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Abstract

The implementation of stents to widen blocked coronary arteries can prevent a patient
from developing a heart attack and thus save lives. However, like all other medical pro-
cedures, this operation is not without risk for the patient. Possible complications include
myocardial infarction, cardiac death, and eventual revascularization. Target Lesion Fail-
ure (TLF) is a generic term for adverse events and is commonly used as indicator of long-
term success for the procedure. In 2016, the German company BIOTRONIK introduced
Magmaris, its newest-generation fully bioresorbable stent. Since then, BIOTRONIK is
conducting an extensive study with the aim to increase the product’s security, and max-
imize the chance of recovery for every single patient. The study monitors 2,066 patients
who received Magmaris from before the procedure until several years after. In this project,
two main research questions were considered.

(1) Given patient data available prior to stent implantation, is it possible to distinguish
between the sub-cohorts of patients who develop TLF and those who don’t? If so, this
would allow for a more precise benefit-risk estimation and better monitoring for high-risk
patients. One approach to this question is to model it as a Binary Classification problem.
Given a patients data, we try to predict if TLF will happen or not. To solve this, different
methods are applied, namely Logistic Regression, Random Forests, Neural Networks, K-
Nearest Neighbours and XGboost. Ultimately, none of those achieve desired accuracy.
However, a majority of these methods is able to correctly classify the same subset of
patients. This suggests that patients can be clustered into two groups: Those for whom
TLF can be reliably predicted and those for whom it is difficult. It might be valuable
to further investigate this clustering. Another approach is Survival Analysis. There are
three primary goals of survival analysis: to estimate and interpret hazard functions from
the data, to compare survival functions, and to assess the relationship of explanatory
variables to survival time. Survival analysis provides a great tool for analyzing the time
to an event type of data, which is very common in any clinical trial. The first two tasks
are done by Kaplan-Meier estimation and Log-rank test, and we use Cox Proportional
Hazards Regression to solve the third task. We select 17 features, of which the survival
curve is significantly different among subgroups. Furthermore, we obtain a Cox model
that can predict time-to-TLF using 7 features, and achieve an accuracy of 68% in the
sense of correct ordering.

(2) Can causal relationships between procedure parameters and the occurrence of TLF
be identified? If such causal relationships are known, the operating physician can actively
intervene on the procedure parameters to achieve a more ideal outcome. In order to
quantify such causal relationships, the Causal Inference framework is used. To assess the
average causal effect of eight treatment parameter ratios, an assumed causal structure of
the data generating process based on expert knowledge is defined using a causal graphical
model. By applying modified methods from the python framework Ananke-causal, the
presumed causal effects are identified and estimated. We consider 95% percentile boot-
strap confidence intervals. The estimated effects are in general too close to zero to indicate
significance. Therefore, we cannot deduce recommendations for specific treatment ratios
that might improve the TLF outcome. However, three of the ratios exhibit a slight shift
of the causal effect away from zero. This might indicate some significance of the related
treatment decisions for the TLF outcome and could be further investigated.
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Nomenclature

ACE Average Causal Effect

ADMG Acyclic Directed Mixed Graph

AE Adverse Event

BMS Bare Metal Stents

BRS Bioresorbable Stents

CABG Coronary Artery Bypass Grafting

CAD Coronary Artery Disease

CD Cardiac Death

CK-MB Creatine Kinase Myocardial Band

CVD Cardiovascular Disease

DAG Directed Acyclic Graph

DES Drug-eluting Stents

GLM Generalized Linear Model

IPW Inverse Probability Weighting

ML Machine Learning

PCI Percutaneous Coronary Intervention

TLF Target Lesion Failure

TLR Target Lesion Revascularization

TV-MI Target Vessel myocardial infarction
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1 Introduction

Worldwide, cardiovascular diseases amount to up to 32 percent of all deaths. This number
is estimated to grow even larger in the following decades [11]. The largest subgroup of
CVD are coronary arterial diseases (CAD), where the heart’s major arteries become dam-
aged or diseased. In most cases plaque gradually accumulates in those vessels, eventually
limiting the blood flow through the heart. This is noticeable through e.g. chest pain or
shortness of breath. In the most extreme cases blood begins to clot and the vessel gets
completely blocked, causing a heart attack.

The two major approaches in CAD treatment are percutaneous coronary intervention
and coronary artery bypass grafting. CABG entails open-heart surgery, and is not the
interest of our project.

In PCI a stent, a small tube made of mesh, gets inserted into the affected vessel to
widen it and restore the natural blood flow. The whole procedure, depicted in figure 1,
can be broken down to the following steps. First, a thin guide wire gets inserted into
the artery. Using this wire the physician delivers an inflatable balloon surrounded by the
non expanded stent to the damaged vessel region. Under high pressure the balloon is
then inflated, causing stent and vessel to expand. The stent now fits tightly against the
widened vessel wall and supports the vessel, preventing it from contracting. Subsequently,
balloon and guide wire are removed from the artery while the stent remains.

Different types of coronary stents are available. First-generation, bare-metal stents
(BMS) only consist of metal mesh. Drug-eluting stents (DES) are additionally coated with
drugs, inhibiting tissue growth and reducing the risk of restenosis. Although DES were a
huge improvement over BMS, they still pose a high risk for late stent thrombosis. This
led to the development of fully bioresorbable stents (BRS). After temporarily supporting
the vessel wall, BRS will eventually be resorbed when no longer needed. This leaves no
triggers for late stent thrombosis while additionally not limiting future treatment options
[10].

Magmaris is a sirolimus-eluting bioresorbable magnesium scaffold developed by the
German company Biotronik. In two premarket studies BIOSOLVE-II and -III with 184
enrolled patients, Magmaris showed good behavior and was CE-certified in June 2016.[19]

Figure 1: Stent implantation procedure (PCI) [12]
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After commercial launch, to “assess the safety and performance of the Magmaris
sirolimus-eluting bioresorbable magnesium scaffold in a large patient population”[19],
Biotronik initiated the BIOSOLVE-IV study. The study accompanies patients who re-
ceive Magmaris implants starting before the procedure until five years later. In total 2,066
patients from 23 countries were enrolled. At time of entry patients need to fulfill strict
inclusion and exclusion criteria. Among others, a maximum of two single de novo lesions
in two different large epicardial vessels is required.

The study’s main objective is to track target lesion failure (TLF), which consists of
“cardiac death, target-vessel myocardial infarction, coronary artery bypass grafting, and
clinically driven target lesion revascularization (TLR)”[19].

The goals of this project were

1. to identify patients likely to experience TLF after receiving Magmaris. This is done
using data from BIOSOLVE-IV up until procedure and applying classic machine
learning approaches.The incentive is to allow for more precise, patient tailored,
benefit risk estimations prior to implanting Magmaris;

2. to perform time-to-event analyses in order to estimate the risk of getting TLF at
different time points within the 5 years of study, based on information from screening
and procedure;

3. to measure the impact of ratios of procedure parameters like lesion length to stent
length on TLF, by using methods from causal inference, as the available BIOSOLVE-
IV data is non-randomized.

In general, our main motivation is to aid in increasing the performance of Magmaris by
efficiently choosing procedure parameters.

2 Data

2.1 Study Structure

Data collection for BIOSOLVE-IV patients starts with study enrolment and continues up
to five years after Magmaris implantation. Figure 2 depicts the principal steps of the
study and essential features recorded.

Figure 2: Study design of BIOSOLVE-IV [12]
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After enrolment, baseline clinical data is collected for each patient. This includes
demographic features, inclusion/exclusion criteria and medical history as well as known
risk factors. Additionally, the patients answer the EQ5d questionnaire for assessing their
quality of life. Prior to PCI a 12-lead ECG is performed, the patient’s ischemic status is
assessed, and cardiac enzymes are measured.

Prior to PCI, the physician examines the lesion. Here, location of the damaged ves-
sel and main lesion characteristics like length, angulation or calcification are recorded.
Additionally, the stenosis pre-procedure is measured in percent.

During PCI, all device related features are documented. For balloons this includes for
example the type of balloon as well as length, diameter pre- and post-dilatation, or the
maximal applied pressure. For stents, among others, length and diameter are reported.
Additionally, non-device related features as medication before and during surgery are
documented. After PCI, the vessel’s stenosis is measured again and it is reported whether
any adverse events happened.

To judge the patient’s health status before hospital discharge, the EQ5d questionnaire
is filled again. Also, a 12-lead ECG is performed, and the patient’s ischemic status and
cardiac enzymes are measured. Furthermore, it is reported whether any adverse events
happened since the procedure.

After hospital discharge each patient remains in the study for five years. During this
time there are regular follow-up appointments, namely after six months, twelve months
and thereafter annually. At these follow-ups, it is checked whether any adverse events
occurred since the last appointment. Additionally, the EQ5D questionnaire is filled, and
the patient’s ischemic status is assessed.

The final dataset is divided into more than forty different subsets, each corresponding
to a specific study segment. In total, it contains more than 500 features per patient.
At the time of this project all 2,066 patients had been enrolled. However, hardly any
patient had completed the study. Thus, not all features are available for all patients.
Additionally, there is occasional missingness. That is, sometimes features are not filled
for no obvious reason.

