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Abstract

The importance of taking care of your well-being is becoming increasingly prominent in
society. As a result, we have seen the health and fitness industry growing continuously
in recent years. Corporations have also started to realize the importance of healthy
employees to an efficient and successful running of their company. Wellabe is a start-up
which is helping their customer companies achieve better overall health of their workforce
through on-site check-ups, modern video consultation and digital prevention programs.
The individualized digital programs are based on the data collected during the health
check-ups. Defining health classes is necessary to determine for whom which program
is suited best. The goal of this project is to do this based on Wellabe’s dataset of the
check-ups. Due to the evident privacy concerns that come with medical data the original
dataset could not be shared with us. Instead, we got the unique opportunity to work with
a synthetically generated version of the dataset. This not only allowed us to explore what
health classes we could define but also the potential and limitations of using synthetically
generated data to find patterns in the original data.

We started our project by conducting a detailed analysis of the dataset to get a comprehen-
sive understanding of the underlying structures in the data and the medical significance of
outliers. The data is pre-processed based on the gained domain knowledge. A score which
was given by a doctor as a judgement of one’s health status and the difference between
one’s biological and chronological age are used as indicators of general health. The bio-
logical age is estimated based on the chronological age in the dataset. The doctor’s score
and the biological age are predicted using Multiple Linear Regression (MLR), General-
ized Additive Models (GAM) and Multivariate Adaptive Regression Splines (MARS). The
best prediction was achieved using GAMs for biological age and MARS for the doctor’s
score. Significantly better predictions were achieved using the original data rather than
the synthetically generated one showing that there are clear limitations in using synthetic
data.

To define health classes, the dataset was clustered using K-means, Density Clustering and
Hierarchical Clustering. Features are selected based on the findings in our medical anal-
ysis and how dominant they were in the previous predictions. Out of the three explored
clustering methods only Hierarchical Clustering was able to define valuable health classes.
These resulting classes are not only able to separate the healthy from the unhealthy peo-
ple but also can identify people with similar health issues such as fatty liver disease and
obesity. These clusters were additionally able to show that the common patterns repli-
cated in the synthetic data were sufficient enough for the successful clustering of medically
relevant groups. The hierarchical nature of the clustering also provides opportunities to
divide and explore the classes in further detail.
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1 Introduction

1.1 Problem Definition and Goals of the Project

Wellabe is a start-up which enables employees of their customer’s companies to better un-
derstand their health and actively improve it with individualized recommendations made
possible through health check-ups. These check-ups are conducted at their clients’ com-
panies and consist of taking heart measurements, analysing a few blood drops, measuring
body composition values through a smart scale, taking controlled measurements of a few
of breaths and testing the extent of one’s mobility. All measured data is examined by
health experts who then give individualized scores based on the state of one’s health.
All this information acquired makes up Wellabe’s unique health dataset which has much
potential for exciting data explorations and analysis.

Wellabe offers tailored prevention plans and programs through their mobile app. To
determine for whom which program or plan is best suited, health classes need to be
defined. This is where we came in. Our main goal for this project is to find a way
to define relevant health classes, which have the potential to improve the individualized
recommendations. These are the four main steps we came up with to achieve this goal:

1. Data Understanding and Handling

(a) Detailed analysis of the dataset to give a comprehensive understanding of the
underlying structures in the data and the medical significance of outliers

(b) Preprocessing based on domain knowledge

2. Finding Indicators of General Health

(a) Identify potential values that can indicate one’s overall health

(b) Predict the indicators in the given dataset

(c) Select the features which are most dominant in the prediction for the final
clustering

3. Defining health classes

(a) Use unsupervised clustering to find clusters in the dataset

(b) Conduct a detailed medical analysis of the clusters

Due to the exploratory nature of this project, we had the freedom to define two relevant
side objectives to investigate in more detail:

1. Age Prediction
Once we decided to use the difference between biological and chronological age as an
indicator of general health we were told by our partner company Wellabe that they
would like us to explore biological age prediction in more detail as it could be of
great value to them. This is due to the fact that they display a calculated biological
age to their users in the mobile app. Hence, we decided to make the prediction of
the biological age a separate side objective of this project.
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2. Limitations and potential of synthetically generated data
As clinical data is very personal, sharing it freely is not an option without guaranteed
anonymity. The use of generated synthetic data to deal with problems as such is of
very recent research. Hence not much is known about how it affects data insights
compared to the ones made from the original data. With this unique opportunity,
it only made sense to spend some time looking at how well different algorithms
performed on the real data versus the synthetic data.

1.2 State of the Art Approaches and Algorithms

1.2.1 Synthetically Generated Medical Data

Working with medical dataset comes with many challenges. Two major ones being security
and outlier handling. One’s medical data is something very personal and thus should at
no cost be given to third parties. Synthetically generating data which contains none of the
individual’s information but yet maintains all the underlying structures would solve this
security issue. However, achieving this is far from straightforward but there is extensive
ongoing research into improving synthetic data generation. Loong et al. have concluded
that synthetic data might be best suited for preliminary data analysis purposes for now
[9]. The challenge with outliers in medical data is that they can have many reasons
including measurement errors and illnesses. This can be a problem as one might want to
keep the data of people with naturally abnormal values but remove all the errors caused
by measurement. Differentiating between those can become a critical issue. Using domain
knowledge to define limits is a tedious but safe way to ensure only extremely improbable
values are removed.

1.2.2 Biological Age

Ageing has long been known to be correlated to general health. In 1996, Chodzko-Zajko [3]
published a paper on the inevitability of the decline of health markers with increasing age.
The rate of decline of those health markers differs from person to person. One’s current
state is often referred to as one’s biological age by scientists [13]. One can estimate the
biological age by predicting the chronological age from a large enough dataset of mostly
healthy subjects and relevant biomarkers. This has mostly been done using Multiple
Linear Regression Models due to the often linear decline of health markers with age [5].

1.2.3 Clustering Medical Data

Methods such as clustering are frequently used to reveal hidden structures and groups in
large datasets. For clinical and health dataset, clustering helps to group the data and
characterize differences between objects. Hirano et al. [7] tried hierarchical clustering
on clinical databases and the best clusters were obtained using Ward’s method where
the clinically reasonable attributes were selected. Some other clustering methods such as
kmeans were also shown to work on some medical dataset [8].
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2 Data Understanding and Handling

The given dataset contains data points from fifty thousands different subjects where 57.5%
are male and 42.5% are female and it has 70 features. The features in the dataset can
be put into four main categories of numerical bio-markers with some additional features
like some indicators of user’s behavior such as ’ate recently’ and the review score, which
is a integer score given by a doctor defining the health status of a person. The four
main categories are Cardiovascular System, Metabolism, Respiratory System and Body
Composition. The Cardiovascular system is a system of organs that permits blood to
circulate and transport nutrients through the body. Metabolism describes all the chemical
reactions inside the body required to make the organs function properly. The Respiratory
System consists of a group of organs responsible for absorbing oxygen from the inhaled air
and expelling carbon dioxide through the exhaled air. The Body Composition features
contain general body information such as height and weight and others were used to
describe the percentages of fat, bone, water and muscle in human bodies.

