
e little is known on what makes a guide efficient

|:> predict the efficiency of the guides with a learning algorithm

processed
data

raw data

Final model for
inference

A

—>  models training models selection

models architectures
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Data

Challenges: — Few open source data-sets available
— Data comes from different experiments and is difficult to combine

We used the data-sets coming from 3 different experiments (7 cell lines in total)

b contains sequences, gene and initial and final read counts

\

represent the abundance of the correspondent gRNA

log2 fold change
(LFC)
transformation

raw read normalization

filtering | gene-wise median rank based efficiency

counts normalization normalization score

A A

Y

| ( read count finq ) comparability comparability across
089

read count;pisia across genes experiments
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Models

Shallow model: tree based Gradient Boosting Regressor (GBR)

Features generated from the sequences:

e positional features: occurrence in the sequence of n adjacent nucleotides (G or AC)

e gap features: how often 2 nucleotides appear at a certain distance (A

e Dbiological features: GC content and gRNA melting temperature, defined key features in [2]

[2] Xi Xiang et al. “Enhancing CRISPR-Cas9 gRNA efficiency prediction by data in-
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Deep models TI_ITI

INPUT: one-hot encoding of the sequence (1D image with 4 channels)

e Dbaseline_nn: fully connected network with 2 hidden layers and leaky ReLu activations
e CRISPRon: convolutional layers with filters of 3 diff sizes, output flattened and fed into baseline_nn,
based on the architecture presented in [2].

biological features @ fi
ey Al A~ .
‘ 3 “ 28 14| 1400‘\’
e T | . \E\ :
g o™ — 100 g
RciEs | : 100 _
OB ‘ 70 filters ~ : | | oRNA effici
0 O : =2 = i‘"—«‘.x,‘ . | ke — gRNA efficiency
S F ] | - -
S B 5 . R 26 13}]... 910 X - E} ®
E. 8 “_»/”’ ki = T a8 i \V ‘.
|5 § H 40 filters 0 U A &
NOE B N ol e W
s o B 24 2T [ 280l
ACGT - AL o
40 Image taken from [2]

one-hot encoding
Convoluted Pooled Flattened Fully connected layers

H H [2] Xi Xiang et al. “Enhancing CRISPR-Cas9 gRNA efficiency prediction by data in-
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Training strategy TI-ITI

gRNA
eff. data :
Split gene-
wise
_ Test l
Train 60% 0
0 Val 20% 20% Val + test have gRNAs

from unseen genes

Evaluate models:
e \What evaluation metric to use?

Train and validate models:
e Hyperparameter tuning (MSE)
e Prevent overfitting (Early stopping)

13
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Evaluation metric

voce, - PG .y
1D Gene 1
effi
DCG,
Z logs(i+ 1) Gene 2
effz

/ Consider p most efficient guides

<

L CCAAGCTATATCCTGTGCGC
[ CCTTCTTAGCTAAACAGCCA

TUTI

Rank gene-
wise

[ CACCTTCGAGCTGCTGCGCG

TGGACTTCCAGCTACGGCGC
CAAGAGAAAGACCACGAGCA

—
CGTGGCTATTTGGCATACAC NDCGl

GACATGGTATTGCAGTAGAC AVg over

all genes

CTTCCAGGGCTCCTACAAGG
CAGTGGTCTCAGTGTGGAGC— N D(C' Gy
TCACGGAAGTTCTTCTGCAA

. CAAACAAACCTTCTGAACGG

J Penalize model for ranking highly efficient guides poorly
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Results

Experiment 1

HCT116

GBM

All cell lines

hl60

Train on
=

All cell lines

Test on

A 4

1 cell line
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Results: Experiment 1

Average gene-wise NDCG score in experiment 1

0.7
0.6 1
0.5
0.4
0.3 1
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0.1 1
0.0-
hl60 kbm7 HCT116 Hela GBM RPE1

Test Set

mmm CRISPRon
= GBR
mmm baseline_nn

3

algorithm

== CRISPRon
2

— GBR

== baseline_nn
1

A375

Ranking method

o

wn

Rank

NDCG Score
=

w

N

—
rankThenMean
testBased

meanThenRank
medianThenRank
rankThenMedian

o

Line graph created using ChallengeR toolbox [1]

[1] Wiesenfarth, M., Reinke, A., Landman, B.A., Eisenmann, M., Aguilera Saiz, L., Cardoso, M.J., Maier-Hein, 16
CRISPR Toolbox I Final Presentation | 25.02.2022 L. and Kopp-Schneider, A. Methods and open-source toolkit for analyzing and visualizing challenge results.