We infer the TLF label from adverse events recorded during and after PCI. It is
important to note that for a patient still enrolled in the study, the only statement that
can be made is whether he has or has not yet suffered TLF.

2.2 Preprocessing

The used preprocessing pipeline consists of seven different steps.
It starts by loading all available data, given in more than 40 different subsets, provided

in *.csv format.
The remaining steps are split up into the following.

2.2.1 Feature Selection

Closely following previous work [12], different features, available until the state of Hospital
Discharge, are used and taken from the respective original *.csv files. Different sets of
relevant features can be used to be plugged into the pipeline. The here used feature set
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that lead to the gained results can be found in Appendix A. This includes overall 72
different raw features.

2.2.2 Nested Questions Handling

Much of the data collected is not independent. This leads to inconsistencies that have to
be handled during preprocessing. Most commonly, features are missing conditioned on the
value of a previous feature. The reason for this are nested questions. Figure 3 exemplary
shows features collected when measuring creatine kinase myocardial band (CK-MB) prior
to the stent implantation and when administering heparin. In both cases, if the first
question is answered with “no”, none of the following features are recorded. Although this
makes sense, missing feature values pose a problem for most machine learning approaches.
Because of this, missing features are filled as well as possible. For the administration of
heparin, there exists an obvious solution: If no heparin was given, one can assume a value
of zero of arbitrary unit. However, if no CK-MB measurement was done, no such thing
can be done. Either patients with missing entries have be dropped or, if possible, the
features have to be one-hot encoded as described in 2.2.6.

Figure 3: Features for CK-MB and Heparin in BIOSOLVE-IV

2.2.3 Unit Conversion

Another type of inter-feature dependency appears in form of measurements. Commonly,
quantities, for example the dose of administered medicine, are recorded in different units.
Therefore, it is necessary to convert the values of those quantities according to the used
unit to a baseline unit. If this is not possible, e.g. the given unit cannot be converted
into the base unit, the respective value gets replaced with NaN.

2.2.4 Multiple Patient Occurrences

Occasionally, features are filled several times for the same patient. An example for this
is a patient having multiple lesions and thereafter getting multiple stents. All lesion-
and stent- related features are not unique for this patient. To get a resulting homoge-
neous dataset, those multiple occurrences have to be tackled. Different approaches are
implemented and used for this.

1. Keep first : Keeping the first sample for duplicate features and dropping all further
appearances and information.
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2. Keep least NaN : Some samples per patient are only sparsely filled. For every patient,
this approach keeps the sample with the least amount of NaN s and excludes all
other appearances. A major drawback of this approach, as well as of the above
mentioned, is a loss of data. If underlying causes for developing TLF are located in
these multiple occurrences, dropping them deletes this information and the hidden
structures may not be found.

3. Widen dataset : To prevent dropping any information, this approach aims to keep
all samples of a patient. Therefore, all further occurring samples are taken and
their information get appended to the first one. A major drawback is that this
approach leads to massive - but imbalanced - increase of features for some patients.
All patients with less samples gain a huge amount of new NaN s. Even though this
approach is implemented in the pipeline, because of its major drawback, it was not
used.

A further approach, to keep the information of multiple samples per patient without
increasing the amount of NaN s could be a mixture: Mixing/Aggregating the information
of all occurring samples and keeping the mean, sum or similar as resulting information
for that feature.

2.2.5 Label Generation

In order to use later in binary classification, survival analysis, and causal inference, labels
have to be derived manually. Two different labels were derived, namely TLF label and
TimeToTLF, to be later used for the aforementioned methods respectively.

For the binary TLF label, four different subcategories under the adverse events are
considered: CD, TV-MI, TLR and emergent CABG. After different lists of patients be-
longing to each of the TLF cases were created, those lists are merged into one big, single
list. In order to have a set of unique patients, the duplicates were removed from the list.
Lastly, the patients in the respective set were assigned the label 1, which indicates that
they developed TLF, while all others were assigned 0.

In order to derive the TimeToTLF label, an algorithm was needed to overcome the
right-censored structured of the data: There were patients who already developed TLF,
some terminating the study early and some that haven’t yet developed TLF (while it is
not known how their health status will be at a later point). Besides, the enrolment dates
of the patients were also different from each other. Therefore, the following logic was
implemented: If a patient already developed TLF, then the time interval between the
procedure time and TLF event time was assigned as TimeToTLF label of the respective
patients. If a patient terminated his/her study early (which might include also death),
then the time interval between the procedure time and early termination time (or time of
death) was assigned as TimeToTLF label of the respective patients. Lastly, if none of the
aforementioned cases were valid, then the time of the whole study (1825 days) is assigned
for the respective patients. All values of the TimeToTLF features are in terms of days.

2.2.6 Feature Encoding

Many machine learning methods, as well as causal inference and survival analysis, require
input data to be numeric. Therefore, before applying these methods, features have to be
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encoded by conversion into numeric values.
As a first step, each feature is investigated and classified manually in terms of the

following scheme:

• Numeric: Features that are already numeric. Here no further transformation is
made.

• One-hot: Features, containing nominal values, are one-hot encoded. This includes
for example the feature which contains the diseased vessel’s location. Besides, one-
hot encoding is applied to features with high missingness in order to get rid of NaN
values.

• Categorical: Features with values that can be mapped to integers as their values
are ordinal. One example for such a feature is the calcification of the target vessel,
which takes the values “None”, “Mild”, “Moderate” and “Severe”. This class also
includes binary features that have values of either “yes” or “no”.

After manually classifying the features, conversion is done according to the previous
scheme. Using the presented encoding techniques causes the number of features to increase
up to 111.

2.3 Statistical Analysis

Before implementing an approach to learn the data, either for binary classification or
survival analysis, it is crucial to gain substantive insight into patients who develop TLF
and into those who do not. Therefore, we provide some descriptive statistics and visual-
izations before engaging into prediction tasks. Unsurprisingly, only few patients develop
TLF, resulting in a highly unbalanced dataset - as is very common in medical diagnostic
data. Here, approximately 9% of the patients experience TLF, while approximately 91%
do not suffer from this.

To start off, Figure 4 demonstrates marginal densities of chosen continuous features,
from those chosen in 2.2.1, separated by patients who developed TLF and those who
did not. Even though both subcohorts are somehow of different shape for all shown
features, they overlap massively. Both mean and standard deviation tend to be similar
for both groups of patients. Table 1 provides the numerical analysis of mean and standard
deviation of the chosen features. The distributions of other features are very similar to
the shown ones.

Another approach to test significant differences between the subcohorts of TLF and
Non-TLF patients is the calculation of the p-value. In order to see whether the differences
in the means demonstrated in Table 1 are in fact negligible we employ hypothesis tests.
We set the significance level α = 0.05 and reject the null-hypothesis for p-value smaller
or equal to α. To implement a suitable test to calculate the associated pairwise p-value
for each feature, one has to distinguish between numerical/continuous data and categori-
cal/binary data. Point-biserial correlation between the TLF outcome and the respective
feature is calculated for continuous data where the null-hypothesis assumes no correlation.
Chi-squared test - null-hypothesis assuming independence of both variables - is used for
categorical and binary features. Before performing the chi-squared test, the data gets
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Figure 4: Density of continuous data for TLF patients and Non-TLF patients

splitted into both cohorts to calculate the p-value between the contingency tables of both
groups. The resulting values claim 13 of the used features to be significantly different for
both patient cohorts. Although this cannot be confirmed visually, because 7 of those 13
are non-numeric, the results are promising for later binary classification.

3 Machine Learning

3.1 Binary Classification

To gain an overview about the suitability of the chosen variables to express the huge
amount of available information, binary classification was introduced. From clinical per-
spective, it is of special interest if doctors would have an idea who is likely to develop TLF.
The properties of the given dataset suggest two different proceedings to construct a binary
classification model: (1) Assuming the available time information not to be relevant for a
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Feature TLF patients Non-TLF patients
Age at enrolment 60.08± 11.08 62.02± 10.48

Stenosis pre-procedure 14.76± 3.13 14.25± 2.94
Max. Pressure applied

pre-procedure
14.62± 3.21 14.62± 3.44

Balloon length
pre-procedure

1.74± 1.02 1.88± 1.44

Table 1: Mean and standard deviation of chosen features for TLF cases compared to
Non-TLF cases

valid prediction. As a result bagging all chosen features together to afterwards fit a cor-
responding binary classifier; (2) On the other hand, additionally taking time information
into account to implement a time series classification algorithm.

3.1.1 Bag Of Features Approach

To bag all features for binary classification, all time information was discarded and the
dataset was treated as if it had been recorded at the same step in time for all features.
Widely-used different Machine Learning models were implemented independently. Over-
all, five different models were used, being K-Nearest Neighbors, Random Forest, Logistic
Regression, XGBoost and a Neural Network consisting of several Dense Layers.

