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The Dataset :



Data Understanding 
& Handling

Find Indicators for 
General Health

Define Health 
Classes

 

- synthetic vs. original data 

- review score/age prediction to get an indication of general health 

- clustering 

How one could go about defining them

Use general indicators of health (age, some score,..)

Unsupervised Clustering (mention common methods maybe)

Step 1
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Step 2 Step 3
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Synthetic Data

8

Synthetic Patterns

● Data Privacy

● Generated from original data

● Replica of specific properties of 

real data



Statistical & Medical Analysis
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● Medical understanding of the given features

○ blood sugar -> concentration of glucose present in the blood

● Possible ranges of features

● Known diseases

● Summary of the data 

-> Mean, Standard deviation 

● Distributions of features 

-> Histogram, Normal probability plot 

50 000 people
● 57.5 % male
● 42.5 % female

Age: 18-65 years

● Correlation between features 

-> Scatter plot, Pearson Correlation Coefficient



Data Cleaning

Outlier Detection Estimation of Missing 
Values

● Define thresholds 

● Relationship between 

features 

● Replace with NaNs

● Estimate NaNs

● Median

● Formulas

● Linear Regression
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Data Understanding 
& Handling

Find Indicators for 
General Health

Define Health 
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Step 1 Step 2 Step 3



Indicators for General Health 
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Review Score

Biological Age

- predicted chronological age

- difference between 

predicted and real age 

indicates general health

indicator of general 

health given by doctors



Regression Methods
Multiple Linear Regression (MLR):

- manual feature transformation

- good interpretability
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Multivariate Adaptive Regression Splines (MARS):

- non-linear transformations via hinge functions h 

of the form max(0, x - t) or max(0, t - x) with t as 

threshold

- good interpretability
Generalized Additive Model (GAM):

- automatic feature transformation via B-splines f 

- still good interpretability due to additive structure



General Setup
Data: 

- Cleaned dataset

- Dropped rows with a NaN value within one of the used features

Comparison of Methods:

- Mean Average Error (MAE) for accuracy

- Check relations to other features  (indicator of general health)
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Results Age Prediction
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Method Baseline MLR GAM

MAE 9.38 7.84 7.21

GAM Example Feature Functions:



Feature functions not always 

linear in normal range

16

Feature function of creatine

>MLR gives better health indication for some of the features



17

Result:

No clear correlation between worse medical values and Age Difference 

-> not a meaningful indicator of general health

Age Difference 

Age Difference = Biological Age - Chronological Age



Comparison to Original Dataset

MAE: 2.30 6.82
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> Loss of information in synthetic data



The score given by a doctor

Motivation: 

- finding features relevant for general health prediction

- additionally, giving a review score automatically 

Review Score

1 2 65

See a 

doctor soon

Excellent 

results!
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Normal 

results

Emergency!

… 



Methods & Results

Results:       MAE

baseline GAM MARS

1.21 0.85 0.82
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Selected by MARS features: 

- fatty liver index (FLI)

- blood pressure

- body fat

- visceral fat

- cholesterol

- fatty liver

- hypertension

- overweight, 

obesity

- high blood lipids
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Data Understanding 
& Handling

Find Indicators for 
General Health

Define Health 
Classes

Step 1 Step 2 Step 3



Methodology: Preprocessing 
● Feature selection

○ started from the list of features relevant 

for general health

○ ensured to construct a versatile set

● Estimation of missing values/outliers

● Standardization
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Methodology: Clustering 
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● K-Means

○ roughly same size of clusters

○ no medical interpretation

● Density Clustering (DBSCAN)

○ could not detect more than one cluster

○ possible reason: health is continuous => no distinct clusters

● Hierarchical Clustering

○ hierarchical structure of clusters

○ resulting clusters were most interpretable



Group 1:  young, low fatty liver index 

(FLI), low BMI, high forced expiratory 

volume in 1 sec;

Group 2:  values in normal range;

Group 3: high body fat (low body water);

Group 4: older, high body fat, elevated 

blood pressure;

Group 5: high body fat, high FLI, high 

blood pressure.

Female Clusters
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Female Clusters

6.2k

5.5k

normal

very healthy

overweight 

risk

5.1k

2.7k

4.5k

hypertension, 

cardiovascular 

diseases risk

obesity, 

fatty 

liver
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12.3k 

11.7k 



Male Clusters
Low risk groups 20.7k (63%)

● Group 1: 3.5k (11%)

25-35y, healthy with fit body figure and good 

lung functions

● Group 2: 6.4k (19%)

30-40y, slightly high risk of fatty liver and obesity

● Group 3: 10.7k (33%)

>40y, low risk of fatty liver, slightly higher blood pressure

Mainly received high review scores

Group 1 stick to healthy habits

Group 2 and 3 need regular checkups
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Male clustering, t-SNE embedding



Male Clusters
High risk groups 12.2k (37%):

● Group 4: 8.2k (25%)

>50y, relatively high fatty liver risk

● Group 5: 2.5k (8%)

40-50y, very high blood lipids (fat)

● Group 6: 1.5k (4%)

40-50y, high body fat, very high

risk of fatty liver and obesity

Consult doctors

Control diet and alcohol assumption 

More physical exercises

○
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Male clustering, t-SNE embedding



●
8.2k

Old, fatty liver

10.7k

3.5k

6.4k

Middle to old 

aged, healthy

Young, 

healthy
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1.5k

2.5k

Middle-aged, 

potential fatty 

liver

Severe fatty 

liver, obesity

High blood lipids

low risk  
20.7k

high risk  
12.2k

Male Clusters



Discussions
● Interpretable groups consistent with review scores  

○ with synthetic data

● Provide medical interpretation of each group

● Results consistent with the high risk diseases we wanted to detect 

● Other common diseases not considered

○ Diabetes (since not fasting results)

○ Osteoporosis (since we only have bone mineral mass instead of density)
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Conclusion
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Wrap Up

● Synthetic data exploration

● Medical understanding

● Outlier handling

Data Understanding 
& Handling

Find Indicators for 
General Health

Define Health 
Classes

● Biological age prediction

● Review score prediction

● Hierarchical clustering

● Health classes definition
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Conclusion and Value of our Work
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• Interpretive clusters

• Individual recommendations

Define health classes

• Medical domain knowledge

• Limitations and potentials

Synthetic health data



Thank you for listening! 
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