Features of these main categories are shown in Table 1.

Cardiovascular System Metabolism Respiratory System Body Composition
Systolic Blood Pressure Blood Sugar Oxygen Saturation Body Weight
Diastolic Blood Pressure Triglycerides Forced Vital Capacity Visceral Fat Level

Pulse Pressure Cholesterol
Forced Expiratory

Volume in 1 Second
Daily Caloric Needs

Mean Arterial Pressure High-density lipoproteins Peak Expiratory Flow Muscle Mass

Ankle-Brachial Index Alanine transaminase
Forced Expiratory Flow

at 25% of the Lung
Volume

Body Fat Mass

Resting Heart Rate Aspartate transaminase Body Fat Percentage
Gamma-glutamyl

transferase
Body Water Percentage

Creatine Bone Mineral Mass
Fat liver index Body Height

Table 1: List of features of four main parts of data-set

2.1 Statistical Data Exploration

We started by familiarizing ourselves with the medical meaning behind the values of
each feature, finding their normal ranges and finding diseases which are related to values
outside of the normal. The definition of features and their normal ranges are shown in
table 4 and 5.

Next, we started by looking at the descriptive statistics of the dataset such as mean,
median and standard deviation of each feature. This helped us to identify inconsistencies
in the dataset. For example, all of the features in the dataset should have positive values.
By looking at the minimum value of each feature, we can identify if there exist any
negative value.

Afterwards, we looked at the distribution of features to find out which features were nor-
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mally distributed and which were not. For this reason, we used histograms of distribution
of features and normal probability plots. Normal probability plot indicates normal distri-
bution if the distribution of data follows closely the diagonal line. Then, we investigated
the relationship between features to find out if there exist a linear relationship between
features. To do this, we looked at the scatter plot of continuous features to gain a first
impression. Since scatter plot does not indicate the strength of relationship amongst fea-
tures, we also used sample Pearson correlation coefficients (rxy) to find out which features
are highly correlated. Sample Pearson correlation coefficient is calculated using:

rxy =
sxy
sx · sy

(1)

where sxy is sample covariance and sx and sy are sample standard deviations. Sample
Pearson correlation coefficient varies between [−1,+1]. -1 indicates perfect negative linear
correlation, +1 indicates perfect positive linear correlation and 0 indicates no correlation
between two features. The last two important steps were handling missing values and
detecting outliers. Outliers can affect our models and can be a valuable source of in-
formation, providing us insights about specific behaviours. For example in Metabolism
features we have very high values which at first glance they seemed to be outliers, however
after more investigation we realized that they were indication of diseases and we should
not consider them as outliers. These two steps will be explained in more details in the
section 2.2.

Due to the previously mentioned privacy concerns with clinical data, it was not possible
to share the original health data with us in this project. Hence, the dataset given to
us was synthetically generated based on the original data guaranteeing anonymity for
each individual in the original dataset. This artificially generated synthetic dataset is
replicating specific structures of the real dataset such as the distribution of all features
and the relationship between them. Although synthetic data has many advantages such
the guaranteed data privacy, it also comes with some limitations.

Models which generate synthetic data mostly identify common trends in the original data,
but subtle relationships might be missed. Additionally, this creates susceptibility to sta-
tistical noise and it may lead to undesired synthetic patterns in the generated dataset.
During data exploration we noticed some of these synthetic patterns. In figure 1 which
is a scatter plot of systolic blood pressure left (SYSBP Left) versus systolic blood pres-
sure right (SYSBP right), Rectangular patterns can clearly be identified. Some of these
generated patterns may introduce some illogical and improbable values to the dataset.
Another challenge presented by the use of synthetic data is the need for verification of
one’s findings, meaning that performing identical analysis on the original data to test
and compare results is often necessary. This ensures that the system has been properly
trained and is not generating outputs based on any incorrect artificial patterns generated
in the synthetic data.

2.2 Data Cleaning

In order to improve the quality of the given dataset, unexpected, incorrect, and inconsis-
tent data points were detected and replaced by a NaN value. Afterwards, we provided
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Figure 1: Rectangular patterns found in scatter plot of SYSBP Left vs. SYSBP Right

the possibility to impute missing values using feature specific methods, so that we could
have more information for further analysis .

Detecting errors in medical data can be challenging as extreme values could either be an
indication of a disease or a measurement error. Since these outliers may greatly affect the
final result, it is necessary to remove them with caution to avoid the elimination of values
from sick people. Thus we carefully defined thresholds by also considering the relationships
between features. The detected outliers were replaced by NaNs. Additionally, we tried
to find reasonable estimations of the NaN values based on the medians, formulas from
literature and other methods such as linear regression.

As explained in section 2.1, the given dataset has features from four main categories.
Features of each category have their own individual set of properties and traits, we sepa-
rately processed each feature of each section. For instance, in Metabolism section, Total
Cholesterol is calculated by adding high-density lipoprotein (HDL), low-density lipopro-
tein (LDL) and 20% of Triglycerides (TG). So, it is not possible for someone to have less
than or equal amount of cholesterol as HDL plus 20% of TG. Therefore, values which did
not comply with this were replaced by NaN.

Additionally, to estimate the missing values of for instance the body water percentage
(BWP) from Body Composition section, which is calculated based on other features such
as age, height and weight of a person, the Watson formula from the literature [15] was
used. To estimate BWP, the total body weight (TBW) which is calculated differently for
men and women was calculated. Then, TBW will be divided by the weight of the person
to get the percentage. The formulas of calculating BWP for male are shown below:

TBW (male) = 2.447− (0.09156× age) + (0.1074× height) + (0.3362×weight) (2)

BWP =
TBW

weight
× 100% (3)

Detailed preprocessing of each feature in all sections can be seen in table 6 and 7 in
appendix.
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3 Finding Indicators of General Health

We discovered two methods for defining a potential indicator of general health which
we decided to investigate in great detail. Firstly, we predicted the age based on the
other biomarkers, which gave us either an over- or underestimation of the real age. This
deviation can be interpreted as an indication of general health. Secondly, we predicted the
review scores given by health experts which allowed us to identify the most contributing
features to this prediction that could then be selected for clustering. Both predictions are
performed using three different methods which are discussed in the following section.

3.1 Regression Methods

3.1.1 Multiple Linear Regression (MLR)

In multiple linear regression models we assume that the dependent variable y can be
described by a set of linear dependencies from independent variables xi. The model
function has the form of

y = β0 + β1x1 + β2x2 + . . .+ βkxk (4)

where β0 is the offset and the other βi are the slopes according to each variable xi. The
fitting is done via ordinary least squares,

min
β
‖Xβ − y‖22 (5)

where X is a matrix consisting of all the features from the data that the model is trained
on (x1...xk), β is a vector containing all the slopes βi and y is the solution vector.