The Neural Network consists of four hidden (dense-) layers with decreasing number
of neurons per layer. To prevent the network from overfitting, numerous regularization
techniques between the individual layers [20] are used. Starting with Gaussian noise on
the input, each layer has L2 activation regularization, batch normalization and dropout.
To evaluate the performance of the model, cross validation with five folds is used, making
sure that every patient is exactly once in the test dataset for the model prediction. Before
performing a train-test split, patients and features with more than 20% missingness are
excluded. Thereafter, 13 patients are not included in the resulting dataset. All further
remaining NaN’s are being ignored by the network due to a masking layer. Then, 80% of
the dataset is used in each fold to train the network while 10% is used for validation and
10% for testing. To ensure that every patient is exactly once in the test dataset, nested
cross-validation is used, resulting in ten different models. Each two of the networks share
the same training dataset with switched validation and test data. In the end, each of the
ten networks performs a prediction on the respective, unique test dataset. The results
are stacked together and result in a confusion matrix containing a prediction for every
considered patient.

Next to this, the classical Machine Learning techniques are implemented. The
main difference to the neural network is that a Random Search is performed for each of
these algorithms before evaluating. The used parameter ranges were kept small around
the respective default value when performing the Random Search. A five fold cross val-
idation is done as well, resulting in the same kind of stacked confusion matrix as for
the Neural Network. In contrast to the Deep Learning approach, different techniques
for NaN imputation are applied. This includes KNN-Imputer [18] for numerical data,
Simple-Imputer, using the most frequent value, for categorical and binary data, and the
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oversampling technique SMOTE [3] for tackling the class imbalance. For categorical and
binary data, the Simple-Imputer is necessary to make sure to only impute values that are
already given in the data, avoiding to impute floating points or artificial data that implies
wrong information. KNN-imputation for numerical data was used, assuming more realis-
tic imputations. Instead of imputing a static value for all NaN’s of a given feature as the
Simple-Imputer does, KNN-imputation is dynamic with respect to the nearest appearing
values.

Performing this, mainly two findings were observed:
1. The dataset as a whole is hard to learn for all kinds of implemented classification

algorithms. Especially the Neural Network performs very poorly: While the (balanced)
accuracy on the train dataset is almost 100% for all folds, accuracy drops down to 50%
during test time.

Figure 5: Result of evaluated Neural Network - stacked Confusion Matrix

Figure 5 shows that the Neural Network is randomly guessing the label during predic-
tion. The proportion of predicted TLF cases is almost the same as in the original dataset.
With approximately 9%, the proportion of predicted TLF cases is almost the same as in
the original dataset. Even high regularization cannot prevent a rather low-dimensional
model, approximately 8300 times more training points than trainable parameters, from
overfitting.

Similar to the Neural Network, the classical Machine Learning algorithms perform
poorly on the whole dataset. All of them achieve only low (balanced) accuracies, approx-
imately 50% (see Figure 6). However, most of them mainly classify all patients as TLF,
in contrast to the Neural Network that classifies most patients as Non-TLF. Overall, all
models suffer from high generalization gaps.

2. Using the classical Machine Learning algorithms by majority vote, it is possible to
find certain subcohorts in the dataset, referred to as easy and hard cases for both classes
- TLF and Non-TLF. Patients are denoted as easy, if at least three of the four models
(excluding the Neural Network because of random guessing behaviour) correctly classify
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Figure 6: Stacked Confusion Matrices of classic Machine Learning approaches

them as TLF/Non-TLF. By applying this method, we can separate both classes each into
two subcohorts - 72 easy, 92 hard TLF cases and 381 easy, 1426 hard Non-TLF cases.
Further investigations were done to evaluate why most of the models are able to correctly
classify those easy cases while failing on the hard ones. SWe are especially interested in the
comparison between easy TLF cases, hard TLF cases and all Non-TLF cases. To evaluate
this, all features were compared for easy TLF and Non-TLF patients using independent
two-sample two-sided t-test with assuming non-equal variance for numerical features and
chi-square test of independence of variables in a contingency table for categorical or binary
features1. Deriving a significant difference between both subcohorts for a p-value ≤ 0.05,
leads to a significant difference for the following features as summarized in Table 2.

Whereas the feature distributions of easy TLF cases mostly differ visibly from Non-

1Chi-square test was only performed if a binary feature contains at least five positive samples. Oth-
erwise, this features does not contain enough information to assume significance.
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Feature P Value
easy TLFs
72 patients

hard TLFs
92 patients

Non-TLFs
1807 patients

Anti-platelet medication
I loading dose

≤ 0.0001 93.06% 58.70% 63.59%

Age at time
of enrolment

0.00139 58.17± 9.57 62.00± 11.92 61.99± 10.51

Lesion length 0.00569 16.12± 4.00 14.90± 5.54 14.76± 3.89
Stenosis pre-procedure 0.00311 85.14± 8.17 81.92± 11.57 82.11± 10.67

Magmaris scaffold length 0.00613 20.69± 3.78 19.57± 4.04 19.41± 3.87
History of previous

myocardial infarction
0.01032 8.33% 28.26% 21.64%

Number of previous
interventions

≤ 0.0001 0.18± 0.51 0.72± 1.40 0.48± 1.04

Gender = Male 0.00608 88.89% 81.52% 73.77%
Vessel = LAD 0.00090 72.22% 53.26% 48.42%

Lesion location =
Prox LAD

≤ 0.0001 41.67% 28.26% 19.92%

Table 2: Distributions of easy and hard TLF cases compared to all Non-TLF cases for all
features with significant difference between easy TLF and Non-TLF patients

TLF cases, the distributions of hard TLF cases are very similar to Non-TLF cases, see
Table 2. This could explain why all models perform poorly on those hard TLF patients
and why these models often misclassify Non-TLF patients as TLFs. These results may
help doctors in forecasting patients to develop TLF, e.g. a younger, male patient with a
longer lesion with no previous interventions that never had a myocardial infarct before.

3.1.2 Time Series Approach

As shown in subsection 2.1, patient data is recorded at multiple steps in time (e.g. at
Screening, Procedure, Hospital Discharge, Follow-Up) sustaining the intuition that the
evolution of features over time may indicate the risk of developing TLF. Essential for every
kind of time series classification algorithm is the availability of (at least one) features over
multiple steps in time. This dataset contains multiple features at various different steps
in time. However, except features from the Follow-Up visits, none of those features occur
at different visits. Furthermore, the features measured at the Follow-Up visits are only
sparsely available. Due to the fact that the given dataset is the result of an still ongoing
long-term study, many Follow-Up visits are not yet performed for most of the patients.
Taking only the first three (of six possible) Follow-Up visits into account already cuts off
half of the available patients. For those two reasons - only Follow-Up features occurring
for at least three different steps in time; and even those being sparsely available - time
series classification was not further pursued.
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3.2 Survival Analysis

In classification, we were interested in studying how risk factors were associated with
presence or absence of TLF. Sometimes, though, we are interested in how a risk factor or
treatment affects time to TLF. Or we may have study dropout, and therefore subjects who
we are not sure if they had TLF or not. In these cases, classification is not appropriate.

Survival analysis is used to analyze data in which the time until the event is of interest.
It is especially suitable for analysing right censored data, which often occurs in medical
studies. The response is often referred to as a failure time, survival time, or event time.
In our case, we want to estimate the time to TLF after procedure.

3.2.1 Theoretical background

Here, we start by defining fundamental terms of survival analysis, including survival time
and event, censoring, survival function and hazard function.

Event is something we want to observe, in our case the occurrence of TLF. The measure
of interest in our study is the time until the event, commonly called survival time, which
in our study is the time from the procedure to the occurrence of TLF.

As mentioned above, survival analysis focuses on the expected duration of time until
the occurrence of an event of interest. However, the event may not be observed for some
individuals within the study time period, producing the so-called censored observations.
Censoring may arise in the following ways: a patient has not (yet) experienced the event
within the study time period, or a patient is lost to follow-up during the study period.
This type of censoring, called right censoring, is handled in survival analysis.

The survival probability, also known as the survival function S(t), is the probability
that an individual survives, in our case not getting TLF, from the time origin (e.g. pro-
cedure) to a specified future time t. The hazard, denoted by h(t), is the instantaneous
rate of getting TLF at time t. Considering T to be a random variable denoting the time
of event, S(t) and h(t) can be expressed as follows

S(t) = P (T > t), h(t) = lim
∆t→0

S(t)− S(t+ ∆t)

∆t · S(t)
(1)

where P is the probability measure of T .
When we predict TimeToTLF ahead of time, all other meaningful features during

screening and procedure are considered as covariates.

3.2.2 Kaplan-Meier Curve

A plot of the Kaplan-Meier estimator [8] is a series of declining horizontal steps which,
with a large enough sample size, approaches the true survival function for that population.
The value of the survival function between successive distinct sampled observations is
assumed to be constant.

An important advantage of the Kaplan-Meier curve is that the method can take into
account some types of censored data, particularly right-censoring, which occurs if a patient
withdraws from a study, is lost to follow-up, or is alive without event occurrence at the
last follow-up. When no truncation or censoring occurs, the Kaplan-Meier curve is the
complement of the empirical survival function.
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Time n.risk n.event Survival std.error Lower 95% CI Upper 95% CI
0 2063 9 0.996 0.00145 0.993 0.998

365 1916 124 0.935 0.00542 0.925 0.946
730 1876 36 0.918 0.00606 0.906 0.930
1095 1867 7 0.914 0.00618 0.902 0.927
1460 1865 1 0.914 0.00619 0.902 0.926
1825 1864 0 0.914 0.00619 0.902 0.926

Table 3: Result of Kaplan-Meier estimation without grouping - TLF by year

By plotting the Kaplan-Meier curves, each grouped by one feature from screening or
procedure, survival time is shown as a curve for different groups. Further, performing a
log-rank test quantifies the correlation between the observed feature and TimeToTLF.

