

CRISPR Toolbox - a deep learning approach to improve CRISPR/Cas experiments

TUM Data Innovation Lab

25. February 2022

Team: Daria Yasafova, Dennis Gankin, Yevhenii Sharapov, Chelsea Bright, Firas Driss, Francesco Campi

Mentors: Dr. Lisa Barros de Andrade e Sousa, Dr. Erinc Merdivan Project Lead: Dr. Ricardo Acevedo Supervision: Prof. Massimo Fornasier

Agenda

Biological background

panCRISPR tool and its modules

Discussion and outlook

CRISPR Toolbox | Final Presentation | 25.02.2022 | TUM

DNA (Deoxyribonucleic Acid)

CRISPR/Cas

Guide design

efficiency

binding to desired site with high probability (on-target)

specificity

unlikely to bind to other sites in the genome (off-target)

State-of-the-art guide design tools

On-target tools	Off-target tools	Combined tools			
- CRISPRon - CRISPRater	- CRISPRoff - Cas-OFFinder	- CHOPCHOP - DeepCRISPR			
CRISPRpredDeepCpf1	- MIT - FlashCry	- uCRISPR - Synthego			
methods: rule based, SVM, deep models etc.	methods: search based, scoring based, deep models				

- trained on very specific data
- bad documentation
- not all open source

- not reproducible, nor generalizable
- almost no combined ranking

Project goal: panCRISPR tool

- 1. user specifies genome and genes
- 1. download genome file

- 1. identify targets (gene)
- 2. compute possible guides | (20 base pairs)

On-target module

Problem: determine how well a guide RNA bounds to its target (efficiency)

• In-vitro approaches use complex experiments which tend to be expensive

Guide creation

genome

Find all possible

quides targeting

specified position in

Q

Possible

auides

• little is known on what makes a guide efficient

predict the efficiency of the guides with a learning algorithm

On-target scoring

Off-target scoring

Alignment based

methods

BLAST, bowtie

prediction model

off-targe

candidates

Ø

Ċ

prediction model 🔶

Guide selection

Scored

auides

Combine on-target

and off-target scores

and select the best

<mark>ال</mark>ا

guides overall.

CRISPR Toolbox | Final Presentation | 25.02.2022

Data

Challenges:

- \rightarrow Few open source data-sets available
- \rightarrow Data comes from different experiments and is difficult to combine

We used the data-sets coming from 3 different experiments (7 cell lines in total)

contains sequences, gene and initial and final read counts

represent the abundance of the correspondent gRNA

Shallow model: tree based Gradient Boosting Regressor (GBR)

Features generated from the sequences:

- positional features: occurrence in the sequence of n adjacent nucleotides (G or AC)
- <u>gap features</u>: how often 2 nucleotides appear at a certain distance (A _ _ _ _ C)
- <u>biological features</u>: GC content and gRNA melting temperature, defined key features in [2]

Deep models

INPUT: one-hot encoding of the sequence (1D image with 4 channels)

- baseline_nn: fully connected network with 2 hidden layers and leaky ReLu activations
- CRISPRon: convolutional layers with filters of 3 diff sizes, output flattened and fed into baseline_nn, based on the architecture presented in [2].

CRISPR Toolbox | Final Presentation | 25.02.2022

[2] Xi Xiang et al. "Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning". In: Nature communications 12.3238 (2021)

• Prevent overfitting (Early stopping)

Evaluation metric

Consider p most efficient guides

Penalize model for ranking highly efficient guides poorly

Results: Experiment 1

Line graph created using ChallengeR toolbox [1]

Results: Experiment 1

Do our models detect the best guides?

P-values for Wilcoxon test:

model	hl60	kbm7	HCT116	HeLa	GBM	RPE1	A375
CRISPROn	9.32E-86	5.59E-191	4.42E-125	4.52E-159	2.23E-218	1.65E-221	0.0
GBR	1.74E-89	1.44E-197	1.68E-140	4.71E-173	3.53E-218	4.68E-228	0.0

Results

Results: Experiment 2

Does combining cell lines give better transferability?

P-values for Wilcoxon test:

model	HCT116	HeLa	GBM	RPE1	hl60	kbm7	A375
GBR	0.03125	0.03125	0.078125	0.078125	0.03125	0.078125	0.78125

On-target scoring Ø Off-target module prediction model Guide creation Guide selection Find all possible Combine on-target quides targeting and off-target scores specified position in and select the best guides overall. genome Possible Scored S. quides quides Off-target scoring Ċ off-target Alignment based candidates methods prediction model BLAST, bowtie

Problem: determine how many off-targets a guide RNA can have (specificity)

Predict off-targets and score them

Guide RNAs

[4] Jifang Yan et al. "Benchmarking and integrating genome-wide CRISPR off-target detection and prediction". In: Nucleic Acids Research 48.20 (Nov. 2020), pp. 11370–11379.

