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1 Project Goal and Organization

The initial goal of this project was to develop a Go playing computer program for the
small 9 × 9 Go board using supervised learning techniques.

Here the small board was chosen because the computational cost and the amount
of training data needed to develop a reasonably good Go engine was estimated too
high for the 19 × 19 board. Furthermore, the challenge was to train only an artificial
neural network without using tree search techniques, because using a clever tree search
technique on the small board was likely to suffice for a good Go engine. The underlying
question behind this goal was: how good can a neural network based Go engine become
at playing a game of Go on the small board?

Also, the objective was not to build an engine similar to DeepMind’s AlphaGo. This
research task encouraged to be creative in the design of the neural network, because one
can not rely on the power of the – for almost all Go engines – crucial role of tree search.
The initial task was to see, how good the decisions of a Go engine could become after
training a neural network with training data. After achieving this initial goal, we tried
to enhance the performance of our engine in different ways, see section 4.

For the organization of the team we chose to use a flat hierarchy, so that every member
was able to work in his current field of interest. We were not concerned, that such an
organization structure could lead to leaving unpleasant work undone. In fact we were
excited to see fast progress. In the weekly group meetings with our mentor Bernhard
Werner we recieved very valuable input which helped to steer the project in a constructive
direction. Furthermore, we organized weekly group meetings and subgroup meetings by
ourselves. For this project it turned out to be most effective to work together in pairs,
permuting through all combinations depending on the task. A special thanks goes to Dr.
Ricardo Acevedo Cabra for supporting us in technical questions for instance in topics
concerning the LRZ.
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2 The Game of Go

“...the rules of go are so elegant, organic, and rigorously logical

that if intelligent life forms exist elsewhere in the universe,

they almost certainly play Go.”

– Edward Lasker, chess grandmaster

“Gentlemen should not waste their time on trivial games –

they should study Go.”

– Confucius, The Analects, ca. 500 B.C.E.

In this section we will give a brief overview of the history of Go and Computer Go as
well as outlining the basic rules of the game Go, inspired by [AGA], [BGA] and [Sen].

2.1 Go from East to West

Go is one of the oldest board games in the world and the oldest game still played in its
original form. It is believed that it originated in China 2,500 - 4,000 years ago, but the
game’s true origins are unknown. Today we are only left with various myths about its
creation: for example that the legendary emperor Yao invented Go to discipline his son,
Dan Zhu.

The most important Go playing countries in the Far East are Japan, China, Korea and
Taiwan, all of which maintain communities of professional players. Major tournaments
in these countries attract sponsorship from large companies and have a huge following
comparable to big sport events in Europe and America. There are approximately 50
million Go players in the Far East and many people who do not play still follow the
game with keen interest.

Go was not played in Europe until 1880 when the German Oskar Korschelt wrote a book
about the game. However, the game was slow to spread and it was not until 1957 that
the first regular European Championship was held. Nowadays in European countries,
the standard of play is significantly below that of the top players in the Far East, but
the gap is steadily closing as more of the top European players spend time studying the
game in Japan, Korea and China.
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2 The Game of Go

2.2 Basic Rules of Go

Go is a two player board game. It begins with an empty board that consists of n vertical
and n horizontal lines that intersect in n × n intersection points for n ∈ N. A normal
game is played on a 19 × 19 board, but for beginners and quick games 9 × 9 or 13 × 13
are common choices. Each player has an effectively infinite supply of either black or
white stones and the player using the black stones makes the first move. The players
take turns, on each turn deciding to place one of their stones on a vacant intersection
point on the board or passing.

The main objective of the game is to gain more area than the opponent by surrounding
intersection points with your stones. These surrounded points are called territory and the
territory including the border stones is called area. The player with the most area wins.
In Chinese rules, the area is counted towards your final score. In Japanese rules territory
is counted towards your final score. In the context of this paper we will use Chinese rules.

In this game white wins by: 13 − 12 = 1 points.

It is also possible to capture the opponent’s stones which results in these stones being
taken from the board. Stones are captured, if they do not have any liberties left: a
stone’s liberties are the vacant intersection points connected to a stone by horizontal or
vertical lines.

→ → The white stone is
captured.

Stones of the same colour that are connected by lines share their liberties. If all liberties
of a stone or a line-connected group of stones of the same colour are occupied by the
opposing colour, the stones are removed from the board and the player loses area. These
line-connected groups are often called chains to differentiate them from more general
groups. A group can only be defined informally as “a functional unit on the board,
occupying and influencing a certain area”1.

A white and a black group. The black group is a chain.

Each turn the player can choose to pass, instead of placing a stone, if there is no sensible
move. The game ends, when both players pass consecutively. At the end of the game,

1https://senseis.xmp.net/?Group
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2 The Game of Go

the player with the most area wins2.

There are slight restrictions on playing stones onto vacant intersections. A stone can
not be placed in such a way that it or the group it belongs to has no liberties. This
is known as the suicide rule. The only exception of the suicide rule is when by such a
move an enemy stone is captured.

A

B

It is illegal for white to play in the marked
intersection A. White could play in B and

capture the four black stones.

This exception however is restricted by the rule of Ko, which does not allow repeatedly
recapturing a single stone back and forth.

→ →
White captures black in a Ko situation.
Now black can not immediately capture

white.

The player using the black stones begins and therefore has a slight advantage, so the
white player gets bonus points at the beginning of the game called komi which are
mostly set at +7.5 points. Here the .5 is given especially at tournaments to decide a
draw for white. If players have different strength, they can equal out the difference by
giving the weaker player handicap stones. In Chinese rules these are distributed on the
board before the game wherever the weak player desires. In Japanese rules the handicap
stones have fixed positions.

There is an official ranking system of the strengths of players that goes for amateurs
from 7th dan (highest) over 1st dan to 1st Kyu to 30th Kyu (lowest) and for professional
players from 9th dan professional (highest) to 1st dan professional3.