Table 3 shows that among the 2063 patients, from whom the TimeToTLF can be
computed, there are 91.4% who did not experience TLF before the start of our study.
Most TLF events happen in the first year after procedure, some happen in the second
year and very few happen after three to five years. In the plot, small vertical tick-marks
state individual patients whose survival times have been right-censored. Performing log-
rank tests shown in Figure 7, we see that the hazard functions between young and old
patients are significantly different with p-value 0.002, and the hazard functions of males
and females are also significantly different with p-value 0.001. In other words, young
people and males have significantly higher risk of getting TLF. This surprising result
regarding age is very counterintuitive at first glance. An explanation might be that young
people have more active immune systems and therefore might have stronger reactions
against an implanted stent.

Figure 7: TimeToTLF by age (left) and sex (right)

Only observing simple features such as sex and age is apparently not enough for offering
any medical help. After performing log-rank test for all features from screening and
procedure, we obtained a list of features that have p-value less than 0.05, i.e. significantly
different hazard functions among different subgroups.
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Feature Grouping P-value Risk of TLF

Age
young: 25-49
old: 50-89

0.002 old < young

Gender
1: male
0: female

0.001 female < male

AE during procedure 1: yes; 0: no 0.09 no AEs < have AEs

Device deficiency 1: yes; 0: no 0.02 good device < bad device

Dose-area product
low: 0-788
medium: 789-2543
high: 2544-5548

0.003 low < high < medium

Contrast product
low: 0-159
medium: 160-209
high: 210-2400

0.005 medium < low < high

Different vessels LAD; LCA; LCX; RI ≤ 0.001 LCX < RI < LCA < LAD
Number of pre-dilation balloons 1; 2 or more 0.007 1 < 2 or more

Number of post-inflations (≤ 2); (≥ 3) 0.03 (≥ 3) < (≤ 2)

Stent inflation time (sec)
fast: 1-14
slow: ≥ 15

0.004 slow < fast

Magmaris scaffold length (mm)
short: 0-24
long: 25-30

0.03 short < long

ASA prior to procedure
(daily dose) (mg)

few: 0-75
some: 75-100
many: 100-1000

0.009 some < many < few

Patient received ASA
(loading dose) (mg)

few: 0-499
many: 500-1000

0.01 few < many

Anti-platelet medication I
prior to procedure (daily dose)

few: 0-74
some: 75-179
many: 180-600

0.009 some < many < some

Anti-platelet medication I
(loading dose) (mg)

1: yes; 0: no 0.04 no < yes

Stent diameter vs.
pre-dilation balloon diameter

small: 0-0.99
large: 1-3.5

0.009 large < small

Maximum pressure applied vs.
stent inflation time

small: 0-0.99
large: 1-15

0.002 small < large

Table 4: Features with different hazard functions between different groups

3.2.3 Cox Proportional Hazard Regression

The above mentioned Kaplan-Meier estimations are examples of univariate analysis. They
describe the survival according to one factor under investigation, but ignore the impact
of any others. The Cox proportional-hazards model [4] is essentially a regression model
commonly used in medical research for investigating the association between the survival
time of patients and one or more predictor variables.

The purpose of the model is to evaluate simultaneously the effect of several factors
on survival. In other words, it allows us to examine how specified factors influence the
rate of a particular event happening (e.g., getting TLF) at a particular time point. The
hazard function (1) can be estimated as

h(t) = h0(t)× exp(b1x1 + b2x2 + . . .+ bpxp) (2)

where (x1, x2, . . . , xp) is a set of p covariates, the coefficients (b1, b2, . . . , bp) measure the
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impact of covariates, and h0 is the baseline hazard, which is the hazard value if all xi’s
are equal to zero.

By performing Cox Proportional Hazard Regression (Cox-PH), we first pick all
features with low p-values from the Kaplan-Meier estimate to efficiently limit the number
of features and add efficiency, and we add the ratios of interest as features as well. Then we
perform a Cox regression, and test the proportional hazards assumption for each covariate,
i.e. whether the hazard rate is relatively constant over time. The assumption is satisfied
globally and individually with respected to all except for two features: the occurrence of
AEs during procedure and Anti-platelet medication I prior to procedure (daily dose). We
simply get rid of these two features, and use AIC [2], which estimates the quality of a
model considering both the goodness of fit and the simplicity of the model, to perform
feature selection.

Finally, we find a suitable model as shown in Figure 8 that can be used to predict
TimeToTLF, based only on several features from screening and procedure. The goodness
of the model is be estimated by Harrell’s C-index (Concordance index) [6], which tells the
proportion of observations that the model can order correctly in terms of survival times.
A C-index of 0.68 is although not as perfect as 1, but tells that the model is much better
than a coin flip with C-index 0.5.

We visualize the hazard ratios (HR) by creating a graphical summary of a Cox model
using forest plot. For each covariate, it displays HRs and their 95% confidence intervals.
P-values on the right denote the significance of a covariate when less than 0.05. Briefly,
an HR > 1 indicates an increased risk of getting TLF (according to the definition of h(t))
if a specific condition is met by a patient, while an HR < 1 indicates a decreased risk.

It is interesting to notice that when the ratio stent diameter / pre-dilation balloon
diameter is larger or equal to 1, the risk of getting TLF decreases up to more than 50%
comparing to when the rate is less than 1. However, the conclusion can be questioned,
since only in very few cases the rate is less than 1. It is also noticeable that if the rate
maximum pressure applied / stent inflation time is greater or equal to 1, the patient is 2
times more at risk of getting TLF than those with rates less than 1. The result coincides
with previous studies, saying that longer inflation time ensures a good extension of the
stent [7], while the pressure does not have significant effects [5].

4 Causal Inference

An alternative approach to better understand the occurrence of TLF is using methods
from causal inference, since standard methods from machine learning and statistics are
only able to discover association but not causality. Causal inference describes the process
of drawing conclusions from data about causal effects and quantifying them [1]. This is
especially relevant for the investigation of treatment effects in healthcare, based on data
from observational studies: Even if we find a statistically significant association between
a treatment variable and the outcome, for example with approaches as in section 3, we do
not know whether it was the treatment that led to the outcome or some other, perhaps
unobserved factor.

Consequently, the goal of this part of the project is to quantify the direct causal
effect that different treatment decisions, taken during the implantation of stents, have
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Figure 8: Result of Cox-PH regression. sex = {0: female; 1: male}, iscs = {0: AMI;
1: Stable angina; 2: Unstable angina; 3: Documented silent ischemia}, lcvessel = dif-
ferent vessels, pdprbnnum = number of pre-dilation balloons, cmasappd = ASA prior to
procedure (daily dose) (mg), ddstdia predbndia = Stent diameter / pre-dilation balloon
diameter, ddstmax ddstim = max. pressure applied / stent inflation time.

on the outcome of the procedure. We consider eight ratios of procedure parameters, like
balloon diameter to stent diameter, that were rated as useful by doctors who conduct
the procedure. Then we estimate the average causal effect of varying these ratios on the
TLF outcome for the patients. This is done based on the given patient data and on our
assumptions about their causal structure. Before specifying our approach, we give a short
introduction to the theoretical background.

4.1 Motivation

It is well-known that causation is not the same as association or correlation. For example,
higher ice cream consumption is positively correlated with an increase in violent crime
in New York, but neither does eating ice cream cause violent crime nor the other way
around. Instead, higher temperatures lead to both higher ice cream consumption and an
increase in violent crime [14], causing this so-called spurious association. Such a factor
that influences both the assumed cause and the assumed effect is called a confounder [13].

In medical research this is a common situation that can be illustrated with this project:
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We consider data of patients containing their medical history, the treatment they received,
and information about their recovery. We presume that on the one hand doctors make
treatment decisions based on their knowledge about the patients’ medical history, and on
the other hand the patients’ medical history influences the outcome of treatment. This
poses a problem when trying to determine the effect of the treatment on the outcome
based on the data: when a patient gets better after treatment, it is possible that only the
specific treatment they received made their situation better and they would have had a
worse outcome with another treatment. It is also possible that they would have felt the
same or even better without the treatment due to other factors of their medical history.

This problem exists in general, as it is not possible to simultaneously observe the out-
come of two different treatments on the same patient. The unobserved outcome is called
counterfactual. The resulting challenge is known as the fundamental problem of causal
inference [15]. One possible solution to circumvent this and still be able to accurately
quantify the causal effect of a treatment are randomized controlled trials. By randomly
assigning the different treatment options to the patients and comparing the outcomes to
those of a control group, possible confounders can be controlled [14]. Often this is not
possible due to ethical reasons or feasibility issues, and therefore only observational data
is available for inferring causality [17].

In that case, we need to make additional assumptions about the underlying causal
structure of the data generating process to be able to correctly quantify effects. Taking
only statistical association between two variables into account might lead to wrong con-
clusions, because any statistical relationship between two variables can be reversed by
additionally considering other factors [13].