Results: Experiment 1

Do our models detect the best guides?

Distribution over ground truth of the top 1 guides on GBM

1.0 1

& g <
kS o @

Normalized efficiency score

=y
N

0.04

—— Top predictions
—— Remaining guides

T

|

|

Is the distributional shift significant?

P-values for Wilcoxon test:

T
GBR

Trained models

model h160 kbm7 HCT116 HeLa GBM RPE1 A375H
CRISPROn | 9.32E-86 | 5.59E-191 | 4.42E-125 | 4.52E-159 | 2.23E-218 | 1.65E-221 0.0
GBR 1.74E-89 | 1.44E-197 | 1.68E-140 | 4.71E-173 | 3.53E-218 | 4.68E-228 0.0
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Results

Experiment 2

HCT116

GBM

n-1 cell lines

hl60

Leave one out

—_

Train on

Teston

A 4

Left out
cell line
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Results: Experiment 2

Average gene-wise NDCG score in experiment 2

- CRISPRon
- GBR

a7

0.6

a5

NDCG Score
o
=

03

0.2

01

hie0 kbm7 HCT116 Hela GBM RPE1 A3T5
Test Set

algorithm
=== CRISPRon
- GBR

Rank

meanThenRank
medianThenRank
rankThenMean
rankThenMedian
testBased

Ranking method

Line graph created using ChallengeR toolbox [1]

Does combining cell lines give better transferability?

P-values for Wilcoxon test:
model HCTll(i| HeLa | GBM | RPE1 | hl60 | kbm7 ] A375

GBR | 0.03125 | 0.03125 | 0.078125 | 0.078125 | 0.03125 | 0.078125 | 0.78125
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Wiesenfarth, M., Reinke, A., Landman, B.A., Eisenmann, M., Aguilera Saiz, L.,
Cardoso, M.J., Maier-Hein, L. and Kopp-Schneider, A. Methods and open-source
toolkit for analyzing and visualizing challenge results. [1]
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TUTI

on-target scoring

©
Guide creation prediction model '—» Guide selection

Find all possible Combine on-target

guides targeting and ofHarget scores

specified position in and select the best
guides overall.

Off-target module

genome F'os_sible Scored B
guides Off-target scorin quides =%
Q 9 9 @¢ %{l
L Alignment based c::_(;iii(;gte&:s | |
Problem: determine how many off-targets a guide RNA can have (specificity)
‘ Predict off-targets and score them
Guide RNAs
Alignment based tools
.| Feature .| Prediction
BLAST Creation Models
Bowtie
Off-target
candidates Features Off-target score
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Data

In vitro data [4]

Guide (true off-targets)

RNAs

Cross-checking
Labeling

[4] Jifang Yan et al. “Benchmarking and integrating genome-wide CRISPR off-target detection and prediction”. In: Nucleic Acids Research 48.20 (Nov. 2020), pp. 11370—-
11379.

_ ) 21
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Bowtie

gRNA GAGTCCGAGCAGAAGAAGAAGGG

oTs GAGTCCTAGCAGGAGAAGAAGAG

e End-to-end alignment (whole gRNA sequence)
e Finds OTS with up to 3 mismatches
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BLAST

1. input query and database

2. find small words and extend them

> i -

3. keep alignments with high similarity score

e Local alignment tool (some part of gRNA)
e Doesn’t have a restriction on mismatches
e Finds alignments based on evolutionary similarity
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Features
gRNA GAGTCCGAGCAGAAGAAGAAGGG
oTS GAGTCCTAGCAGGAGAAGAAGAG

GC-content AGT A AGAAGAAGCAA

Melting temperature temperature to cause double strand break
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(23 ntlong
sequence )

(23 ntlong
sequence)

(% of G, C)

(in °C)

TUTI

Bowtie, BLAST

Biological features
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Encoding

gRNA AG¢ET ¢ A
oTS A GG ¥ C A
A 0 0 0
T 0|0 00
0 0 00
c 0 0 0
0 00 00
00 0 0({0|0]O

Figure 10: 6-bit encoding scheme

Image from [5] Jiecong Lin et al. “CRISPR-Net: A Recurrent Convolutional Network Quantifies CRISPR Off-Target Activities with Mismatches and Indels”. In: Advanced science 7.13 (2020).
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Shallow models: random forest