3.1.2 Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines builds a piecewise linear model using functions
of the form (x − t)+ := max(0, x − t) or (t − x)+, where x is a feature value, and t
is a threshold. These functions are called hinge functions with a knot of the value t.
Two functions with the same feature Xj and threshold t, but different sign of difference
(Xj − t)+, (t−Xj)+ are called a reflected pair.

The model has the form f̃(X) = β0 +
∑K

k=1 βkhk(X), where hk(X) is a hinge function or
a product of two or more hinge functions.

The model building procedure consists of two stages: forward model-building procedure
and backward deletion procedure. During the forward pass new terms producing the
largest decrease in a training residual square error are added iteratively. The considered
terms are of the form

βM+1hl(X)(Xj − t)+ + βM+2hl(X)(t−Xj)+ (6)

where hl(X) is one of already selected functions and (Xj − t)+, (t −Xj)+ is a candidate
reflected pair.
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To prevent overfitting after the forward pass, the backward deletion procedure is applied.
At each step the term whose removal causes the smallest increase in error is deleted.
To compare performance of the models with different subsets of terms, generalized cross
validation is used:

GCV (λ) =

∑N
i=1(yi − fλ(xi))2

(1−M(λ)/N)2
, (7)

where λ is a number of terms, and M(λ) is an effective number of parameters in the
model.

We decided to use MARS as it can identify the most important features along with their
interactions and the important thresholds. The advantage of using MARS is that it is
able to operate locally as the hinge function or the product of hinge functions is zero over
part of their range. MARS can also learn non-linear dependencies which methods like
Multivariate Linear Regression can not. Unlike Regression Tree which uses I(x− t > 0)
and I(x − t ≤ 0), MARS additionally accounts for the difference between the value and
the threshold which is especially relevant when using medical data.

3.1.3 Generalized Additive Models (GAM)

A GAM is a generalized linear model. It has an additive structure of smooth functions of
the form [1]

g(E[y|X])) = β0 + f1 (X1) + f2 (X2) + . . .+ fM (XN) (8)

where g is a linking function, and fi are feature functions that are built using penalized
B splines. They use the data points as controls points and create smooth curves by
combining flexible functions from point to point. Furthermore, it is assumed that the
dependent variable y given parameter X has a distribution from an exponential family.
An exponential family is a parametric set of probability distributions. Examples are
the family of normal, binomial or Poisson distributions. The feature functions allow to
automatically model non-linear relationships without manually transforming each feature.
This is especially relevant for features which are not normally distributed, like the ones
given in this dataset. The functions are fitted to the data via minimizing the negative
likelihood with an additional integral over the second derivatives of the feature functions.
This keeps the functions smooth and prevents them from overfitting. The minimisation
problem is

min

(
−L (x1, . . . , xn) +

∑
i

λi

∫
f ′′
i (x)2dx

)
. (9)

where L is the likelihood function and λi are the penalty parameters and have to be tuned.
This is usually done via grid search.

Essentially, the model consists of three different parts:

1. the distribution from y ∼ Exponential Family(µ | X)
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2. the linking function g

3. the functional form with an additive structure

For the purpose of this project, the distribution was chosen to be a gamma distribution, as
we have purely positive values and cannot tell whether y given X is normally distributed
due to the high dimensionality of the dataset. The linking function was chosen to be the
identity function as there is no need to increase the complexity any further.

3.2 Age Prediction

The purpose of predicting the biological age was to have a marker of one’s physiological
health. Individuals with an estimated age close to their real age are expected to have
similar values to their average healthy colleagues in the same age group. The lower the
predicted age relative to the real age, the more healthy the individual is compared to
the average and vice versa for higher predicted age. For this to be true, the younger the
person is the healthier they should be on average, which is true for this dataset. As we
expect unhealthy or even sick people to have a predicted age above their real age and
very healthy and fit people to have a predicted age below their real age, it makes sense to
use the difference between the real and the estimated age as an indicator of one’s general
health.

3.3 Review Score Prediction

The so-called Review Score is a discrete score from zero to six given by a doctor based
on the results of the checkup. A review score of six is given to individuals of optimal
health, and a score of zero should be given in the case of a medical emergency where one
is encouraged to consult a doctor as soon as possible. However, in the beginning, the
score zero was misused as it was the only way to leave a personal note for the patient.
Therefore, the rows with a review score equal to zero are not reliable and were removed.

Since the score is given by a professional based on the checkup results it can be interpreted
as a health indicator. We also saw potential in being able to automatically predict the
review score without a consultation with a doctor.
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4 Defining Health Classes

The main goal of the project is to define medically relevant health classes. The idea
is to group people with similar health conditions together based on the results of their
checkup. Having groups of people with similar health markers allow for the determination
of possible risks and hence the ability to give personalized recommendations.

As the relations between the features of the dataset are rather complex and mostly con-
tinuous, we did not expect to obtain a clear and distinct division of all instances. It is also
worth noting that the defined health classes are expected to vary in size when considering
that they should be based on various health conditions which are not all equally common.
Ideally, we want to identify small groups of people with a high risk for a certain disease
and larger groups containing people that live generally healthy or unhealthy lifestyles.

We implemented several clustering algorithms (reviewed in Section 4.1) and tried to com-
pare the results to be able to select the most interpretable groups for further exploration.

4.1 Clustering Methods

Clustering algorithms divide data in a way that achieves high similarities within clusters
and low similarities between clusters, hence finding natural groupings among the instances.
Based on some existing research on medical data such as in Section 1.2, we tried several
clustering methods on our health dataset which are described below.

4.1.1 K-means Clustering

K-means is a simple, easily interpretable clustering algorithm which can be used to group
a dataset into a predefined number of clusters. It was commonly used on health data [12,
16] in existing research work. It initializes the centroids (one per cluster) and aims to
minimize the within-cluster sum of squares (i.e. variance) by recursively optimizing the
objective and updating the centroids of all clusters until convergence.

4.1.2 Density-based Clustering

Density-based Clustering identifies clusters by finding dense areas of points separated by
sparse regions of low density based on a density condition. It does not require the number
of clusters as it automatically infers it from the data.

A well-known implementation of this archetype of clustering is DBSCAN. Its general idea
is to continue growing a given cluster as long as the density in a certain neighbourhood
exceeds a certain threshold.



4 DEFINING HEALTH CLASSES 13

4.1.3 Hierarchical Clustering

Unlike K-means and Density-based Clustering, Hierarchical Clustering is not just seg-
menting the data space once but intends to create a hierarchical decomposition of the
whole dataset. This hierarchy can, for example, be constructed by starting with the
whole data space as one cluster and then iteratively splitting it into smaller clusters while
keeping its relationship to its parents. Alternatively, it can be constructed by considering
each data object as a cluster and then iteratively merging those into bigger clusters. The
first variant is called the ’top-down approach’, also known as ’divisive’, and the second
variant is called ’bottom-up approach’, also known as ’agglomerative’.

We implemented the agglomerative variant of hierarchical clustering. The algorithm de-
cides which two clusters to combined into one by assessing the dissimilarity between the
observations in each one using an indicator. Generally, this indicator consists of two com-
ponents, one is called metric, which measures the distance between two observations, and
the other is called linkage, which measures the degree of dissimilarity between two sets.
At each stage of the clustering process, the two clusters that have the smallest linkage
distance, are linked together. The choice of metric and linkage has great influence on the
final clustering results.