In a classical example, sick patients are given the option of trying a new drug. Among
the patients who took the drug, a lower percentage recovered than among those who did
not take the drug, so the drug seems to have a negative effect. But, when additionally
grouping the patients by gender, the percentage of recovery is in both groups higher for
patients taking the drug, so the effect seems to be positive. This is known as Simpson’s
paradox and can be resolved by additional knowledge about the causal structure of the
data. For example, we might know that men recover more easily from the condition but
that they are less likely to take the drug. Then it is clear why the effect without taking
gender into account seems to be negative, while it is in fact positive: A randomly picked
drug user is more likely to be female and therefore less likely to recover. In other words,
being female is a common cause of drug taking and not recovering in this example [14].
Therefore, a mathematical framework to formalize assumptions about causal structure is
needed.

4.2 Theoretical Background

There are different approaches to mathematically formulate a theory of cause and effect:
the Neyman-Rubin Potential Outcomes Framework [15], Structural Causal Models, and
Causal Graphical Models established by Pearl [13]. These theories provide different lan-
guages for causality, but they are logically equivalent [15]. It can be useful to combine
individual aspects of for example potential outcomes and causal graphical models. In this
project we mostly rely on the theory of causal graphical models since they allow us to
formally encode cause and effect relationships in an intuitive way.
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We define a variable X to be the cause of a variable Y if Y relies on X for its value, i.e.,
changes in X lead to changes in Y [14]. Given a set of random variables, a causal graphical
model is a pair consisting of a directed acyclic graph (DAG) with the variables as vertices
and a joint distribution of the variables that together satisfy additional properties known
as the causal Markov condition2 [13], [15]. This condition requires that the model does
not only encode probabilistic information about conditional independence but also causal
information. The directed edges in the DAG correspond to direct causal relationships: If
X is a direct cause of Y , there is a directed edge from X to Y [14]. In the example of
Simpson’s paradox this means that there are two edges from a vertex Gender to Drug
and Recovery and an edge from Drug to Recovery as shown in Figure 9. The absence of
an edge between two vertices is an even stronger assumption since it rules out any direct
causal relationship between them for every individual of the considered population.

Figure 9: A graphical model, representing the relationship between Gender, Drug and
Recovery

Unmeasured confounders of two variables are sometimes represented as bi-directed
edges between the two variables. This makes the resulting graph an acyclic directed
mixed graph (ADMG) by extending the previous definition. The resulting properties of
the causal model and the adaptation of the theory can be found in [1].

To assess the effect of one variable on another we want to know how the system
behaves under an intervention on, for example, a treatment variable X, while keeping
everything else constant, similar to a randomized experiment. To be able to formalize the
idea of interventions, Pearl established the notion of do-calculus that allows formulating
interventions mathematically as do(variable = action) [13]. For instance, we can formulate
the intervention of giving each patient treatment A as do(X = A). It is important to note
that this is fundamentally different to conditioning on the observation X = A [14]. In this
case we narrow our focus on a subset of patients where the condition of having received
treatment A is fulfilled. Applying do(X = A), i.e., intervening by fixing the treatment
to be A for each patient, changes the system we are investigating. The intervention
corresponds to a new graph, where every link from other vertices into the vertex that was
intervened on is removed [14]. Therefore, P (Y |do(X = A)) is in general not the same as
P (Y |X = A).

Now we can define the parameter of interest: the average causal effect (ACE) [1] of a
binary treatment decision X on the outcome Y given by

ACE = E[Y |do(X = 0)]− E[Y |do(X = 1)]. (3)

2See [13] and [15] for formal definitions.
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This poses a challenge for computing the ACE, since we have not seen data from an in-
terventional distribution P (Y = y|do(X = x)). But this probability is needed to compute
the counterfactual mean E[Y |do(X = x)][15].

If the ACE is computable in terms of the observational distribution of the data given
the graph structure, it is called identifiable [13]. For this calculation we need the three
rules of do-calculus [13]. They guarantee, that under certain conditional independence
assumptions, observations and actions can be inserted, deleted, and exchanged [13]. For
example, by setting the treatment for every patient in Simpson’s paradox to be the new
drug, we remove the causal influence of gender on the decision to take the drug. For
the graph in Figure 9, this means removing the edge from Gender to Drug. Given this
intervention, the marginal distribution of gender stays the same, but drug use and gender
become causally independent [14].

To compute the ACE with respect to a causal graph, we need to transform the counter-
factual mean into statistical quantities that we can estimate from the data. Denoting the
parents of a vertex X in the graph by pa(X), the so-called backdoor-adjustment formula

E[Y |do(X = x)] =
∑
z

P (Y = y|X = x, pa(X) = z)P (pa(X) = z) (4)

= E[E[Y |X = x, pa(X)]]

can be derived [14], [1]. The procedure is called adjusting or controlling for the parents of
X. It describes blocking every path between X and Y that has an edge into X, i.e., is a
so-called backdoor path, by conditioning on pa(X) [14]. Then intervening with do(X = x)
and conditioning on X = x have the same effect on Y [13]. Intuitively, this means in
Simpson’s paradox to first calculate the effect for men and women separately. Then we
average both individual effects taking the proportions of men and women in the population
into account [14]. Sets of vertices like the parents of X that achieve this blocking and
that do not contain children of X are said to satisfy the backdoor criterion [14]. In the
case that X is multivariate by having multiple interventions, there exists a generalization
of this formula, called g-formula [13].

When defining a causal structure, we often assume unmeasured confounders to exist.
Therefore, we do not always have corresponding data to all parents of a vertex X [14].
Then the effect of X on Y is either not identifiable or it is possible to adjust for other
sets of variables [14]. This can be done with a set Z of vertices satisfying the backdoor
criterion by substituting Z for pa(X) in Equation 4 [14]. If such a set does not exist,
there sometimes is another solution called front-door adjustment. A set of vertices that
intercepts all directed paths from X to Y with no un-blocked additional backdoor paths
between this set and X and Y satisfies the front-door criterion. The effect can then
be computed via the front-door-adjustment formula, as X affects Y only through other
known variables [14].

After identifying the target parameter, standard methods from statistical inference can
be used to estimate it based on the given data [1]. Inverse probability weighting (IPW) is
a well-known technique that can be applied when the backdoor criterion is fulfilled for a
set Z [14]. By using factorization properties of causal graphical models, we can transform
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the adjustment formula in (4) to

E[Y |do(X = x)] =
∑
z

P (Y = y,X = x, Z = z)

P (X = x|Z = z)
.

The function g(x, z) := P (X = x|Z = z) is called the propensity score for each x and z
[14]. If this function is known, artificial samples from the post-interventional distribution
can be generated by re-weighting the probability P (X = x, Y = y, Z = z) of each observed
sample by the factor 1/P (X = x|Z = z) [14]. This means re-weighting the observed data
of units truly assigned X = x by the inverse of the normalized treatment assignment
probability P (X = x|Z) [1]. Then, we can count the frequency of the value Y = y for
each stratum X = x and therefore do not have to sum over all strata Z = z [14]. The
propensity score can be estimated using standard regression techniques [14]. IPW is simple
to implement but inefficient and not applicable to all identified effects [1]. Therefore, other
estimators have been developed that are more efficient and applicable to causal structures
with unmeasured variables. An example is efficient augmented probability weighting (eff-
AIPW) for ADMGs [1]. A detailed description of eff-AIPW and other estimators can be
found in [1].

4.3 Approach

There are several Python frameworks for causal inference based on causal graphical models
available. Examples are DoWhy by Microsoft [16] or Ananke-causal developed at Johns
Hopkins University [1]. In this project we use Ananke-causal since it provides an easy
interface for estimating causal effects in three steps. First, reasonable assumptions about
the causal structure of the observed data must be made by defining a causal graph.
Then identifiability can be checked. If the effect is identifiable, Ananke provides different
methods for estimating causal effects.

To quantify the direct causal effect that different treatment decisions taken during PCI
have on the long-term outcome of the procedure, eight ratios of treatment parameters are
considered. An overview is given in Table 5. In the dataset used for causal inference
only features with at most 7% missingness are included. Then, all patients with missing
values are excluded and resulting features that only take one value are removed. The
resulting dataset contains 1789 patients including 154 TLF cases (11.6%). Checking the
value ranges of the considered parameters shows that only the balloon diameter in post
dilatation according to compliance chart (pdbndiacc) contains erroneous values outside
a realistic range of 2mm to 5mm. This parameter is contained in ratio 3 and 4. There-
fore, the investigation of those ratios considers a reduced dataset where patients with
pdbndiacc value outside this range were not considered. The resulting reduced dataset
contains 1766 patients including 151 TLF cases (11.7%).