2For the exact Chinese area counting rules, see https://senseis.xmp.net/?ChineseCounting
3For a more elaborate explanation of the rules, see https://senseis.xmp.net/?ChineseRules
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2 The Game of Go

2.3 Computer Go

“Go on a computer? – In order to programme a computer to play a reasonable game of Go,

rather than merely a legal game – it is necessary to formalise the principles of good strategy,

or to design a learning programme. The principles are more qualitative and mysterious than

in chess, and depend more on judgment. So I think it will be even more difficult to programme

a computer to play a reasonable game of Go than of chess.”

– I. J. Good, Mathematician, 1965[Goo]

One could say, that the game Go is more dependent on intuition than on calculus and compu-
ting power. But is it possible to teach a computer human intuition?

History of Computer Go

After the first Go computer program had been written in 1968, the field of computer Go
progressed only slowly. Up until the early 2000s these programs were not able to beat Go
players even with a large amount of handicap stones. Only in 2008 the first Go program
(MoGo), using Monte Carlo tree search (MCTS), was able to beat a professional Go player
(8th dan) with a handicap of 9 stones. Up until 2015 no Go program was able to beat a
professional with less than 4 handicap stones. Then in 2016 – to the surprise of many experts
in the fields of Go and AI – AlphaGo defeated the strongest Go player at the time, Lee Sedol
9-dan, using two neural networks to support the MCTS.

Comparison to Chess

The development of Go playing programs differs from that of Chess playing programs. Already
in 1997 Deep Blue, developed by IBM, was the first computer to beat a reigning world champion
in a chess match under regular time conditions. No machine learning techniques were used,
but a clever tree search with strong computational power was sufficient.[Dee]

In comparison with chess, the Go rules are simple. But as simple as they are, Go is a game of
great complexity. The search space in Go is enormous: it is more than 10100 times larger than
the search space of chess (a number greater than the number of atoms in the universe)[TF16].
Go has the highest state space complexity of any game which is why Go is seen as the hardest
information complete game for a computer program to master. Traditional methods, such as
constructing a search tree over all possible sequences of moves, become quickly intractible even
with the immense computing power of today.4

So to beat Go it appears to be inevitable to create more sophisticated heuristics to guide the
tree search. It seems necessary to create artificial intuition for the choice of moves that should
be evaluated and the value that is assigned to board positions.

The Value of a Board Position in Go

Determining the value of a board position in Go is not easy. Many aspects of the game are
hard to measure quantitavely. It is often difficult to evaluate whether a group is dead or alive

4For more insights on Computer Go, see https://senseis.xmp.net/?ComputerGo
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2 The Game of Go

and it can be ambiguous what the sphere of influence of a group is5. Even worse: sometimes
it is not even clear which stones are a “functional unit that influence a certain area”, i.e. form
a group. Moreover most of the time there are several “best moves” depending on the current
strategy, which leads to complex trade-offs. While a move strengthens your group in the best
way possible, the very same move could lead to a weak position of another group or to losing
stones to the enemy. In Go it is important to evaluate local situations in the context of the
entire board. This “think globally act locally” strategy can be seen algorithmically as trying to
find a balance between depth-first search and breadth-first search. A local move can have an ef-
fect on the global situation and the best local move is maybe on the global context a poor move.

It is a big problem to implement heuristics that capture the correct value of moves and board
positions, if humans can not quantitavely measure and decide these themselves. So to find
suitable heuristics that can tame the tree search in the vast search space of the game, resear-
chers applied techniques of artificial intelligence to make the program find good heuristics itself.

State of the Art – AlphaGo

The company DeepMind started developing the Go playing program AlphaGo in 2014. In the
version described in [S+16] the researchers used two neural networks in combination with the
Monte Carlo tree search (MCTS) method. The Policy Net is a neural network that takes a
Go board position and the current player as input and outputs a ranking of the best moves
for this specific board. Note that best here is not well-defined. In the supervised learning
framework the best moves are the most popular moves in the training data in the hope that
these approximate the moves that lead to a win. The Value Net is a neural network that also
takes a Go board and the current player as input and outputs a winning probability for this
player with this board position. The MCTS then iteratively looks at the top moves for one
board position given by the Policy Net and evaluates these with the Value Net with the final
goal of maximizing the winning probability. To make the Policy Net predict best moves given
a board the researchers used a database of 30 million board positions to train the network
using supervised learning as a first step. The second step of training improved the Policy
Net by using reinforcement learning. The Value Net was trained using data produced by
games between the Policy Net and itself. Furthermore, AlphaGo makes use of convolutional

neural networks which have shown great results in visual domains, such as image classification.
Similar to finding shapes in pictures, these turn out to be useful to find shapes and forms in
Go board positions.

The above outlined version of AlphaGo defeated the number one Go player in the world in
2016. After reaching this milestone the team of DeepMind continuously improved their Go
program and newer versions could beat older versions by a margin. In 2017 the newest version
named AlphaGo Zero [S+17] defeated the champion-defeating version from [S+16] in 100 out
of 100 games, surpassing it by far. In contrast to previous versions, AlphaGo Zero was trained
solely by self-play using refined techniques of reinforcement learning.

5The Chinese rules define life and death this way: “At the end of the game, stones which both
players agree could inevitably be captured are dead. Stones that cannot be captured are alive.”, see
https://senseis.xmp.net/?Death
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3 Data and Implementation

3.1 Data Preprocessing

At the beginning of the project we were given 76439 random games from the Dragon Go
Server1. Go games are usually saved in the text file format .SGF2 (SmartGameFormat). One
SGF -file stores information about one game between two players. It mainly contains which
moves were played, but a lot of other information can also be stored, such as: who won, the
names of the players, what handicap and komi was used, etc. We decided to use Pandas

dataframes to analyze and process the data.