The hierarchical structure can be represented using a dendrogram, which is a type of
tree diagram showing the relationships between similar sets of data and the distances
between dissimilar groups. In a dendrogram, the height of each node is proportional to
the dissimilarity between the two child nodes representing clusters being merged. The
leaf nodes at the bottom represent a cluster containing only one single data point. At
each stage, the two branches with the least distance between them will merge.

Commonly used metrics to measure the distance d(a, b) between instances a and b include
Euclidean distance, Manhattan distance and Mahalanobis distance.

Some commonly used linkage criteria between two clusters of observations Ci and Ci to
measure the distance dij between them are:

• Complete-linkage clustering: dij = max{d(a, b) : a ∈ Ci, b ∈ Cj}

• Single-linkage clustering: dij = min{d(a, b) : a ∈ Ci, b ∈ Cj}

• Ward’s minimum variance method [14] minimizes the sum of squared differences
within all clusters and requires Euclidean distance metrics. It is especially well
suited for large datasets. The distance between two clusters determines how much
the sum of squares will increase when merged.

dij =
|Ci| · |Cj|
|Ci|+ |Cj|

||µi − µj||2 (10)

where µi is the center of cluster Ci.

The single-linkage clustering method tends to form long thin clusters (chaining phe-
nomenon) because it combines data points linked by a sequence of elements being close
to each other. This behaviour is undesirable in our case as the health trend is continuous
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and a healthy person could end up being joined to a sick person through a series of people
with slightly different biomarker values.

The complete linkage is forming compact clusters, but might produce clusters where data
points from different clusters are more similar than data points within a cluster.

The Ward’s linkage is most well suited for large datasets and achieved the best results in
some of the existing research for clustering clinical datasets [7].

4.2 Implementation

We clustered the male and female data separately since they normally have a different
range of normal values for most medical features and different risks of diseases.

When performing age prediction we used some calculated metrics as measurement for
different models. When using unsupervised learning it can be difficult to compare the
different clustering results. Although there exist some commonly used criteria such as
Davies-Bouldin Index [4] and Sihouette Coefficient [11], they were unable to reflect the
intrinsic information of a dataset from a medical perspective and hence are not well
suited for our task. Our final goal is to find meaningful divisions and to define relevant
health classes. Thus, our decision was mainly based on the medical interpretation of the
resulting clusters when comparing different clustering results. To achieve this we had to
gain a thorough medical understanding of the discovered clusters by conducting a detailed
analysis into each feature.

4.2.1 Feature Selection

Most clustering methods cannot handle high-dimensional data efficiently. As we have
more than 40 bio-markers, we decided to select only the most relevant features for our
clustering using the following methods.

The previously mentioned review score can be used as an indication of one’s general
health, which is why we selected the features which were most contributing in the MARS
review score prediction for clustering. The results of these predictions can be seen in
Table 10 and Table 11 in the appendix for males and females respectively.

We started from the features selected from MARS and did further research regarding the
common health problems of working people (especially middle-aged elder ones), since we
wanted to try to detect risks for some of these diseases in our clustering. These diseases
and the major abnormal indicators in health examinations are:

1. Overweight and Obesity: is indicated by high body fat percentage, hip-to-waist
ratio, BMI etc. We used body fat percentage, BMI and visceral fat, as they were
considering different aspects to indicate obesity problems. For males, a high body
fat percentage is more common than in females and seems to be more relevant to
their general health. For females, body fat percentage was replaced by body water
percentage for clustering as these features are highly correlated in our dataset and
the former contains twice as many missing values as the latter.
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2. Hyperlipidemia: is an elevation of lipids (fat) in the blood and indicated by high
triglycerides, high cholestrol and low high-density lipoprotein (HDL). We selected
these three features for clustering. Hyperlipidemia increases the risk of heart disease
and stroke.

3. Fatty liver: is indicated by several features such as γ-glutamyltransferase (GGT),
transaminase, etc. The fatty liver index (FLI) in our dataset was calculated by an
algorithm based on BMI, waist circumference, triglycerides and GGT and has been
shown to have an accuracy of 0.84 in detecting fatty liver [2]. FLI varies between 0
and 100. For an FLI below 30 risk of fatty liver disease is extremely low and for an
FLI above 60 very high.

4. Osteoporosis: is indicated by a low bone mineral density. In our dataset we only
have bone mineral mass and this is not well suited as an indication for osteoporosis.
Hence, we had to disregard this disease.

5. Hypertension: is indicated by an elevated blood pressure. We used mean arterial
pressure (MAP) on the left arm as a combination of systolic and diastolic blood
pressure.

6. Diabetes: is mainly indicated by high fasting glucose level. In our dataset, however,
half of the results were taken shortly after the subject had consumed food. The
indication of high blood sugar might not be trustworthy.

After several attempts, we noticed that the selection of similar and highly-related features
such as waist size, body fat and weight would make the clustering prone to be biased
towards specific health conditions such as obesity. As we were keen to consider the
general health conditions we decided to also take the correlations between features into
consideration and avoided choosing pairs of features which were highly correlated (Pearson
correlation coefficients ≥ 0.6)

Furthermore, it was important to take age into account when defining one’s health con-
ditions. As we wanted to include features from every part of the body, we decided to also
select forced expiratory volume in 1 second (FEV1) for clustering. It was selected due to
it being the lung function feature with the highest correlation to the review score.

After trying different feature combinations using the methods mentioned above, the most
interpretable clustering results were achieved using the features listed in Table 2.

4.2.2 Pre-processing

Since most clustering methods cannot handle missing values and we wanted to consider
as many people as possible for defining their health conditions, we decided to estimate the
missing vales and outliers in our dataset as described in Section 2.2. Entries with values
of the selected features that were still missing after their estimation were removed.

The clusters are largely based on the distances between the samples within each feature,
which are sensitive to differences in magnitude and scales of the attributes. Therefore,
dealing with extreme values and scaling the features into a standard range plays a crucial
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Feature male female clipped
Fatty liver index X X

Mean arterial pressure left X X
Body fat percentage X

Body water percentage X
Body mass index X X

Triglycerides X X X
Cholesterol X X X

High density lipoprotein X X X
Visceral fat level X X

Age X X
Forced expiratory volumn in 1 second X X X

Table 2: Features selected for clustering

role in successful clustering. The goal is to equalize the size and variability of these
features.

For some features which contained very few extreme values such as triglycerides, choles-
terol and HDL, we decided to clip the 0.5% and 99.5% quantiles. Doing so will not lead
to the loss of much information as the values which are clipped will still be very extreme
and hence indicate a severe illness. The advantage of the clipping is that we achieve more
similar ranges after scaling all the features. The list of clipped features can be found in
Table 2.