Ananke requires the treatment variable to be binary. Therefore, we map the values
of the ratios to T = 0 or T = 1 depending on whether they strictly lie below or above
a pre-defined threshold. The median value of each ratio is chosen as threshold with the
aim of producing a balanced distribution of the treatment values. This is not possible
for all ratios, for example, ratio 1 takes the value 1 for about two thirds of the patients.
Consequently, the distribution of the treatment values 0 and 1 depends on whether 1
lies below or above the threshold. All values strictly below the threshold get mapped
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Ratio R Parameter 1 P1 Parameter 2 P2 Threshold
Binarization

T = 1 if

1 vessel diam. stent diam.
median

1
R ≥ 1

2 lesion length stent length
median

0.8
R ≥ 0.8

3 stent diam.
balloon diam. post dil.
acc. to compl. chart

median
0.93

R ≥ 0.9

4 vessel diam.
balloon diam. post dil.
acc. to compl. chart

median
0.93

R ≥ 0.9

5 vessel diam. balloon diam. pre dil.
median

1.0
R ≥ 1

6 max. pressure inflation time
median

0.6
R ≥ 0.6

7 stenosis post-proc. stenosis pre-proc.
mean
0.02

R ≥ 0.02

8
num. of balloons

pre dil.
num. of inflations

pre dil.
median

1.0
R ≥ 1

Table 5: Ratios of treatment parameters with R := P1/P2

to 0, while all values at or above the threshold get mapped to 1. The median value of
ratio 7 is already zero and it does not take values below zero since both parameters take
only non-negative values and the stenosis post-procedure is for most of the patients zero
percent. Therefore, the mean value 0.02 is used for a more refined result in this case.

We start with basic assumptions about the causal relationship and then make the
assumed structure more complex by incorporating more features of the data. The first
assumption is that the treatment, i.e., either of the eight ratios, is a direct cause for the
outcome given by the TLF label. Additionally, we want to incorporate the screening infor-
mation of the patients from enrolment containing information about sex, age, and medical
history. We assume that this baseline information about each patient influences the treat-
ment decision taken by the physicians as well as the outcome of the treatment. Based on
that consideration, we add it as a measured confounder of treatment and outcome.

There are different ways to model this, either by treating each feature as an individual
variable and therefore as an individual vertex, or by combining them to a multivariate
variable in a single vertex. When not adding any additional edges between the individual
vertices in the first model we implicitly assume those features to not have direct causal
relationships, which is unrealistic. Even if we add some edges between individual vertices,
it requires many assumptions about the causal structure that we are not confident to
make. Hence, the second model, where no assumptions regarding causality between the
component variables are taken, is preferred.

We also have information about the concomitant medication the patients received
during procedure. Since this is based on the baseline data about each patient, we add it
as a vertex with a directed edge from base to medication. It is conducted according to
hospital protocol, so we assume it to be causally independent from the treatment decision.
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Since according to the conducted survival analysis some medication features seem to be
relevant for the TimeToTLF outcome, we assume there to be a direct causal influence of
medication on the outcome. Because the baseline features can not capture every informa-
tion the physicians base, perhaps unconsciously, their decisions on, we assume there to be
an unmeasured confounder of treatment and medication. The resulting graph is shown in
Figure 10.

Figure 10: The hypothesised graphical model, depicting the effects on the TLF outcome

This graph is identifiable via backdoor adjustment. It can be argued that this graph
does not capture all relevant causal relationships since it does not assume the existence
of unmeasured confounding of treatment and outcome. Including this would render the
effect unidentifiable. A mediating variable intercepting the direct causal relationship from
treatment to outcome would be needed for identification. Since none of the variables in
the given data can serve this purpose, we do not include this unmeasured confounding in
the model.

Estimation of the causal effect with the framework provided by Ananke poses a chal-
lenge, since it does not support multivariate vertices. Providing tuples of several features
as values for the vertices leads to erroneous results, because they are not handled as
needed by the underlying regression models for estimating the propensity scores. Instead,
different tuples are interpreted as different categorical values. Given that these tuples can
contain more than 30 different features, this results in mostly unique tuples. The model
then overfits and is not able to return meaningful results.

By modifying the Ananke framework this challenge can be solved. In Ananke, the
required statistical quantities to compute the effect are estimated by fitting generalized
linear models (GLM) to the data. Those quantities include the propensity score P (T =
t|Z) of treatment T given a suitable set Z = {Z1, . . . , Zs} of vertices3 needed for standard
IPW, but also expectations conditioned on different sets of variables needed for eff-AIPW.
In our graph this set is provided by Base and Medication. The formula for fitting the
GLM used in Ananke is Treatment ∼ Base + Medication for our graph. By replacing
Base and Medication in the formula with all the features B1, . . . , Bn,M1, . . . ,Mm they
contain, we receive the correct formula Treatment ∼ B1 + · · · + Bn + M1 + · · · + Mm

for fitting a GLM to the data. Interestingly, for standard IPW, this coincides with the
formula resulting from a graph with individual base vertices and medication vertices.

We use eff-AIPW for our experiments since it is recommended by Ananke due to im-
proved robustness compared to IPW [1]. To obtain more robust results, we run bootstraps
with n = 2000 iterations to calculate 95% percentile bootstrap confidence intervals.

3The set used in Ananke is called Markov pillow. A formal definition can be found in [1].
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Ratio R LOR 0.025 quantile 0.975 quantile median
1 -0.017 -1.895 1.147 0.138
2 -0.281 -0.762 0.171 -0.299
3 0.093 -0.314 0.501 0.080
4 0.214 -0.167 0.597 0.208
5 -0.220 -1.720 1.145 -0.108
6 -0.060 -0.439 0.329 -0.064
7 -0.140 -0.937 0.593 -0.147
8 -0.378 -1.060 0.321 -0.351

Table 6: Causal effect as LOR and 95% percentile bootstrap confidence interval

4.4 Results

To estimate the causal effect of different ratios (Table 5) as treatments X on the TLF
outcome Y , several experiments are done as aforementioned. We calculate the causal
effects as log of odds ratios (LOR) following the formula

LOR = log(
P (Y = 1|do(X = 1))/P (Y = 0|do(X = 1))

P (Y = 1|do(X = 0))/P (Y = 0|do(X = 0))
).

This is the default behaviour of Ananke for binary outcome due to better interpretability,
since E[Y |do(X = x)] = P (Y = 1|do(X = x)) for binary Y . Additionally, we use
bootstrapping with n = 2000 to calculate 95% percentile bootstrap confidence intervals.
The combined results of the calculated effects and the corresponding confidence intervals
can be found in Table 6. Figure 11 shows a histogram of the bootstrapping results. In
Figure 12, the bootstrapping results for computing the causal effect as ACE according to
Equation 3 can be found for comparison.

It can be seen in Figure 11 that most of the bootstrap distributions of the LOR are
centered around zero, which implies insignificant causal effect, while three of the ratios,
namely, Ratio 2 (lesion length/ stent length), Ratio 4 (vessel diam./ balloon diam. post
dil. acc. to compl. chart) and Ratio 8 (num. of balloons pre dil./ num. of inflations pre
dil.), show a slight tendency to have a causal effect on the outcome, being approximately
centered around the bootstrap median values -0.30, 0.21 and -0.35 respectively. The
corresponding LOR values, calculated using all considered samples, are -0.28, 0.21, and
-0.38.

In order to have a better intuition, the odds ratios (OR) of the respective individual
LOR’s are calculated as OR = eLOR. This results in OR values of 0.76, 1.24, and 0.69 for
Ratio 2, Ratio 4, and Ratio 8, respectively. Considering the OR for each ratio, we deduce
the following:

• The probability of having a TLF outcome with a bigger value than 0.8 for Ratio 2
is 0.76 of the the probability of having a TLF outcome with a smaller value than
0.8, which might support the decision of using a bigger value than 0.8 for Ratio 2.

• The probability of having a TLF outcome with a bigger value than 0.9 for Ratio 4
is 1.24 of the the probability of having a TLF outcome with a smaller value than
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Figure 11: Distribution of log of odds ratios (LOR) for 8 different ratios on TLF out-
come. X-axis of each plot is clipped to the lower and upper quantiles of the respective
bootstrapping experiment for better visualization. nbin = 50

0.9. This might indicate that using a smaller value than 0.9 for Ratio 4 can be a
better approach.

• The probability of having a TLF outcome with a bigger value than 1.0 for Ratio 8
is 0.69 of the probability of having a TLF outcome with a smaller value than 1.0,
which can promote using a bigger value than 1.0 for Ratio 8.

Even if we assume those findings to be significant enough for recommending specific
treatment ratios, they do not always indicate clear action that should be taken. For
example, to increase Ratio 8 above the threshold 1, we can in some cases either increase
the numerator or reduce the denominator. It only gives a clear indication for action when
one of the parameters is fixed by patient characteristics like lesion length.

However, considering that the confidence intervals for the LOR of these ratios still
contain both a considerable amount of positive and negative estimates, we cannot assess
those shifts to be significant.

Furthermore, it can be seen in Figure 12 that the corresponding ACE values for the
different ratios are all centered closely around zero, indicating that the actual expectations
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differ very little. Each individual expectation, namely E[Y |do(X = 1)] and E[Y |do(X =
0)] for the 8 different ratios can be found in Appendix B. Given that those expected
values themselves are very small, this does not necessarily mean that there is no effect.
However, considering the relative difference of the values yields the same result as for the
LOR: even if we observe slight tendencies of the ACE of some ratios away from zero, given
the bootstrap confidence intervals this is not significant enough.

Based on those results, we can therefore not deduce a strong indication for action
regarding the considered treatment parameter ratios.