Firstly, we checked the basic information such as board size and the rule set. We came to the
conclusion, that all games were played on a 9 × 9 board using Japanese rules. We found out
that most of the games had a komi between -6.5 and 6.5. The most interesting properties to
us were number of moves, rank of the players, result as well as the komi and handicap. While
analyzing these properties of the game files we encountered some outliers, for example extreme
cases of very high komi (up to 120.5) or handicap. Games like this most likely consist of moves
that are not good or optimal, because white wins very easily and that can have an effect on
the way of playing. Furthermore, these games tended to have a very small amount of moves
before one player resigned.

It turned out to be most beneficial to sort the games by the rank of the players. Hence, we
created lists of GameIds for the top n best dan games, n ∈ N. Here game A is better than
game B iff the rank of the black player of game A is higher than the rank of the black player
of game B. This makes sense, as the white player is usually the higher ranked player. There
were 295 games where both playes were of dan rank. These high ranked games all had regular
amounts of moves and no extreme komi or handicap. We also created lists of GameIds for
the top n games, categorized by the minimum rank of both players. These datasets contained
some curiosities at first but we could easily filter these out by simply considering only games
with a minimum game length of 10 moves and with a result. A 9 × 9 Go game usually takes
around 40-50 moves, for example the 295 dan games consisted of about 12,600 moves.

3.2 Implementation of the Game Go

As a programming language we chose to use Python because of its popularity for Machine
Learning tasks. Even though none of us had worked with Python before, we were eager to
take on the challenge. This turned out to be a great opportunity to elevate our programming
knowledge and skills to a new level. Before being able to train a neural network to learn to
play Go, we first needed to create a computer program that is able to play legal moves in a

1http://www.dragongoserver.net/
2https://senseis.xmp.net/?SmartGameFormat
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3 Data and Implementation

game of Go, a so called Go engine. Therefore we firstly created a program, that can output
legal move coordinates while receiving move coordinates as an input.

Go Clients

A Go client is a computer program that provides a graphical user interface for Go programs.
Most Go clients, e.g. CGoban3, are able to read .SGF -files and produce a graphical display of
a Go board which enables the user to follow the move sequences in that game step by step.
Other Go clients such as GoGui4 serve as an interface that communicates with a Go engine.
This means one only has to implement the Go engine to be able to obtain a working visualized
Go playing program. Another advantage of using clients is that the scoring/counting at the
end of the game is also taken care of by these programs.

The Go Text Protocol

A very convenient and the most used way of communication between Go engines and Go clients
is by the Go Text Protocol5 (GTP) created by Gunnar Farnebäck. This protocol defines specific
commands that are used for sending information from the engine to the client and vice versa. It
is easy to implement and enables the use of a lot of clients as well as being able to test your Go
engine on to a public server such as the popular Kiseido Go Server 6. On these servers human
players or other Go engines can play against your Go bot which can be useful to test its strength.

Random Bot

Our first milestone was the implementation of a Go engine that communicates via GTP and
can play legal moves. This first prototype selected moves completely random. For our long
term planning it was very important, because it left us with just one big task to do, namely
replacing the move generating function of this engine with one that suggests good moves. We
also managed to compile the engine into an executable program using Pyinstaller which made
our program portable and attachable to a Go interface such as GoGui.

Figure 3.1: The Graphical Interface of the Go client GoGui with an attached Go engine.

3https://www.gokgs.com/download.jsp
4https://senseis.xmp.net/?Gogui
5http://www.lysator.liu.se/~gunnar/gtp/
6https://www.gokgs.com/
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3 Data and Implementation

3.3 Implementation of the Neural Network

We decided to implement a Policy Net, i.e. a neural network with the learning goal of output-
ting a ranking of the best moves for one player given a board position. We wanted to find out
how clever a Go engine based on this neural network can become. Furthermore, we decided
to implement this neural network from scratch without using any machine learning specific
programming library. We followed the approach of implementing the whole neural network
including backpropagation ourselves, to gain a deeper understanding of the mathematical
concepts behind neural networks. For mathematical operations we used the Python package
NumPy. This helped us to gain a deeper understanding of the mathematical concepts behind
neural networks and it also enabled us to directly implement our creative ideas into the neural
network. Finally, we used the package Pandas to manipulate the data and the packages
Matplotlib and Seaborn for data visualization.

3.4 Training Data

As we will see more elaborately in section 4 the Policy Net is a function that takes a board
position as an input and outputs a move distribution. Our hope was that training this neural
network with board/move pairs from our .SGF -files will generalize to a function that outputs
good moves for arbitrary boards. To enable this training we needed to create labeled training
data. For this we represented 9 × 9 boards as 81-dimensional vectors with black ⋍ −1, white
⋍ 1 and vacant intersection point ⋍ 0. A move is represented as a 82-dimensional vector with
exactly one 1 where the move is made and zeros elsewhere, the 82nd entry corresponding to
passing.

We followed two approaches in creating labeled training data out of the .SGF -files. The
first approach aggregated a key-value data structure where the key is a board position and
the value is a move distribution. For example the distribution corresponding to the empty
board consists of all first moves in the analyzed game files, e.g. Figure 3.2 for the 295 dan games.
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0 2 60 92 920 92 60 2 0
0 0 52 52 92 52 52 0 0
0 0 48 52 60 52 48 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0

























Figure 3.2: The empty board and the corresponding move distribution in the first approach.

The second approach for labeled training data was to simply collect all board/move pairs from
the game files. In this case the move of one board/move pair is a distribution with exactly one
non-zero entry corresponding to where the move was played on the board.
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3 Data and Implementation

We realized that every Go game is a representative of an equivalence class of eight games
considering four 90◦ rotations and two reflections of the board. Therefore we applied these
rotations to each board position in the training data and were able to artificially enlarge the
training data by a factor of 8. In both approaches we added an additional element to the
distribution to realize the option of passing instead of playing a move, because this yielded
better results than training an empty distribution. We did not find useful mathematical
foundations on what style of training data to use, so we tested both approaches.