Commom methods for feature scaling include:

• Standardization:

x′i =
xi − µ(x)

σ(x)
(11)

with µ being the sample mean and σ the standard deviation. Standardization
assumes the data is (nearly) normally distributed within each feature and will scale
them such that the distribution is centred around 0, with a standard deviation of 1.

• Min-max scaling:

x′i =
xi − xmin
xmax − xmin

(12)

It rescales the range of feature in [0, 1] by using a linear mapping.

Min-max scaling is more suited for uniformly distributed data and since outliers (mildly
extreme values) in our dataset have their medical meaning, we wanted to leave them far
enough from normal healthy values by standardization and to not shrinks to [0, 1] as the
min-max scaler does. We therefore decided to use standardization to scale our features.
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4.2.3 Visualization

To evaluate the performance of our clustering, we decided to use some visualization tools
to help us understand the clusters we got. Since we were dealing with high dimensional
data, which was hard to visualize, some dimensionality reduction techniques need to be
introduced.

The t-distributed stochastic neighbor embedding (t-SNE) [10] is a nonlinear dimensionality
reduction technique well-suited for embedding high-dimensional data for visualization in
a low-dimensional space of two or three dimensions. Specifically, it models each high-
dimensional object by a two- or three-dimensional point in such a way that similar objects
are modeled by nearby points and dissimilar objects are modeled by distant points with
high probability.

First, t-SNE constructs a probability distribution over pairs of objects in such a way that
similar objects are assigned a higher probability while dissimilar points are assigned a
very low probability. Second, t-SNE defines a similar probability distribution over the
points in the low-dimensional map, and it minimizes the Kullback-Leibler divergence (KL
divergence) between the two distributions with respect to the locations of the points in
the map.

As a result, t-SNE allowed us to visualize the distribution of all data points in a low-
dimensional space and helped us to better explore the clusters we found.
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5 Results and Discussions

5.1 Age Prediction

We started by predicting the age using MLR, the state of the art as described in section
1.2. The features with the highest correlation to age were selected for the prediction.
Though we made sure to check the correlation between all the selected features and remove
one of two highly correlated ones. The feature selection can be found with coefficients
in appendix B.1. We decided to use the cleaned data before estimating missing values
since some of our estimations were calculated based on age and could introduce bias
in age prediction. Rows with a NaN value within one of those features were dropped.
The resulting prediction had a mean absolute error (MAE) of 7.84, which is higher than
expected, as even when predicting the average age one can already achieve a MAE of 9.36.
We wanted to see if we can improve the MAE with a more complex model. Therefore,
we tried Lasso, Random Forest, MARS and Neural Networks with different methods of
feature selection. All of those models were approximately in the same range with a MAE
around 7.3.

The best result was achieved by a GAM with a slightly lower MAE of 7.21. Features were
selected by iteratively eliminating the features with the least feature importance. The
final age prediction was done using 17 selected features of high feature importance which
are listed in appendix B.2. Figure 2 shows two figure functions of the trained model.

Figure 2: The left plot shows the feature function of the forced expiratory volume in
1 second of the age prediction model with two red lines indicating the normal range.
The right plot shows the feature function of the waist size of the age prediction model.
Everything on the right side of the red line is considered abnormal. The dashed lines are
the confidence intervals.

The feature function from the forced expiratory Volume in 1 second (FEV1) clearly shows
nonlinear dependencies outside of the normal range, indicated by the two red lines. This
can be explained by the fact that a value below 2.5 is a likely indication of an illness.
Consequently, the lowest values are not age-dependent which is also shown by the broader
confidence interval on the left side, indicated by the dashed lines. Similarly, in the feature
function of the waist size, we have a sudden change in slope approximately at the point
where the waist size cannot be considered normal anymore (indicated by the red line).
For comparison, we trained a MLR model on the same set of features and achieved a
MAE of 7.29, which is only slightly worse than the MAE achieved by the GAM. This is
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likely due to the fact, that most of the data is in the normal range where we find a linear
trend, which can be predicted just as well by the MLR model. Based on our results we
can establish that a MLR model can perform very well when all values are in a normal
range. Nonetheless, we do have abnormal values in our data and therefore it does makes
sense to stick with a more complex model like GAM, to achieve a better accuracy.

Nevertheless, we want a lower age to be correlated with good biomarkers and a higher age
with worse biomarkers. This is achieved by just keeping the linear part of the functions
shown in figure 2, which can be represented by a MLR model. Unfortunately, not all the
feature functions of the GAM have linear dependencies in their normal range meaning
that they cannot be accurately predicted by MLR which is why we predict the age using
both MLR and GAM.

Not only does the age prediction allow us to calculate a potential indicator of general
health, but it also gives us the chance to explore the limits and potentials of our synthetic
dataset. We asked Wellabe to train a GAM on the original data to allow us to compare
its performance to ours. The result is shown in figure 3. On the left, we can see the
outcome of the model trained on the original data with a MAE of 2.3. The right plot
shows the outcome of their model trained on the synthetic data. It is worth noting that
the synthetic data used here has not been pre-processed. The MAE is 6.82.

Figure 3: The left plot shows the predicted age over real age of a GAM trained and tested
on the observed/original data. On the right side is the same plot of a model trained and
tested on the simulated/synthetic data.

The MAE for the synthetic data is 0.4 better than what we were able to achieve. This
could be due to the fact that we tried to minimize the number of features used, as having
too many features could lead to overfitting and might introduce noise. Another reason
could be our pre-processing methods which could have lead to a loss of information. Still,
their result is only slightly better than ours which confirms that there is not much more
information to be gained in age prediction. Additionally, these plots clearly show that
there are limits when using synthetically generated data when predicting a single instance.
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Coming back to the original intention of gaining an indicator of general health. The age
difference is added as an additional feature. Unfortunately, we could not find significant
and meaningful patterns in comparison to the other features. This probably comes from
the bad approximation of the age itself, as not all the information according to age could
be transferred from the real data to the synthetic one.

5.2 Review Score Prediction

When predicting the review score both GAM and MARS were able to perform well. Their
results are shown in table 3. There is a good chance that the review scores are subjective
as they were not always given by the same doctor. We thus did not expect to get perfect
prediction results and it is, therefore, reasonable to consider the resulting MAE’s around
0.8 (for a score between 0 and 6) as a good performance.

Baseline MARS GAM
MAE 1.21 0.82 0.85

Table 3: Review score prediction: mean absolute error

The prediction using MARS gave us a list of features which are strongly related to the
review score such as fatty liver index and blood pressure readings. The full list can be
found in the Appendix, tables 10, 11. As the review score is one of the indicators of
general health, we considered these features as most relevant in determining one’s overall
health. Therefore, we used this list of features as a base for feature selection for clustering.

5.3 Clustering

Although K-means is a popular choice for clustering due to its simplicity and efficiency,
for our dataset it was unable to find any medically meaningful clusters. Regardless the
number of clusters chosen, all resulting partitions were of similar size and could not be
interpreted well.

The advantage of DBSCAN is that it does not require you to specify the number of clusters
in advance. However, in our case, DBSCAN was unable to ever detect more than one
significant cluster. Tuning the hyper-parameters just altered the amount of data labelled
as noise. A possible reason for this is the fact that health is continuous and not categorical
making it very hard to detect distinct clusters.