Figure 12: Distribution of average causal effect (ACE) for 8 different ratios on TLF
outcome. X-axis of each plot is scaled by setting the limits as the lower and upper
quantiles of the respective bootstrapping experiment for better visualization. nbin = 50

5 Conclusion and Outlook

Learning hidden structures in medical data is a hard task. Even though BIOTRONIK tries
to only include very similar patients in their study using various inclusion and exclusion
criteria, every patient has his unique behaviour. Especially in medical diagnosis it is
difficult to compare different patients. Various factors can be adjusted; every available
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feature could be the reason to develop TLF. Challenges with this particular dataset are
numerous. (1) The high amount of nested questions causes a variety of sparsely filled
features. Depending on whether the patient or physician filled in the parent question or
which answer was given, the respective feature is empty. (2) Almost all features were
given in String format, bringing on a big amount of encoding work during preprocessing.
(3) Patients with multiple occurrences per visit have to be tackled, resulting in a - possibly
crucial - data loss due to the here favored handling approach. (4) Different medication,
measured in distinct units, impedes to objectively compare patient characteristics and (5)
right-censored data aggravates reliable statements for all different approaches.

The performed binary classification, especially the Deep Learning approach using a
Neural Network, corroborates the assumption that this particular dataset is not easy
to learn. A highly regularized low-dimensional Neural Network is as well not able to
generalize as all other used classic Machine Learning approaches. Those are not even
performing well during training.

Nevertheless, it seems that for some of the patients it is easier to predict the devel-
opment of TLF than for others. These, here called easy patients, do have significantly
differing univeriate characteristics than the other cohorts, indicating that there could be
a reason for patients to be at higher risk to develop TLF than others.

Future work should be done including more and more of the available feature set to
identify underlying coherences that could not yet be found. Further improvements can be
accomplished once the study is heading to finish, providing a less sparse dataset, especially
on the performed Follow-Up visits. Another interesting approach could be to pursue the
latest step of the performed binary classification: Trying to distinguish between easy- and
hard-to-predict patients to be able to provide more sophisticated advices to the operating
physicians. Investigating on significant multivariate differences between those cohorts may
lead to further understanding which patient characteristic could be a reason for developing
TLF or which group of patients is at higher risk to do so. Even the information whether
a patient is harder-to-predict than others may help the operator to focus on this specific
group of patients.

Survival analysis provides additionally the risk of getting TLF over time. When mak-
ing a medical decision, a doctor can take a the result from the Kaplan-Meier estimation
and Cox model into consideration, and choose different treatments during procedure or
give special attention to patients more at risk after hospital discharge. In particular, we
select 17 feature that one can tell difference from and 7 features one can estimate from.
Our Cox regression model for predicting time-to-TLF achieves a satisfying accuracy of
68%. However, one limitation of this method is that it cannot deal well with a huge
amount of features. The Kaplan-Meier curve, for example, takes only one feature at a
time. Hence, going through all features takes too much manual effort. The procedure
should be able to be modified.

Further work can be done by using some state-of-the-art survival models rather than
the classical ones. For example, the recently developed model DeepSurv [9], a Cox pro-
portional hazards deep neural network, models interactions between a patient’s covariates
and treatment effectiveness in order to provide personalized treatment recommendations.
It can especially model complex relationships between a patient’s covariates and their risk
of failure, and is said to outperform other survival models.

By employing methods from causal inference we considered not only association but
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also causal relationships. We estimated the ACE of eight ratios of treatment parameters
on the TLF outcome based on a causal graphical model we defined. The results are
in general not strong enough to reject the null hypothesis of having no causal effect.
Therefore, we cannot deduce recommendations for specific treatment ratios that might
improve the TLF outcome for the patients.

However, three of the ratios seem to exhibit a slight tendency towards a positive or
negative impact and should therefore be further investigated. A significant causal effect
of a ratio of parameters on the outcome cannot always be directly mapped to a treatment
recommendation. Therefore, future work could be done by investigating some treatment
parameters directly and by testing different modifications of the ratios with clinicians.
Another promising approach to take the causal structure of the data into account is
employing methods from causal discovery to learn the causal structure of the data. This
could give valuable insights into the development of TLF and thereby help doctors to
adjust procedure parameters to reduce the risk for patients.
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Appendices

Appendix A Used Feature Set

Feature TLF (n=164) No TLF (n=1807) Total (n=1971) P-Value Missingness [%]
Patient received ASA

loading dose,
Dose

157.9 ± 213.15 128.03 ± 224.12 130.52 ± 223.33 0.1 0.1

Anti-platelet medication I
loading dose

121 (73.8%) 1149 (63.6%) 1270 (64.4%) 0.01 0.1

Heparin during procedure 115 (70.1%) 1307 (72.3%) 1422 (72.1%) 0.61 0.0
Anti-platelet medication I

prior to
procedure (daily

dose), Dose

34.57 ± 57.16 50.06 ± 77.79 48.75 ± 76.37 0.01 1.7

Patient on ASA
prior to

procedure (daily
dose), Dose

69.57 ± 43.59 76.12 ± 52.33 75.57 ± 51.69 0.12 0.0

Heparin bolus injection
prior to

procedure, Dose
2873.77 ± 3299.61 2651.33 ± 3328.67 2669.78 ± 3326.0 0.42 0.9

Age at time
of enrolment

60.32 ± 11.08 61.99 ± 10.51 61.85 ± 10.57 0.05 0.0

LVEF class 1 1 1 0.91 2.9
Thrombus present 0 (0.0%) 3 (0.2%) 3 (0.2%) 0.6 0.0

Lesion length 15.44 ± 4.95 14.76 ± 3.89 14.81 ± 3.99 0.04 0.0
Reference vessel diameter

after Nitro/ISDN
i.c.

3.22 ± 0.29 3.24 ± 0.28 3.24 ± 0.28 0.58 0.2

Ecccentricity 57 (34.8%) 601 (33.3%) 658 (33.4%) 0.76 0.0
Number of pre-dilatation

balloons used
1.46 ± 0.63 1.34 ± 0.59 1.35 ± 0.59 0.02 0.0

Stenosis pre-procedure 83.34 ± 10.31 82.11 ± 10.67 82.21 ± 10.64 0.16 0.0
Number of post-dilatation

ballons used
1.16 ± 0.47 1.11 ± 0.35 1.12 ± 0.36 0.07 0.0

Number of Magmaris
scaffolds that

were implanted
1.05 ± 0.24 1.03 ± 0.17 1.03 ± 0.18 0.18 0.0

Bifurcation lesion 5 (3.0%) 87 (4.8%) 92 (4.7%) 0.4 0.0
Pre-procedure TIMI flow

distal to
target lesion

3 3 3 0.14 0.1

ACC / AHA
lesion characterization

2 2 2 0.42 0.0

Maximum pressure applied 14.62 ± 3.21 14.62 ± 3.44 14.62 ± 3.42 0.99 0.2
Balloon diameter 3.06 ± 0.38 3.07 ± 0.36 3.07 ± 0.36 0.73 0.0

Number of inflations 1.52 ± 0.75 1.59 ± 1.12 1.58 ± 1.09 0.43 0.2
Balloon length 14.76 ± 3.13 14.25 ± 2.94 14.29 ± 2.96 0.03 0.1

Maximum pressure applied 16.73 ± 3.24 17.0 ± 3.22 16.98 ± 3.22 0.29 0.2
Balloon diameter 3.47 ± 0.33 3.46 ± 0.35 3.46 ± 0.35 0.72 0.0

Number of inflations 1.74 ± 1.02 1.88 ± 1.44 1.87 ± 1.41 0.22 0.2
Balloon length 14.16 ± 3.61 14.08 ± 3.48 14.09 ± 3.49 0.78 0.1

Maximum pressure appliead 14.28 ± 2.64 14.36 ± 2.76 14.35 ± 2.75 0.72 0.8
Inflation time 21.94 ± 11.89 23.57 ± 11.05 23.43 ± 11.13 0.08 1.7

Magmaris scaffold length 20.06 ± 3.95 19.41 ± 3.87 19.47 ± 3.88 0.04 0.0
Residual % stenosis

after Magmaris
implantation

1.22 ± 4.17 1.41 ± 4.35 1.39 ± 4.34 0.59 0.2

Magmaris scaffold diameter 3.24 ± 0.25 3.25 ± 0.25 3.25 ± 0.25 0.78 0.0
Unter dialysis 0 (0.0%) 0 (0.0%) 0 (0.0%) 1.0 0.0
Renial disease 10 (6.1%) 111 (6.1%) 121 (6.1%) 0.88 0.0

History of stroke
or TIA

8 (4.9%) 60 (3.3%) 68 (3.5%) 0.41 0.0

Hepatic disease 4 (2.4%) 36 (2.0%) 40 (2.0%) 0.92 0.0
History of previous

myocardial infarction
32 (19.5%) 391 (21.6%) 423 (21.5%) 0.59 0.0

Hypertension 111 (67.7%) 1205 (66.7%) 1316 (66.8%) 0.86 0.0
Hypercholesteremia 108 (65.9%) 1182 (65.4%) 1290 (65.4%) 0.98 0.0
Number of previous

interventions
0.48 ± 1.13 0.48 ± 1.04 0.48 ± 1.05 0.98 0.0

Cancer 10 (6.1%) 125 (6.9%) 135 (6.8%) 0.81 0.0
Diabetes 0 0 0 0.76 0.0

Table 7: Feature characteristics part I

33



Feature TLF (n=164) No TLF (n=1807) Total (n=1971) P-Value Missingness [%]
Smoking habits 1 1 1 0.69 0.3