Finally, we decided to train the network to always “think” from the perspective of the black
player. This can be accomplished by inverting the board whenever it is white’s turn, let black
play instead and then inverting the outcome again. Our motivation for doing this was that the
constellation of stones on the board is not evaluated color dependent in general. We figured out
that identifiying colour symmetric boards would let our network learn from all the information
whereas otherwise the network would build two color seperated ways of playing using only half
of the information for each of these ways. For the sake of completeness it is important to say,
that a player’s color does influence the choice of moves in some cases considering komi and the
fact that black starts the game. Nonetheless, the aspect of computational efficiency was more
important to us.

3.5 Workflow Management

At the beginning of the project we used Trello as a Scrum-like system to manage our planning,
short- and longterm goals and active tasks. Once we started the implementation, we used
GitHub7 as a version control system. Later we also used GitHub instead of Trello for our task
management. Throughout the project we also used a Google Drive Folder to manage and share
files. This project documentation is written in LATEX.

7Our GitHub repository for this project can be found at:
https://github.com/stefanpeidli/GoNet

10

https://github.com/stefanpeidli/GoNet


4 Neural Network

In mathematics, a neural network is a combination of large linear functions used to approximate
a highly complex function, particularly often for classification problems.
In our case we want to approximate the function

V : B → ∆81, Board 7→ Distribution,

where B ⊆ {−1, 0, 1}92
is the space of possible board configurations that can appear in a game

of Go with the naive black ⋍ • ⋍ −1 and white ⋍ ◦ ⋍ 1 encoding exemplified by

1
2
3
4
5
6
7
8
9

ABCDE FGHK

⋍

























0 1 −1 0 0 0 0 0 0
1 1 0 −1 0 0 0 0 0
0 0 −1 1 0 0 0 1 0
0 0 0 −1 0 −1 0 0 0
0 1 1 0 0 0 0 0 0
1 −1 −1 1 −1 0 0 0 0
0 0 1 0 0 0 0 0 −1
0 0 −1 0 0 0 1 −1 0
0 0 0 0 0 0 −1 1 0

























The 81-dimensional simplex is denoted by ∆81 ⊂ R
82. Its elements are relative distributions of

best moves (including passing, hence 82 entries) to be played on a particular board. We call
this network Policy Net.

4.1 Introduction to Neural Networks

The fundamental building blocks of neural networks are artificial neurons, which are simplified
models for real neurons. Each of them takes some input x = (x1, ..., xn) and multiplies it by a
weights vector w = (w1, ..., wn). The resulting vector is then summed up into

s =

(

n
∑

i=1

xiwi

)

+ wb (4.1)

The neuron then produces an output y ∈ R by applying an activation function f : R → R to
the weighted sum:

y = f(s) = f(〈x, w〉 + wb) (4.2)

In figure 4.1 one can see an artificial neuron compared with a diagram of a real neuron cell.
The Dendrites collect signals from other cells, weight them, and if a threshold is surpassed
the neuron starts firing electric impulses through the axon towards other cells. The key
simplification is modeling the impulse firing by just a real valued number (frequency), allowing
for much faster simulation.
The activation function usually is some kind of sigmoid shaped function and models the
stimulus response. From a biological point of view, this should be modeled by a quite sharp
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4 Neural Network

...
... Σ s

Weigthed
sum

f

Activation
function

y

Output
x1 w1

xn wn

Weights

Bias
wb

Inputs

Figure 4.1: Comparison of a real neuron scheme (taken from [Dor90]) with a diagram of an
artificial neuron.

signum function translated by a threshold for the required stimulus to hyperpolarization of
the membrane potential. Due to the fact that we are dealing with bounded precision and need
high smoothness in order to apply certain learning methods to the neuron, sigmoidal functions
seem to be a reasonable choice. The bias or offset wb corresponds to the resting potential of
the neuronal membrane.
To make use of the emerging qualities of neural networks a large number of neurons is needed.
For this, multiple neurons are collected in a parallel stack called layer. Consequently writing
equation (4.1) in matrix form for the whole layer we obtain

s = Wx + Wb =
(

W Wb

)

(

x

1

)

=: Ŵ x̂ (4.3)

where now s ∈ R
n and x̂ ∈ R

m are vectors and Ŵ is the weight matrix. The additional entry
in the last row of x̂ together with Wb (the last column of Ŵ ) corresponds to the offset terms
wb which form a vector in the layer formulation. In the same manner (4.2) reads

y = F (s) = F (Ŵ x̂) (4.4)

where F has to be understood as component-wise application of the scalar activation function
f , i.e. F (s)i = f(si) such that F matches the dimensions of the respective layer.

Apart from parallel stacking neurons into layers, we also chain the layers serially to form a so
called Multi-Layer-Feedforward neural network. Such a multilayer neural network consists of
layers L(i) with i = 0, ..., m, each described by its own weight matrix W̃ (i) ∈ R

di+1×(di+1). By
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Input
layer

Hidden
layer

Hidden
layer

Hidden
layer

Output/Hidden
layer

Input 1

Input 2

Input 3

Output

R
d4 R

d3 R
d2 R

d1 R
d0

L(3) L(2) L(1) L(0)

y(4) = x y(3) y(2) y(1) y(0)

Figure 4.2: Example of a multilayer neural network with four hidden layers.

first extending equation (4.1) to the whole layer L(i) containing d(i) single neurons one obtains

s
(i)
j =

d(i)
∑

k=0

y
(i−1)
k W

(i)
kj + W

(i)
bj (4.5)

or similar to (4.3) in matrix form

s(i) = W̃ (i)ŷ(i−1). (4.6)

As usual, ŷ denotes y extended with a single scalar 1 for the offset. Since the output of one
layer is understood as input of the next one, we formally define the i-th layer

L(i) : Rdi+1 → R
di , (4.7)

L(i)(y(i−1)) = y(i) = F (i)(s(i)) = F (i)(W̃ (i)ŷ(i−1)) (4.8)