The hierarchical clustering forces the formation of clusters through a hierarchical struc-
ture, which provides the possibility to divide each cluster into increasingly detailed smaller
clusters. As we expected, complete and single-linkage functions did not provide reasonable
clusters on our datasat. Using Ward linkage (which forced us to use Euclidean distance
metric) produced the most interpretive clusters among all the linkage functions. We used
t-SNE embeddings to visualize our clustering results. We analysed these visualizations
with different numbers of clusters selected. By investigating them and the dendrogram
(Figure 4) of the hierarchical clustering, we chose the number of clusters for females and
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males as 5 and 6 respectively and these most medically relevant clusters can be seen
in Figure 5, where the clusters were mostly clearly separated. As expected, some small
clusters with unusual health conditions are found.

Figure 4: Truncated dendrogram for hierarchical clustering on females (left) and males
(right), 10 features selected, horizontal line indicates the distance threshold of our selection
of number of clusters

Figure 5: Clustering results of females (left) and males (right) using t-SNE embeddings

We then explored the clusters for females and males in details and both of them gave
meaningful results which were also mostly consistent with the review scores given by
health experts.

5.3.1 Females

The most medically relevant clusters were found when performing hierarchical clustering
with 5 clusters. The number stated in the bracket is the size of the group.
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• Healthy people, marked in green in the t-SNE (11793, 49%)

– Cluster 1 (6227, 26%): middle aged, most values are in the normal ranges;

– Cluster 3 (5566, 23%): young, low fatty liver index, low mean arterial pressure,
low visceral fat, high forced expiratory volume in 1 second and high body water;

• People with elevated risk, marked in yellow, orange and red in the t-SNE (12354,
51%)

– Cluster 0 (5149, 21%): middle aged, lower body water and higher body fat, all
other values are normal, but slightly worse than in cluster 1 and cluster 3;

– Cluster 2 (2712, 11%): high fatty liver index, high body mass index, high
triglycerides, high mean arterial pressure and high visceral fat;

– Cluster 4 (4493, 19%): older people, elevated mean arterial pressure, lower
body water

Overall, cluster 3 is the healthiest group with the best checkup results and mostly perfect
review scores of ’6’. Cluster 1 is a cluster of average healthy people, their results are
normal.

Cluster 0 has slightly worse results, but they are not yet of concern. This group is
characterized by an elevated risk of being overweight. Cluster 4 is the group containing
people with hypertension problems leading to an elevated cardiovascular diseases risk.
Finally, cluster 2 contains unhealthy people with already existing health problems. Almost
all people with a review score of ’1’ are assigned to this group.

5.3.2 Males

After investigating the dendrogram (Figure 4) and gaining a medical understanding of
each cluster, the number of clusters was set to 6 for males. All six clusters have a unique
medical interpretation. It is worth noting that three of them can be combined to build
a larger generally low-risk group and the other three a larger generally high-risk group.
The difference on some selected features between these two larger groups could also be
spotted in the boxplots in the appendix (Figure 7). In general, almost two thirds (63%)
of all males are considered to be low-risk and healthy. Most of them are young with a
good lung function, low blood pressure and a low risk of fatty liver disease and obesity.
While most of the people in the high-risk group have a fatty liver index (FLI) larger than
60 (high risk of fatty liver disease), most low-risk people have an FLI below 60.

A more detailed description of each group can be found below. The visualization of the
comparison between the groups based on some key features can further be found in the
appendix (Figure 8 and 9). Altogether, we had 32857 male instances.

• People with low health risks, marked in green in the t-SNE plot (20661, 63%)

– Cluster 3: (3554, 11%) young, very low FLI, visceral fat and body fat percent-
age, high forced expiratory volume in 1 sec (FEV1).
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– Cluster 1: (6416, 19%) middle-aged, slightly high body fat percentage, FLI
larger than 30 and mostly less than 60, high FEV1.

– Cluster 0: (10691, 33%) old, slightly high blood pressure, slightly higher FLI
than cluster 3 but lower than cluster 1.

• People with high health risks, marked in orange and red in t-SNE (12196, 37%)

– Cluster 4: (8215, 25%) middle-aged, very high triglycerides and low high-
density lipoprotein

– Cluster 5: (1478, 4%) middle-aged, very high fatty liver index (above 80), high
body fat percentage and visceral fat

– Cluster 2: (2503, 8%) old, high fatty liver index but lower than cluster 5

Overall, cluster 3 is the healthiest group containing young and fit people who also received
the best review scores from the doctor’s. Cluster 1 can be considered being between low
and medium risk since it has the highest risk of obesity and fatty liver disease among the
low-risk groups. Cluster 0 is the largest group and contains on average older people than
the other 2 low-risk groups but they are in mostly good health with potential risk for
fatty liver disease and hypertension. People in the latter two groups received medium to
high scores from the doctor’s. They should do more regular health checkups, take better
care of their nutrition and increase their amount of physical exercise, whereas cluster 3
should stick with their healthy habits.

The high risks groups are more crucial to investigate in details. All three groups contain
people with varying degrees of hypertension.

Cluster 4 contains almost 25% of all males and has an extremely high triglycerides and
low HDL. Hence people in this group show clear signs of hyperlipidemia (high blood fat
level) which increases the risk of heart disease and stroke. Their fatty liver index is also
mostly above 60. Although they are mostly just middle-aged, they already are at very
high risk of disease.

Cluster 5 is the smallest group and with the highest risk of fatty liver disease and obesity.
People in this group should change their diet and limit their alcohol consumption. Cluster
2 contains old people with a high risk of fatty liver disease. Though their risk is not as
high as the ones of people in the other two groups. They also mainly received low to
medium review scores from the doctors, whereas the other two groups mainly received
negative evaluations.

People in all three high risk groups should consult a doctor and change their diet and
exercise routines.
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6 Conclusion and Outlook

By exploring our dataset in great detail and implementing various models we were able
to achieve our main goal and successfully define meaningful health classes for males and
females. The results stayed consistent with the review scores given by health experts and
successfully detected high risk groups for some common diseases. As our resulting classes
are not only able to identify people with very good and average health but also separate
people with different diseases, they also pose great potential in helping Wellabe improve
their recommendations of prevention plans and programs for each individual.

We successfully implemented various algorithms to explore our first side objective of age
prediction. Comparing the prediction performance of our data with the one of the original
data gave us some insights into the limitations of synthetic data. This was also part
of our second side objective of identifying the limitations and potentials of synthetically
generated data. This objective was successfully accomplished as we did not only find some
of its limitations but also showed its potential by revealing that the common patterns
replicated in the synthetic data were sufficient enough for the successful clustering of
medically relevant groups.