Respiratory disease 13 (7.9%) 151 (8.4%) 164 (8.3%) 0.97 0.0
Did one or
more AE,
SAE, ADE
or SADE

event(s) occur
during this
procedure

15 (9.1%) 111 (6.1%) 126 (6.4%) 0.18 0.0

X-ray: Dose-area product
in cGy*cm2

4308.25 ± 4474.9 5100.72 ± 9988.43 5033.93 ± 9647.95 0.31 1.3

Contrast product in
mL

182.25 ± 123.96 183.01 ± 151.42 182.94 ± 149.3 0.95 0.5

Has a device
deficiency occurred

prior or
during the
procedure

3 (1.8%) 12 (0.7%) 15 (0.8%) 0.24 0.0

Gender = Female 25 (15.2%) 474 (26.2%) 499 (25.3%) 0.0 0.0
Gender = Male 139 (84.8%) 1333 (73.8%) 1472 (74.7%) 0.0 0.0
Vessel = LAD 101 (61.6%) 875 (48.4%) 976 (49.5%) 0.02 0.0
Vessel = LCX 15 (9.1%) 376 (20.8%) 391 (19.8%) 0.0 0.0
Vessel = RCA 47 (28.7%) 534 (29.6%) 581 (29.5%) 0.88 0.0
Vessel = RI 1 (0.6%) 22 (1.2%) 23 (1.2%) 0.75 0.0

Type of most
recent MI

= NSTEMI
12 (7.3%) 167 (9.2%) 179 (9.1%) 0.5 0.0

Type of most
recent MI
= STEMI

17 (10.4%) 191 (10.6%) 208 (10.6%) 0.96 0.0

Type of most
recent MI

= Unknown
3 (1.8%) 33 (1.8%) 36 (1.8%) 0.76 0.0

NYHA Class =
I

3 (1.8%) 28 (1.5%) 31 (1.6%) 0.96 0.0

NYHA Class =
II

12 (7.3%) 84 (4.6%) 96 (4.9%) 0.18 0.0

NYHA Class =
III

3 (1.8%) 23 (1.3%) 26 (1.3%) 0.81 0.0

NYHA Class =
IV

0 (0.0%) 3 (0.2%) 3 (0.2%) 0.6 0.0

If AMI, please
specify =
NSTEMI

36 (22.0%) 329 (18.2%) 365 (18.5%) 0.28 0.0

If AMI, please
specify =
STEMI

1 (0.6%) 6 (0.3%) 7 (0.4%) 0.91 0.0

CCS Class =
I

18 (11.0%) 280 (15.5%) 298 (15.1%) 0.15 0.0

CCS Class =
II

45 (27.4%) 458 (25.3%) 503 (25.5%) 0.62 0.0

CCS Class =
III

16 (9.8%) 130 (7.2%) 146 (7.4%) 0.3 0.0

CCS Class =
IV

1 (0.6%) 9 (0.5%) 10 (0.5%) 0.7 0.0

Braunwald classification =
IA

3 (1.8%) 22 (1.2%) 25 (1.3%) 0.76 0.0

Braunwald classification =
IB

4 (2.4%) 32 (1.8%) 36 (1.8%) 0.76 0.0

Braunwald classification =
IIA

5 (3.0%) 28 (1.5%) 33 (1.7%) 0.26 0.0

Braunwald classification =
IIB

6 (3.7%) 43 (2.4%) 49 (2.5%) 0.46 0.0

Braunwald classification =
IIC

1 (0.6%) 7 (0.4%) 8 (0.4%) 0.83 0.0

Braunwald classification =
IIIA

1 (0.6%) 3 (0.2%) 4 (0.2%) 0.76 0.0

Braunwald classification =
IIIB-Tneg

12 (7.3%) 116 (6.4%) 128 (6.5%) 0.78 0.0

Braunwald classification =
IIIB-Tpos

1 (0.6%) 53 (2.9%) 54 (2.7%) 0.13 0.0

Braunwald classification =
IIIC

0 (0.0%) 1 (0.1%) 1 (0.1%) 0.13 0.0

Ischemic status =
Documented silent

ischemia
14 (8.5%) 283 (15.7%) 297 (15.1%) 0.02 0.0

Table 8: Feature characteristics part II
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Feature TLF (n=164) No TLF (n=1807) Total (n=1971) P-Value Missingness [%]
Ischemic status =

Stable angina
80 (48.8%) 879 (48.6%) 959 (48.7%) 0.96 0.0

Ischemic status =
Unstable angina

33 (20.1%) 309 (17.1%) 342 (17.4%) 0.38 0.0

Clinically relevant findings
= No

117 (71.3%) 1261 (69.8%) 1378 (69.9%) 0.74 0.0

Clinically relevant findings
= Yes

38 (23.2%) 356 (19.7%) 394 (20.0%) 0.34 0.0

Clinically relevant findings
= No

115 (70.1%) 1363 (75.4%) 1478 (75.0%) 0.16 0.0

Clinically relevant findings
= Yes

18 (11.0%) 179 (9.9%) 197 (10.0%) 0.76 0.0

Lesion location =
1st Diag

1 (0.6%) 19 (1.1%) 20 (1.0%) 0.89 0.0

Lesion location =
1st Ob

Mar
3 (1.8%) 66 (3.7%) 69 (3.5%) 0.32 0.0

Lesion location =
1st RPL

0 (0.0%) 5 (0.3%) 5 (0.3%) 0.89 0.0

Lesion location =
1st Septal

0 (0.0%) 2 (0.1%) 2 (0.1%) 0.39 0.0

Lesion location =
2nd Ob

Mar
0 (0.0%) 14 (0.8%) 14 (0.7%) 0.52 0.0

Lesion location =
3rd Ob

Mar
0 (0.0%) 3 (0.2%) 3 (0.2%) 0.6 0.0

Lesion location =
Dist CX

2 (1.2%) 55 (3.0%) 57 (2.9%) 0.28 0.0

Lesion location =
Dist LAD

1 (0.6%) 20 (1.1%) 21 (1.1%) 0.84 0.0

Lesion location =
Dist RCA

10 (6.1%) 102 (5.6%) 112 (5.7%) 0.95 0.0

Lesion location =
Mid CX

2 (1.2%) 126 (7.0%) 128 (6.5%) 0.01 0.0

Lesion location =
Mid LAD

43 (26.2%) 475 (26.3%) 518 (26.3%) 0.94 0.0

Lesion location =
Mid RCA

21 (12.8%) 272 (15.1%) 293 (14.9%) 0.51 0.0

Lesion location =
Prox CX

8 (4.9%) 111 (6.1%) 119 (6.0%) 0.63 0.0

Lesion location =
Prox LAD

56 (34.1%) 360 (19.9%) 416 (21.1%) 0.0 0.0

Lesion location =
Prox RCA

14 (8.5%) 145 (8.0%) 159 (8.1%) 0.94 0.0

Lesion location =
R-PDA

2 (1.2%) 10 (0.6%) 12 (0.6%) 0.6 0.0

Lesion location =
Ramus

1 (0.6%) 22 (1.2%) 23 (1.2%) 0.75 0.0

CCS Class =
I

4 (2.4%) 64 (3.5%) 68 (3.5%) 0.6 0.0

CCS Class =
II

4 (2.4%) 14 (0.8%) 18 (0.9%) 0.09 0.0

CCS Class =
III

1 (0.6%) 6 (0.3%) 7 (0.4%) 0.91 0.0

Braunwald classification =
IA

0 (0.0%) 1 (0.1%) 1 (0.1%) 0.13 0.0

Braunwald classification =
IB

0 (0.0%) 3 (0.2%) 3 (0.2%) 0.6 0.0

Braunwald classification =
IIB

0 (0.0%) 1 (0.1%) 1 (0.1%) 0.13 0.0

Braunwald classification =
IIIB-Tpos

0 (0.0%) 1 (0.1%) 1 (0.1%) 0.13 0.0

Ischemic status =
Documented silent

ischemia
0 (0.0%) 4 (0.2%) 4 (0.2%) 0.76 0.0

Ischemic status =
Stable angina

9 (5.5%) 84 (4.6%) 93 (4.7%) 0.77 0.0

Ischemic status =
Unstable angina

0 (0.0%) 6 (0.3%) 6 (0.3%) 1.0 0.0

Ischemic status =
Without pathological

findings
155 (94.5%) 1713 (94.8%) 1868 (94.8%) 0.98 0.0

Table 9: Feature characteristics part III
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Appendix B Individual Expectations

Figure 13: Individual expectations E[Y |do(X = 1)] and E[Y |do(X = 0)] for the 8 different
ratios. First row shows the empirical distribution of E[Y |do(X = 1)] for Ratios 1 to 4,
whereas second row represents E[Y |do(X = 0)] for the same set of ratios. Third and forth
rows show the same quantities, this time for Ratios 5 to 8. For each of the ratios, X and
Y axes are shared. X-Axes are scaled for better visualization. nbin = 50
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