Note that the activation function F (i) can differ from layer to layer. This way we can express
the neural network as a composition of functions formed by the layers. Thus a neural network
with k hidden layers of sizes {n = dk, . . . , d0 = m} approximating a function V : Rn → R

m

looks like

N : Rn → R
m, (4.9)

N =L(k) ◦ L(k−1) ◦ . . . ◦ L(1) ◦ L(0) (4.10)

The total process of subsequently propagating the input through the neural network is called
Forward Propagation.
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Algorithm 1 Forward Propagation

1: Set y(m) = x

2: for all layers L(i), (i = m − 1, . . . 0) do

3: s(i) = Ŵ (i)ŷ(i+1)

4: y(i) = F (i)(s(i))
5: end for

The learning process consists of several steps. The essential goal is to compute ∂E(W (t))
∂W (t) . This

goal is achieved by multiple application of the chain rule and using backward propagated
(hence the name Backward Propagation) signals though the layers. The whole process to
obtain the gradient reads

Algorithm 2 Backward Propagation

1: Use Forward Propagation to obtain all the y(i)

2: for all layers L(i), (i = 0 . . . m) do

3: Compute the gradient DF (i)(y(i))
4: end for

5: Set δ(0) = DF (0)(y(0))
6: for all layers L(i), (i = 1, . . . m) do

7: δ(i) = δ(i−1)W (i−1)DF (i−1)(y(i−1))
8: end for

9: for all layers L(i), (i = 0, . . . m) do

10: δ(i)
err = ∂E(y)

∂y
|y=y(0)δ(i)

11: ∂E
∂W (i) = δ(i)

err ⊙ y(i)

12: end for

Here "⊙" denotes the outer vector product. By this algorithm we obtain the error gradient
∂E
∂W

which is then used for learning via Gradient Descent Method

W (t + 1) = W (t) − η
∂E(W (t))

∂W (t)
, (4.11)

where η ∈ R+ is a learning parameter. It can be seen as a factor scaling the step size of the
descent step in the direction of the gradient.

4.2 Design of the Neural Network

4.2.1 The Input

The most basic input for a neural network playing Go on a n × n-board is a n × n-dimensional
vector containing the current board with colored stones encoded as −1 or 1 respectively and
empty fields as zero. Because a neural network can hardly cope with zeros as inputs - as
multiplying zero with a weight is essentially not very effective - the input needs to be prepared
accordingly by choosing a different value for empty fields. In addition, considering M. Heining’s
work [Hei17], symmetric input values should be avoided. He proposed for a related problem
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(tic-tac-toe) a scale mapping of

fscale(xi,j) =















-1.35 if stone at (i, j) is black (⇔ xi,j = −1)

0.45 if field at (i, j) is empty (⇔ xi,j = 0)

1.05 if stone at (i, j) is white (⇔ xi,j = +1)

which we have adapted for Go.

4.2.2 Activation Functions

For the Policy Network defined in the introduction of this chapter, it is practical to use the
softmax function in the last layer, because it yields a normalized distribution as output of the
network, which is what the Policy Network requires. It is given by

Fsoftmax : Rn → [0, 1]m

Fsoftmax(x)j =
ezj

∑m
k=1 ezj

As stated by [C. Bishop Neuronal Networks for Pattern Recognition, pages: 126ff], very
commonly used activation functions are sigmoid functions like tanh and the logistic sigmoid.
Note that these two only differ by two linear transformations:

1

2
(tanh(x) + 1) =

1

2

(

ex − e−x

ex + e−x
+ 1

)

y=2x
=

1

2

(

e
y

2 − e− y

2 + e
y

2 + e− y

2

e
y

2 + e− y

2

)

=
ey · e− y

2

(ey + 1) · e− y

2

=
ey

ey + 1
= σ(y)

This class of functions is characterized by being bounded and differentiable, having only a
single turning point and a monotonous first derivative. Bishop also suggests using tanh, as

y = tanh x

−2 −1 1 2

−1

1

(a) The tanh function.

y = max(0, x)

−2 −1 1 2

1

2

(b) The ReLU function.

Figure 4.3: Commonly used activation functions.

it shows faster convergence than logistic functions. Another suggestion we found that was
commonly used were Rectified linear units, also called ReLUs. They promise much faster
learning than sigmoid functions. In practice it performed a lot worse than tanh. In our opinion
the high complexity of the underlying problem combined with the distribution format of the
desired output might account for a disadvantage of just regular but not differentiable functions
like the ReLU . Thus we decided to further work with tanh and softmax.
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4.2.3 Error Functions

By error function we denote a function measuring the distance (i.e. ”error”) between the
output of the neural network and the supposed value, which we will henceforth call target.
The particular error function used for the Gradient Descent Method (4.11) in learning is of
fundamental importance. One of the most famous error estimates is the mean squared error
(MSE), which is a so called sum-of-squares error estimate. The MSE between two vectors
v, w ∈ R

n is defined by

MSE(v, w) :=
1

n

n
∑

i=1

(vi − wi)
2 (4.12)

As hinted by Bishop in [Bis95] on page 195, estimates from this class tend to have problems
distinguishing non-Gaussian distributions with similar mean and variance. In our case targets
and outputs are highly non-Gaussian, raising doubts in the suitability of the MSE for this
problem.
A more thoughtful approach can be derived by looking at the space of outputs as a discrete
metric space of probability distributions. The distance between distributions, i.e. elements
in this space, is quantified by a statistical distance. Examples for statistical distances we
found suitable for the problem were the Kullback-Leibler divergence (KLD) and the Hellinger
distance (HELD).
The Kullback-Leibler divergence is defined by

KLD(P ||Q) =
n
∑

i=1

P (i) log
P (i)

Q(i)

The Hellinger distance is defined to be

HELD(P, Q) =
1√
2

‖
√

P −
√

Q‖2

In the literature, one of the most commonly used error functions is the Cross-Entropy error
which is given by

H(P, Q) = −
n
∑

i=1

P (i) log(Q(i)).