Overall we were able to make a valuable contribution to Wellabe with meaningful health
classes based on a hierarchal structure which also presents the potential for further division
and exploration. Furthermore, our positive results encourage further investigation into
clustering of synthetically generated health data.
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Appendices

A Data Understanding and Handling

Feature Name Abbreviation
Normal
Range

Description

Sex sex
1 for male, 2

for female
—

Age age 18 - 65 —

Review score review score
integer

between 0 -
6

A score given by a doctor as a
judgement of health status. Score of 0
means medical emergency and 6 means
optimal health.

Systolic Blood Pressure
SYS BP RIGHT,
SYS BP LEFT

90 - 120
mmHg

Amount of pressure in the arteries
during the contraction of the heart
muscle

Diastolic Blood Pressure
DIA BP RIGHT,
DIA BP LEFT

60 - 80
mmHg

Blood pressure when the heart muscle
is between beats

Pulse Pressure
PP RIGHT,
PP LEFT

40 - 60
mmHg

The difference between systolic and
diastolic blood pressure

Mean Arterial Pressure
MAP RIGHT,
MAP LEFT

70 - 100
mmHg

The average of blood pressure over a
cardiac cycle

Ankle-Brachial Index ABI L, ABI R 0.9 - 1.29
The ratio of the blood pressure at the
ankle to the blood pressure in the
upper arm (brachium)

Resting Heart Rate HEART RATE 60 - 100 bpm
The number of times the heart beats
per minute when it is at rest

Blood Sugar
GLU-

COSE LEVEL
70 - 99 mg

dl

Concentration of glucose present in the
blood of humans

Triglycerides TG < 150mg
dl Type of fat found in your blood

Total Cholesterol Cholesterol < 200mg
dl

Total amount of cholesterol in your
blood (LDL + HDL)

High-density lipoproteins HDL > 40mg
dl Good cholesterol

Alanine transaminase ALT 7 - 55 U/L
An enzyme in the liver, converts
proteins into energy for the liver cells

Aspartate transaminase AST 8 - 48 U/L
An enzyme helps metabolize amino
acids

Gamma-glutamyl transferase GGT 8 - 61 U/L

An enzyme that is found in many
organs throughout the body, with the
highest concentrations found in the
liver

Creatine CREA 0.5 - 1.2 mg
dl

Indicates amount of muscle a person
has and an indication of kidney
function

Fat liver index FLI < 30 Can detect excess fat in the liver

Table 4: List of features from cardiovascular system and metabolism sections with their
descriptions
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Feature Name Abbreviation Normal Range Description

Oxygen Saturation
OXYGEN

SATURATION
0.95-0.99

Fraction of oxygen-saturated
hemoglobin relative to total
hemoglobin in the blood.

Forced Vital Capacity FVC L 2.5 - 4.5 liters

The maximum amount of air
that can be exhaled from your
lungs after breathing in as much
air as possible.

Forced Expiratory
Volume in 1 Second

FEV1 L 0.7-1 *FVC L
The maximum air one can
breath out in 1 second.

Peak Expiratory Flow PEF L 5-9.5 liters
s

The maximum speed someone
can breath out.

Forced Expiratory Flow
at 25% of the Lung

Volume
FEF25 1.5-5 liters

s

The speed of the air flow when
there is only 25% air of the lung
volume left.

Body Height HEIGHT BMI 18-30 Body height
Body Weight WEIGHT BMI 18-30 Body weight

Visceral Fat Level VISCERAL FAT ≤ 9
Fat stored with abdominal
cavity and not visible from the
outside

Daily Caloric Needs
DAILY CALORIC

NEEDS

1600-2400 kcal
female; 2000-3000

kcal male

Number of calories a person
needs to remain healthy

Muscle Mass MUSCLE MASS

24.2-30.3% of
weight female;
33.2-39.4% of
weight male

Weight of muscles

Body Fat Mass FAT KG
normal range for

fat % times weight
Weight of body fat

Body Fat Percentage BODY FAT
14-32% female;

5-25% male
Body fat mass in percentage of
body weight

Body Water Percentage BODY WATER
41-60% female;
43-73% male

Total water in body as a
percentage of body weight

Bone Mineral Mass
BONE MINERAL

MASS
1.8-3.35 kg female;
2.45-4.1 kg male

Amount of bone mineral in bone
tissue

Hip Size HIP SIZE 80-120cm
Circumference of the upper
swell of the hip

Waist Size WAIST SIZE 60-120cm Circumference of the waist

Table 5: List of features from respiratory system and body composition sections with
their descriptions
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Feature name Outlier detection Estimation of missing values

Systolic Blood Pressure
(SYS BP<40) or

((SYS BP<90) and
(SYS BP < DIA BP)

measurement on other side, or
PP+DIA BP, or
3 ·MAP− 2 ·DIA BP

Diastolic Blood Pressure

(DIA BP< 30) or
((DIA BP < 40) and
(|DIA BP LEFT−

DIA BP RIGHT| > 30))

measurement on other side, or
SYS BP - PP, or
3 ·MAP− SYS BP

Pulse Pressure

(PP < 10) or
((PP /∈ [20, 90]) and

(|(SYS BP−DIA BP)−
PP| > 30))

measurement on other side, or
SYS BP - DIA BP

Mean Arterial Pressure

(MAP <20) or
((MAP /∈ [70, 140]) and
not(DIA BP < MAP <

SYS BP))

measurement on the other side,
or 2/3 ·DIA BP + 1/3 · SBP BP

Ankle-Brachial Index
(ABI< 0.3) or ((ABI <

0.5) and
(|ABI L−ABI R| > 0.45))

measurement on the other side

Resting Heart Rate (HEART RATE < 30) —
Blood Sugar GLUCOSE LEVEL < 60 Median of each age group

Triglycerides
(TG == 0) or

(CHOLESTEROL <=
HDL + 0.2 · TG)

Median of each age group

Total Cholesterol
(Cholesterol == 0) or
(CHOLESTEROL <=

HDL + 0.2 · TG)
Median of each age group

High-density lipoproteins
(HDL == 0) or

(CHOLESTEROL <=
HDL + 0.2 · TG)

Median of each age group

Alanine transaminase ALT == 0 Median of each age group
Aspartate transaminase AST == 0 Median of each age group

Gamma-glutamyl transferase GGT == 0 Median of each age group
Creatine CREA == 0 Median of each age group

Fat liver index (FLI< 0) or (FLI > 100) e0.9·log (TG)+0.1·(BMI)+0.7·log (GGT)+0.05·(WC)−15.7

1 + e0.9·log (TG)+0.1·(BMI)+0.7·log (GGT)+0.05·(WC)−15.7
·100%

Table 6: Data Cleaning for cardiovascular system and metabolism
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Feature name Outlier detection Estimation of missing values
Oxygen Saturation < 60 Mean of female or male patients