EEEEEEEEEEEEEEEEEEEEEEEEEEEE

RESULT-1 RESULT-2
I—ol MAJORITY VOTING / AVERAGING |
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Models: deep convolutional nn and random forest

1g
8 6 —
S 2, |
~ *-———'.':1‘l N ".I'Js L—f—;--f{ —p
2 - |
— 4 / 512
256
128 256
1
4
Melting
Temperature, GC 1 > [
content of the
guide and OTS
1024 1024 1024
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Training strategy

Validation Training
Fold Fold
60/20%
1st — Performance ,
©»
% 2nd :. — Performance,
s
3
@ 3rd . — Performances |- Pperformance
9 5
© = % Z Performance,
o 4th ._—> Performance 4 =
Q
5th .—> Performance g

Each split puts a single guide and associated ots into
the validation fold and train on the remaining

Test on different guides - test
generalization
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Evaluation
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deep conv random forest
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TUTI

Model ensemble: combine models by weightening the
results
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Results: TUTI

Occlusion of the nucleotides asserts that end proximal regions have a direct effect on the
probability of being an OTS

10 True 10
08 08
-06 -06
(=]
-04 -04
02 Ioz
(A P 00 P (] i 00
”"”"“““"““‘Qﬂﬁﬂ*ﬂﬁ"ﬂﬁﬁﬂﬁ SANMITNOROIN QAN YEnIARAN
nucleotide position nucleotide position
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Guide selection module TLTI

Guide
Creation
Module

On-target
Module

Off-target
Module

- Sequences - On-target Score - Off-target Score
- Binding position

GOAL: Select guides with higher On-target activity and lower Off-target activity
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Guide selection module TUTI

Conflicting Guides Guide 1

rarget Seo{‘ ‘ Overlap ‘
CGCCTCCAAGTCGCCGAGGCCTCCAAGTCGECC

\ —

Guide 1 and Guide 2 will compete over the same binding sub-sequence

Only one of them could eventually bind to the target sequence
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Guide selection module

Case 1: Allow overlaps

Type of experiments:
Lentiviral vectors based experiments where on average only one guide is delivered
into the cell.

Approach:

1. SetON and OFF default (0.5, 0.5)
2. Compute overall score as weighted sum:

SCORE = ON * SCOREoN + OFF x SCOREoFF

1. Select the P highest scoring guides

CRISPR Toolbox | Final Presentation | 25.02.2022
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Guide selection module TUT

Case 2: Penalize overlaps

Type of experiments:
Multiplexed experiments where multiple guides are delivered into cells.

Objective function:

t* =arg max z! * SCORE — \z' Mz

r=[Tk|k=1..n

subject to X;x; = p

- -th rfh . - .
M = [Mi,j]lgi,jc_:n M,;; = {; lfl ¢ and j** guides are conflicting P Number of selected guides
else

We used “qubovert™* python package for Polynomial Constrained Boolean Optimization
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Guide selection module

Case 2: Penalize overlaps

Greedy approach:

1. Set ON and OFF, default (0.5, 0.5)
2. Compute overall score for every guide
3. Repeat p times:
1. Select the highest scoring guide
2. discard all conflicting guides from the pool

e Fast approach
e Discard all conflicts in the selected guides
e Provide sub-optimal solution

CRISPR Toolbox | Final Presentation | 25.02.2022
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Framework output

gene_id

ENSG00000186827
ENSG00000186827
ENSG00000186827
ENSG00000186827
ENSG00000186827

start
1211767
1211770
1211779
IPARVAE
1211722

sequence
TCCTGCTGGCCCTGTACCTG
TGCTGGCCCTGTACCTGCTC
TGTACCTGCTCCGGAGGGAC
TGTGGGCATCGGGGGGCAGC
CGGGGGGCAGCCTCTGGTCC

combined score
0.761
0.755
0.691
0.601
0.583
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Conclusion TUTI

Our solution provides a complete framework for panCRISPR experiments:
o Novelty: On and OFF target assessment in one end to end solution

e Our models performances (On/Off -target) show comparable performances to the state of the art.
e We have introduced new evaluation metrics that haven’t been used in the literature.
e Our guide selection module covers different types of experiments.

e We have produced clean, modular, and extensible code as a good basis for further improvement.
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Outlook and Discussion TUT

e [Further performance improvement can be brought by adding more datasets (further cell lines, genes,
)

e Potential improvement with better and more complex featurization

e Runtime of our toolkit can be improved.
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TUTI
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