It is closely related to the KLD by

KLD(P ||Q) = H(P, Q) − H(P, P ).

By thorough testing we found that the KLD gives best learning results, so we used it for our
network most of the time. Even though the Cross-Entropy error is more commonly used in
practice, we regarded the pure Entropy term as redundant, as our criterion for a error function
was also to give a more naturally understandable measure of distance.
We also stumbled upon a theoretical problem regarding the error function to choose. Imagine
a 2 × 2 board (then n = 4, we have four fields to play on and we can pass, resulting in an
output size of five with output vectors living in ∆4) and consider the three vectors

ydirac =















0
1
0
0
0















, yuniform =















0.2
0.2
0.2
0.2
0.2















, ydisplaced =















0
0.2
0

0.8
0















∈ ∆4.
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Now let the first vector ydirac be the correct value of V (b) for a certain board b ∈ B. The other
two vectors are two possible outputs a certain neural network N would give for the board, i.e.
the result of N(ydirac).

Figure 4.4: Visualization of the Dirac-Distinction problem.

Although they share the same mean absolute error, the outputs differ drastically. For our
purposes yuniform is by far a better output in this case than ydisplaced. The main reason for
this is the certainty of a choice the neural network suggests. Here an output of ydisplaced would
relate to a high certainty to play the wrong move number 3, whereas yuniform reads as a
relative uncertainty about which move would be the most suitable to assess as best.
A question arises from this example: For which error function can a neural network distinguish
the two vectors yuniform and ydisplaced in relation to the correct ydirac?

KLD MSE HELD MAE
ydirac ↔ yuniform 1.6094 0.4 0.7435 1.6
ydirac ↔ ydisplaced 1.6094 0.64 0.7435 1.6

Figure 4.5: Errors respectively distances for chosen functions.

We see that only the MSE seems capable of solving the distinction problem correctly. Here
MAE denotes the mean absolute error.
There is a way to incorporate both KLD and MSE into a error function via affine combination

Eα(P, Q) = (1 − α) · KLD(P ||Q) + α · MSE(P, Q)

for some combination parameter α ∈ R. The gradient of this function is then simply the
affine combination of the separate gradients. With a reasonably chosen α this combined error
function can solve the distinction problem while yielding a fast learning speed.

4.2.4 Initializing Weights

Why is the particular initialization of weights important? As already noted by Bishop in
[Bis95] page 260, putting work in a good initialization can speed up learning and avoid negative
influence on sensitive algorithms like the stochastic gradient descent.
In order to achieve that, one has to keep the propagation signals near the regions where the
derivatives are maximal. For sigmoid functions this means the signals should optimally lie in a
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narrow interval close around zero.

y = tanh′ x

−2 −1 1 2

0.5

1

x

y

Figure 4.6: The graph of the tanh gradient.

The previous consideration requires the signal s =
∑h

i=1 wixi in a layer of size h to approximately
fulfill

E(s) = 0 and V ar(s) = 1.

Using that h is finite, wi and xi, respectively, are independent and identically distributed for
all i = 1, . . . , h and w, x are uncorrelated, we obtain

E(s) = E

(

h
∑

i=1

wixi

)

=
h
∑

i=1

E(wi)E(xi)

The easiest case for this to vanish would be E(wi) = E(xi) = 0 ∀i = 1, . . . h.
For the variance it holds

V ar(s) = E(s2) − E(s)2 = E(s2) =





h
∑

i=1

E(wi)E(xi) ·
h
∑

j=1

E(wj)E(xj)





=
h
∑

i=1

E(w2
i x2

i ) +
h
∑

i6=j

E(wiwjxixj)

=
h
∑

i=1

E(w2
i )E(x2

i ) +
h
∑

i6=j

E(wi)E(wj)E(xi)E(xj)

=
h
∑

i=1

E(w2
i )E(x2

i ) = h · E(w2
i )E(x2

i )

by the algebraic formula for the variance and using Cov(w2
i , x2

i ) = 0 and again that both wi

and xi are i.i.d. for the last equality. If now the input is scaled such that V ar(xi) = 1 while
also requiring E(wi) = E(xi) = 0 from above to hold, we would ultimately get

V ar(s) = V ar(wi) · h
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leading to the condition σ =
√

V ar(s) = 1√
h
. So, finally, we derived that one should choose

the weights initially from a normal distribution N (0, 1√
h
). There also exist approaches with

different distributions like the uniform distribution. But due to its simplicity, we further stuck
with N .
It is yet to check if the assumptions on well-scaling of the input hold for the case of Go-Games.
An analysis of around ten sample Go Games after applying fscale on the boards yields the
following:

E =





















0.002 0.005 0.001 −0.001 0.01 −0.001 0.001 0.005 0.002
0.005 0.005 0.006 0.014 0.004 0.014 0.006 0.005 0.005
0.001 0.006 0.005 0.005 0.012 0.005 0.005 0.006 0.001

−0.001 0.014 0.005 0.005 0.006 0.005 0.005 0.014 −0.001
0.01 0.004 0.012 0.006 0.013 0.006 0.012 0.004 0.01

−0.001 0.014 0.005 0.005 0.006 0.005 0.005 0.014 −0.001
0.001 0.006 0.005 0.005 0.012 0.005 0.005 0.006 0.001
0.005 0.005 0.006 0.014 0.004 0.014 0.006 0.005 0.005
0.002 0.005 0.001 −0.001 0.01 −0.001 0.001 0.005 0.002





















≈ 09×9

and respectively for the Variance

V ar =





















0.57 0.82 0.8 0.81 0.85 0.81 0.8 0.82 0.57
0.82 0.93 0.97 0.98 1 0.98 0.97 0.93 0.82
0.8 0.97 1.02 0.99 1.01 0.99 1.02 0.97 0.8
0.81 0.98 0.99 1.02 1.02 1.02 0.99 0.98 0.81
0.85 1 1.01 1.02 1.03 1.02 1.01 1 0.85
0.81 0.98 0.99 1.02 1.02 1.02 0.99 0.98 0.81
0.8 .097 1.02 0.99 1.01 0.99 1.02 0.97 0.8
0.82 0.93 0.97 0.98 1 0.98 0.97 0.93 0.82
0.57 0.82 0.8 0.81 0.85 0.81 0.8 0.82 0.57





















≈ 19×9

One can see that the required assumptions are in fact fulfilled by the scaled data.
This method is called Xavier initialization and works for, amongst others, sigmoid functions.
Since non-sigmoid functions like ReLU are neither zero-centered nor differentiable at zero,
they require a different method, the so-called He initialization. More theory on this method
can be found for example in [Kum17].