Forced Vital Capacity < 1 or FEV1 L > FVC L

male:
−0.1933+0.00064·age−0.00269·
age2 + 0.00018642 · height2

female:
−0.3560+0.01870·age−0.000382·
age2 + 0.00014815 · height2

Forced Expiratory
Volume in 1 Second

< 0.3

male:
0.5536−0.01303 ·age−0.000172 ·
age2 + 0.00014098 · height2

female:
0.4333−0.00361 ·age−0.000194 ·
age2 + 0.00011496 · height2

Peak Expiratory Flow < 2

male:
1.0523+0.08272 ·age−0.001301 ·
age2 + 0.00024962 · height2

female:
0.9267+0.06929 ·age−0.001031 ·
age2 + 0.00018623 · height2

Forced Expiratory Flow
at 25% of the Lung

Volume
PEF L < FEF25

male: 2.7006− 0.04995 · age +
0.00010345 · height2 female:
2.3670−0.01904 ·age−0.000200 ·
age2 + 0.00006982 · height2 [6]

Body Weight calculated BMI< 10 or > 60
(BODY FAT− (0.16 · age)−
(10.34 · (sex− 2)) + 9)/1.39) ·
height2/10000

Visceral Fat — —

Daily Caloric Needs
< 200 or < 60% of calories burned at

rest (9.99 · weight + 6.25 · height−
4.92 · age− 200)

655.1 + (4.35 · weight) + (4.7 ·
height)− (4.7 · age)
female;66 + (6.2 · weight) +
(12.7 · height)− (6.76 · age) male

Muscle Mass < 10

0.252·weight+0.473·height−48.3
female;
0.407·weight+0.267·height−19.2
male

Body Fat Mass
==0 or calculated weight from

BODY FAT and FAT KG invalid but
BODY FAT normal

(BODY FAT · weight/100)

Body Fat Percentage
< 7% female; < 3% male or calculated
weight from BODY FAT and FAT KG

invalid but FAT KG normal

weight · 1.39 · 10000/height2 +
0.16 · age + 10.34 · (sex− 2)− 9

Body Water Percentage < 35% female; < 40% male

(2− sex) · (2.447− 0.09156 ·
age + 0.1074 · height + 0.3362 ·
weight) + (sex− 1) · (−2.097 +
0.1069 · height + 0.2466 ·
weight))/weight · 100

Bone Mineral Mass < 35
use linear regression from age,
sex and weight

Hip Size < 60 —
Waist Size < 60 —

Table 7: Data Cleaning for respiratory system and body composition
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B Age Prediction

B.1 MLR

Predictor Coefficient
Intercept 21.711830401357346
FEV1 L -2.85631147

VISCERAL FAT 1.12680704
MAP RIGHT 0.1801872

CHOLESTEROL 0.03450363

Table 8: MLR with a basic feature selection

Predictor Coefficient
Intercept 35.726177894608426

ABI L 6.85994154
ABI R 11.46340514
ALT -0.03885476

CHOLESTEROL 0.0313574
CREA 2.66621868

DIA BP RIGHT 0.16108864
FEF25 -0.86779391

FEV1 L -3.97077775
GLUCOSE LEVEL 0.09845636

HDL 0.04839736
HEART RATE -0.0486207

HIP SIZE -0.18242508
OXYGEN SATURATION -0.3251212

PEF L 0.84430203
PP RIGHT 0.06757111

VISCERAL FAT 0.95557046
WAIST SIZE 0.10798836

Table 9: MLR with GAM feature selection

B.2 GAM Feature Selection

ABI L, ABI R, ALT, CHOLESTEROL, CREA, DIA BP RIGHT, FEF25, FEV1 L, GLU-
COSE LEVEL, HDL, HEART RATE, HIP SIZE, OXYGEN SATURATION, PEF L, PP RIGHT,
VISCERAL FAT, WAIST SIZE
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C Review Score Prediction

Predictor Coefficient
Intercept 3.3371169
h(145-AST) 0.0037827

h(CHOLESTEROL-139) -0.0048509
h(74-DIA BP LEFT) -0.0454621
h(DIA BP LEFT-74) -0.0180478
h(21.66-FAT KG) 0.0451657

h(44-FLI) 0.0225573
h(FLI-44) -0.0045513
h(21-GGT) 0.0152315

h(129-GLUCOSE LEVEL) 0.0147904
h(56-HDL) -0.0189998
h(HDL-56) 0.0079301

h(MAP LEFT-94) -0.0208412
h(PP LEFT-43) -0.0082112

h(SYS BP RIGHT-114) -0.0068087
h(7-VISCERAL FAT) 0.0754450

h(BODY FAT-18) · h(44-FLI) -0.0010916
h(CHOLESTEROL-217) · h(DIA BP LEFT-74) 0.0002756

h(DIA BP LEFT-74) · h(38-HDL) 0.0015744
h(74-DIA BP LEFT) · h(102.8-WEIGHT) 0.0021784
h(21.66-FAT KG) · h(MAP RIGHT-94) -0.0022905
h(21.66-FAT KG) · h(94-MAP RIGHT) -0.0021000

h(5.35-FEV1 L) · h(HDL-56) -0.0109946
h(44-FLI) · h(VISCERAL FAT-9) -0.0040718
h(44-FLI) · h(9-VISCERAL FAT) -0.0015212

h(129-GLUCOSE LEVEL) · h(110-HIP SIZE) 0.0004268
h(129-GLUCOSE LEVEL) · h(109-PEF %) -0.0002496

h(SYS BP RIGHT-114) · h(111-TRIGLYCERIDES) 0.0002073

Table 10: Review score MARS prediction for males, selected predictors
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Predictor Coefficients
Intercept 3.3829668

h(BODY FAT-20) -0.0118968
h(CHOLESTEROL-166) -0.0115236
h(CHOLESTEROL-221) 0.0085359

h(27.73-FAT KG) 0.0592986
h(24-FLI) 0.0326769

h(139-GLUCOSE LEVEL) 0.0113015
h(MAP LEFT-99) -0.0253821
h(94-MAP RIGHT) -0.0067675
h(MAP RIGHT-94) -0.0231941

h(65-PEF %) 0.0127050
h(PEF %-65) 0.0080321

h(40-AST) · h(CHOLESTEROL-166) 0.0002278
h(CHOLESTEROL-166) · h(99-HIP SIZE) 0.0004008

h(27.73-FAT KG) · h(FLI-24) -0.0017146
h(16.97-FAT KG) · h(139-GLUCOSE LEVEL) -0.0009393
h(27.73-FAT KG) · h(MAP RIGHT-128) 0.0177788
h(27.73-FAT KG) · h(SYS BP LEFT-131) -0.0016107

h(24-FLI) · h(7.86-PEF L) -0.0045162
h(24-FLI) · h(TRIGLYCERIDES-82) -0.0002465

h(22-GGT) · h(139-GLUCOSE LEVEL) 0.0002976
h(139-GLUCOSE LEVEL) · h(VISCERAL FAT-2) -0.0007195
h(MAP RIGHT-94) · h(33.5-MUSCLE MASS) -0.0155704

h(PEF .-65) · h(PP LEFT-44) -0.0003696

Table 11: Review score MARS prediction for females, selected predictors
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D Clustering

Figure 6: Box plots for hierarchical clustering on females
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Figure 7: Box plots for high and low risk groups on males

Figure 8: Box plots for low risk groups on males
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Figure 9: Box plots for high risk groups on males
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