- End-to-end alignment (whole gRNA sequence)
- Finds OTS with up to 3 mismatches

Bowtie

gRNA

OTS

- Local alignment tool (some part of gRNA)
- Doesn't have a restriction on mismatches
- Finds alignments based on evolutionary similarity

Features

gRNA	G	(23 nt long sequence)	ļ	Bowtie BLAST	
OTS	G A G T C C <mark>T</mark> A G C A G <mark>G</mark> A G A A G A A G <mark>A</mark> G	(23 nt long sequence)	J		
GC-content	G	(% of G, C)			
Melting temperature	temperature to cause double strand break	(in °C)	ſ	Biological features	

Encoding

	A	G	С	Т	•	•	С	A	G	G
	A	С	G	Т	•	•	С	A	G	G
Α	1	0	0	0	•	•	0	1	0	0
т	0	0	0	1	•	•	0	0	0	0
G	0	1	1	0	•	•	0	0	1	1
С	0	1	1	0	•	•	1	0	0	0
	0	1	0	0	•	•	0	0	0	0
	0	0	1	0	•		0	0	0	0

gRNA

OTS

Figure 10: 6-bit encoding scheme

Image from [5] Jiecong Lin et al. "CRISPR-Net: A Recurrent Convolutional Network Quantifies CRISPR Off-Target Activities with Mismatches and Indels". In: Advanced science 7.13 (2020).

Shallow models: random forest

Models: deep convolutional nn and random forest

Test on different guides - test generalization

Each split puts a single guide and associated ots into the validation fold and train on the remaining

Evaluation

Test

random forest

- 300

deep conv

 $F_1 = 2 * \frac{Precision * Recall}{Precision + Recall}$

ТШ

Model ensemble: combine models by weightening the results Random ConvNet Forest 1-α α Ensemble

Results:

Occlusion of the nucleotides asserts that end proximal regions have a direct effect on the probability of being an OTS

Guide selection module

GOAL: Select guides with higher On-target activity and lower Off-target activity CRISPR Toolbox | Final Presentation | 25.02.2022

Guide 1 and Guide 2 will compete over the same binding sub-sequence

Only one of them could eventually bind to the target sequence

Guide selection module

Case 1: Allow overlaps

Type of experiments:

Lentiviral vectors based experiments where on average only one guide is delivered into the cell.

Approach:

- 1. Set ON and OFF default (0.5, 0.5)
- 2. Compute overall score as weighted sum:

 $SCORE = ON * SCORE_{ON} + OFF * SCORE_{OFF}$

1. Select the P highest scoring guides

Guide selection module

Case 2: Penalize overlaps

Type of experiments:

Multiplexed experiments where multiple guides are delivered into cells.

Objective function:

$$x^* = \arg \max_{x = [x_k]_{k=1..n}} x^T * SCORE - \lambda x^T M x$$

subject to $\Sigma_i x_i = p$

$$M = [M_{i,j}]_{1 \le i,j \le n} \quad M_{i,j} = \begin{cases} 1 & \text{if } i^{th} \text{ and } j^{th} \text{ guides are conflicting} \\ 0 & \text{else} \end{cases} \quad P \quad \text{Number of selected guides}$$

We used "qubovert"** python package for Polynomial Constrained Boolean Optimization

Guide selection module Case 2: Penalize overlaps

Greedy approach:

- 1. Set ON and OFF, default (0.5, 0.5)
- 2. Compute overall score for every guide
- 3. Repeat p times:
 - 1. Select the highest scoring guide
 - 2. discard all conflicting guides from the pool

- Fast approach
- Discard all conflicts in the selected guides
- Provide sub-optimal solution

Framework output

	gene_id	start	sequence	combined score
0	ENSG00000186827	1211767	TCCTGCTGGCCCTGTACCTG	0.761
1	ENSG00000186827	1211770	TGCTGGCCCTGTACCTGCTC	0.755
2	ENSG00000186827	1211779	TGTACCTGCTCCGGAGGGAC	0.691
3	ENSG00000186827	1211713	TGTGGGCATCGGGGGGGCAGC	0.601
4	ENSG00000186827	1211722	CGGGGGGCAGCCTCTGGTCC	0.583

Conclusion

- Our solution provides a complete framework for panCRISPR experiments:
 - Novelty: On and OFF target assessment in one end to end solution
- Our models performances (On/Off -target) show comparable performances to the state of the art.
- We have introduced new evaluation metrics that haven't been used in the literature.
- Our guide selection module covers different types of experiments.
- We have produced clean, modular, and extensible code as a good basis for further improvement.

Outlook and Discussion

- Further performance improvement can be brought by adding more datasets (further cell lines, genes, ...)
- Potential improvement with better and more complex featurization

• Runtime of our toolkit can be improved.

References

[1] Wiesenfarth, M., Reinke, A., Landman, B.A., Eisenmann, M., Aguilera Saiz, L., Cardoso, M.J., Maier-Hein, L. and Kopp-Schneider, A. Methods and open-source toolkit for analyzing and visualizing challenge results. Sci Rep 11, 2369 (2021). <u>https://doi.org/10.1038/s41598-021-82017-6</u>

[2] Xi Xiang et al. "Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning". In: Nature communications 12.3238 (2021)

[3] Guanqing Liu, Yong Zhang, Tao Zhang, Computational approaches for effective CRISPR guide RNA design and evaluation, 2020 https://www.sciencedirect.com/science/article/pii/S2001037019303551

[4]

[5] Jiecong Lin et al. "CRISPR-Net: A Recurrent Convolutional Network Quantifies CRISPR Off-Target Activities with Mismatches and Indels". In: Advanced science 7.13 (2020).