Another technique to further improve the initial error includes the idea of Monte-Carlo-
Simulation. This technique is often used for approximation in very high dimensions. In our
case, the space of weights has a very high dimension. First an ensemble of multiple random
weight initializations is sampled. Then all of them are tested with a training set and the
weights with lowest error on that set are chosen for the neural network. The efficiency of
this method depends on many factors like layer size and the input, making it hard to decide
whether or not it is faster than just improving the weights by a learning algorithm. For the
Policy Network weight ensembles stopped yielding an advantage as soon as Filters (see section
4.4.2 below) have been introduced and the learning method surpasses its efficiency. This again
accounts for Filters as being an adequate tool for improving the information gained.

4.3 Finding Good Learning Parameters

4.3.1 Batches

Generally speaking, it might be a bad idea to update the weights after every single input, since
this leads to higher computation times and in some cases to oscillation on the error surface.
Therefore it has become common practice to split up the training data into so called batches
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of same size and only actualizing the weights after each batch.
Since it seems that there existed no sufficiently good recommendations on what batch size to
use, we tried to determine the best size through testing. We found that a batch size of around
1% of the total training set size was a good rule of thumb. One should keep in mind that there
is a quite direct trade-off between accuracy and speed when choosing the batch size, making it
hard to determine a perfect size for all situations.

4.3.2 Stochastic Gradient Descent and Learning Rate

A common method for minimizing a function in a high dimensional space is the gradient
descent method. In our context this means finding optimal weights that minimize the error
produced by the neural network using those weights. The method can be written as the basic
update rule

W (t + 1) = W (t) + ∆W (t)

∆W (t) = −η
∂E(W (t))

∂W (t)

where η is called learning rate or step size, and ∆W (t) can be equipped with several other
terms, as we will see in chapter 4.3.3.
Since the computation of the gradient ∂E(W (t))

∂W (t) is numerically expensive, one uses the so called
Stochastic Gradient Method or SDM for short. When learning a training set we simply look
at just a random sample of data points instead of the whole set at once. This rather heuristic
method yielded faster convergence in practice and is less prone to getting stuck in local minima.
A more theoretical explanation for the performance of SDM can be found in [DNS14].

Figure 4.7: Plot of training results on a small set for different eta.

The explicit choice of η is fundamental for the learning speed and accuracy. Since the Gradient
Descent Method is much more sensitive at the end of the learning process, one can save time
and accuracy by letting η decay over time. This can be done with a fixed decay-time relation
like

η(t) = η0 e−ωt, ω ∈ R+
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or alternatively by observing the error and reducing η stepwise if the error stagnates locally.
Still, a good choice for η0 has to be found by testing.
At the very beginning of building data structures we started with having only a single data
point representing all moves played on a single board. Consequently every board would have
been learned only once, even though occurring far more often than other board e.g. the empty
board. To handle this, we introduced an adaptive η rule, which works as follows: Consider a
board b that has appeared in the data set k times. Now instead of learning the board k times,
b is equivalently learned with an adaptive η of

η̂ = f(k, η)

where we choose the importance weight function f : N × R+ → R+ in different ways

f(k, η) = η log(2 + k) or f(k, η) = ηk.

Though not explicitly changing the learning behavior, we achieved a better adaptation to a
more promising play style by this. Overall the logarithmic rule yielded a better playing result
than both linear rule and no adaptive η rule at all.

4.3.3 Regularization and Momentum Term

For most of the testing and coding phase we were limited to the use of small training sets due
to computation costs and the need for flexibility and of fast response. This quickly lead to
the well known problem of Overfitting of the neural network. By this, the neural network
was unable to see the underlying hidden data and built up strong codependencies between its
neurons, specializing it for a single particular set of games. To avoid this we used a common
practice called L2-Regularization, which introduces a regularization term punishing the entries
of the weight matrices for being to large.
The resulting regularized error function reads:

ER(W ) = E(W ) +
λ

2N

∑

i,j

W 2
i,j ,

where λ ∈ [0, 1) is called regularization parameter.

Since the learning speed on very flat parts of the error surface tends to be slow, one introduces
a momentum term. This term corresponds to the physical momentum in so far that it carries
on a proportion of the motion on the error surface from the last update step to the next one.
This way the learning rate on flat error surface regions get boosted, promising faster learning
convergence. So we introduce the new term:

∆Wµ(t) = −η∆W (t) + µ∆Wµ(t − 1) ,

with a momentum parameter µ ∈ [0, 1).

Combining L2-regularization and momentum term the resulting update rule is:

W (t + 1) = W (t) + ∆W (t)

∆W (t) = −η
λ

N
W (t) − η

∂E

∂W
+ µ∆W (t − 1)
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•
•

x

y

Figure 4.8: Learning step with (green) and without (red) momentum.

4.4 Architecture of the Neural Network

4.4.1 Layers

There is barely any sophisticated way to obtain the best layer architecture (size and number of
layers), apart from just testing. In the following we compared different layer architectures on
a small training set. As can be seen in figure 4.9 a low amount of layers, but containing a big

Figure 4.9: Three different layers in training result comparison.

size layer yielded the best results in testing. Thus our layer architecture generally consisted of
a very big layer followed by at least one smaller layer. The fluctuations and worse performance
of the orange line in the figure is due to high sensitivity and to big learning rate for the
many-layered network.

4.4.2 Filters

Since neural networks are very successfully being used for image recognition, methods from
that particular field are worth also applying for problems like the game of Go.
Especially the concept of filtering features from the input seemed promising. Filters are an
inherently natural way of extracting useful information from a given image or, as in this
case, from a Go board. By this thoughtful preprocessing we intended to further increase the
performance of the neural network.
One of the main difficulties for programs playing Go lies within the nature of the game itself:
The inability to measure most of the strategic thinking required in a quantitative fashion.
Human heuristics on Go strategy has been passed on through generations by oral traditions
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over centuries and has later been written down, forming the now community-wide highly valued
Go Proverbs. These old wisdoms can sometimes be translated into filters to aid the neural
network in playing more strategic. This way we could incorporate game expert knowledge into
the network.

1
2
3
4
5
6
7
8
9

ABCDEFGHK

We define a Filter as a mapping from the space of Go boards B to some
feature space Vfeat, where most of the used Filters map to V = Z

81.
In that case we call the image of some board under such a filter an
information matrix.
In the following we consider the particular board seen on the right.
Exemplary Filters are applied to this board for the white player and
presented together with the resulting information matrix.

Eyes Filter This Filter searches the board for so called eyes for a player
of given color. Eyes are vacant fields of size one that are totally surrounded
by stones of the player. They are generally considered as valuable, as two
of them in a group secure it from getting captured, making it an alive
group.
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Eyes Creation Filter Quite similar to the Eyes Filter, this one checks
for positions that will result in the creation or destruction of own eyes
for a player.

1
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5
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8
9

ABCDE FGHK
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1

1

Capture Filter The Capture Filter will extract the number of stones
being captured by playing a stone on a free field. This means: If a move
on a field will result in n stones being taken, that field will have a value
of n.
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Added Liberties Filter Increasing the total cumulated liberties of your
own groups is a good tactic in Go. So this Filter counts the liberties
added by a move to each adjacent group. Connecting groups is strongly
favored, which also leads to a better play style.
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Liberties Filter This Filter locates strongly connected groups of player
stones. Then the liberties of the whole strong group are counted.
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5 Results

We succeded in implementing a Go engine that utilizes the GTP to communicate Go com-
mands with a Go client. This means we were able to play against our Go engine in a GUI

such as GoGui and test our Go engine on a public Go server. Furthermore, we successfully
implemented all variants of the Policy Net seen in section 4 from scratch. We were able
to train many different instances of the Policy Net by adjusting the various parameters
and hyperparameters. Instead of trying different neural networks or different techniques
from artificial intelligence, we concentrated on improving this Policy Net more and more
with various ideas and approaches, as seen in section 4. After all of this our best Go engine
had a 89% win-rate against a random Go engine and we were still able to beat it in most games.

There are reasons for this slightly disappointing result. The likely most significant reason is
the restriction in the amount of training data we were able to use. Once we were able to lower
the training error to a reasonable amount, we experienced overfitting: our Go engine imitated
the training data well, but didn’t generalize to produce good moves for unseen board positions.
The natural approach to counter overfitting given a good model is using more training data.
Using more training data increases the training time, so we utilized the LRZ -cluster resources
in the hope that more computing power would make training time more feasable. This wasn’t
the case for our self-implemented neural network and in any constellation of CPU cores and
memory it trained at the same speed. Not being able to use the amount of training samples
we had available hindered the covering of the search space over which we were trying to find
the optimal function. Even with our model improving and playing good moves occasionally,
we were far away from covering the search space enough to produce good moves consistently.
We realize now that a neural network implementation in Python with the package NumPy for
mathematical operations isn’t a good approach, if one cares about scalability. NumPy as well
as the language Python isn’t meant for implementing computation heavy programs directly.
Programming libraries that are utilized by Python, such as Tensorflow, are themselves written
in highly-optimized C++ and CUDA code and are therefore capable of exploiting CPUs and
GPUs efficiently.

Another problem with our approach lies in our assumptions. We assume the Policy Net will
win the game by playing good moves. But in a game of Go a sequence of good moves doesn’t
make you a winner, because in the end the player with the most area wins. Additionally,
we assume that we can learn the best moves by learning from training data that is labeled
by humans. The problem here is that not every move that occurs in the training data is
a good move. So one has to distinguish between good and bad moves in the training data
which is a difficult task. Not every move that was played by a strong player is necessarily
a good move and not every move that was played by the (at the end of the game) winning
player is necessarily a good move. Because we didn’t see a clean way to weight the training
data, we assumed every move as equally good and the more often it occured, the better it
was. An improvement to our approach would be to reevaluate moves with a second neural
network that estimates a winning probability of this move, similar to the Value Net of AlphaGo.
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5 Results

We have seen that training a neural network with supervised learning techniques only takes you
so far. To approximate the ideal function that always produces moves that lead to winning the
game of Go, one has to go beyong supervised learning into the field of unsupervised learning.
Every version of AlphaGo utilized reinforcement learning by self-play and with AlphaGo Zero

it was shown that a Go engine can be realized without considering labeled training data at all.

Implementing the deep neural network including backpropagation from scratch helped us
gain a deep understanding of the mathematical concepts behind neural networks, and it also
enabled us to directly implement our creative ideas into the neural network. We don’t regret
following this approach, because it forces to thoroughly think through every little step in the
theory and the achievement of making it work is very rewarding. At the same time we realize
that using an established machine learning library would have resulted in a scalable neural
network, a likely better overall result and a substantially smoother project progress. All in
all we are very content with the progress made in this project considering we barely knew
anything about Go, neural networks or the Python programming language at the beginning of
this project.
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The figures in this work were made using TikZ, PGFPlots and matplotlib. All figures were
made by the authors if not explicitly stated otherwise.
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