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Abstract

Thermomechanical fatigue represents one of the main root causes of transistor failures
in power modules utilized in wind turbines, photovoltaic systems, and electric vehicles.
It arises when materials within a transistor undergo cyclic mechanical loading and fluc-
tuating temperature conditions, leading to accelerated degradation and eventual failure.
By estimating the remaining lifetime of semiconductors, proactive maintenance, timely
replacements, cost optimization, risk mitigation, and improved safety measures can be
implemented to counteract thermomechanical fatigue.

When estimating the remaining lifetime of semiconductors, the first step involves imple-
menting an efficient and scalable rainflow algorithm to count thermomechanical fatigue
cycles. This algorithm serves as the foundation for training a machine learning model.
Therefore, we first conduct a comprehensive study of the rainflow analysis and its various
visualization techniques. During the data exploration and modeling phase, our focus lies
on data acquisition, preprocessing, and a comprehensive discussion and evaluation of di-
verse machine learning models. After thorough analysis, we select the SGDRegressor as
our final prediction model.

The scope of this project also includes the development of a web interface that presents
the results of the rainflow analysis, allowing users to visualize the relationship between
rainflow counts and various features. Furthermore, the application displays the estimated
remaining lifetime of semiconductors, enabling practical implementation for real-world
scenarios.

In conclusion, this work makes contributions to thermomechanical fatigue analysis and
emphasizes the significance of proactive maintenance in critical systems.
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1 Introduction

1.1 Background and Project Scope

Thermomechanical fatigue is one of the root causes of transistor failures observed in
power modules utilized in wind turbines, photovoltaic systems, and electric vehicles. It
occurs when materials within a transistor undergo cyclic mechanical loading and fluctu-
ating temperature conditions, leading to accelerated degradation and eventual failure [3].
By estimating the remaining lifetime of semiconductors, proactive maintenance, timely
replacements, cost optimization, risk mitigation, and enhanced safety measures can be
implemented to counteract thermomechanical fatigue.
The starting point of this project is simulated data corresponding to a time series of
temperatures measured by a sensor attached to the semiconductor system. Additionally,
there is simulated data for the cooler temperature, power consumption, risk of failure,
accumulated damage, and base failure rate, but these factors are not considered in this
project. The simulation was performed using a physics-informed simulator developed at
Procon IT GmbH. The initial task involves conducting a rainflow analysis to determine
temperature stress cycles.
To accomplish this, an efficient and scalable rainflow algorithm needs to be implemented
to count thermomechanical fatigue cycles. These rainflow counts are utilized as a foun-
dation for training various machine learning models. Subsequently, the performance of
these models will be assessed using a range of metrics. The top-performing model is then
employed to estimate the remaining lifetime of the semiconductor.
Following that, the results of the rainflow analysis need to be presented through well-
designed plots that demonstrate the relationship between rainflow counts and various
features. Finally, we develop a web interface, featuring dashboards to display the plots
and provide the estimation of the remaining lifetime.

1.2 Rainflow Analysis

Rainflow analysis is a method used to analyze and identify fatigue cycles in time series
data [12]. Rainflow analysis utilizes a counting algorithm to detect and count the indi-
vidual stress cycles. It is commonly used in engineering and material science to study the
behavior of materials under cyclic loading. This algorithm follows several key steps to ex-
tract valuable information for fatigue analysis. To begin, the algorithm takes a sequence
of cyclic stresses as its input, representing the time history of the system. It then proceeds
by identifying the peaks and valleys in the data, which correspond to the maximum and
minimum stress values, respectively. Next, the algorithm connects neighboring peaks and
valleys, forming half-cycles. Each half-cycle represents a transition from a valley to a peak
or vice versa. These half-cycles serve as the building blocks for the subsequent analysis.
The rainflow counting step is crucial, as the algorithm pairs up the half-cycles to deter-
mine the number of full cycles. Both major (larger) and minor (smaller) ranges of the
cycles are considered, ensuring comprehensive analysis. Once a full cycle is counted, it is
eliminated from the data, allowing the algorithm to proceed to the next cycle. This step
ensures that each cycle is properly accounted for and avoids duplication in subsequent
calculations. Afterwards, the counting can be utilized to compute the damage incurred
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by each cycle, employing well-established methods such as the Palmgren-Miner linear
damage accumulation rule or other techniques for estimating fatigue life. This calculation
provides valuable insights into the fatigue behavior of the system.
The rainflow counting algorithm has proven useful in predicting the fatigue life or lifetime
of semiconductors. In our study, these techniques can be applied as follows:
Data collection: The first step involves gathering cyclic load or stress data that cor-
responds to the operating conditions of the semiconductors. This data can be obtained
from real-world operational settings, simulated tests, or accelerated testing methods. In
our case, we collect simulation data that tracks the datetime and temperature parameters
(and other parameters).
Rainflow counting: Once the data is collected, we apply the rainflow counting algorithm
to analyze it. This algorithm effectively identifies significant peaks and valleys within the
cyclic load or stress history. By connecting neighboring peaks and valleys of temperature,
half-cycles are formed.
By utilizing these techniques, we can gain insights into the fatigue life and make predic-
tions about the lifetime of semiconductors in our study.

1.3 Palmgren-Miner Linear Damage Accumulation Rule

Miner’s rule, specifically the Palmgren-Miner rule, is a commonly used approach in fa-
tigue analysis. It allows for the estimation of cumulative damage resulting from multiple
cyclic stress cycles on a material or structure. The fundamental concept underlying the
Palmgren-Miner rule is that the accumulated damage experienced by a component is di-
rectly related to the ratio of applied load cycles to the fatigue strength of the material
under a single load cycle [8]. The Palmgren-Miner rule is given by,

k∑
i=1

ni

Ni

= 1 (1)

where k = number of stress levels in the block loading spectrum, ni = number of cycles
at each stress level in the block loading spectrum and Ni = number of cycles to failure at
each stress level [14].
The fatigue strength, also known as the endurance limit, is determined through experi-
mental testing or obtained from relevant literature specific to the material being analyzed.
However, since we used the simulation data, we actually do not have these material spe-
cific properties. This value represents the maximum cyclic stress that the material can
endure indefinitely without failing.
In our case, these fatigue strength values are not present. The number of load cycles (N)
corresponding to each distinct stress level or range is determined. This can be accom-
plished through techniques like rainflow counting or other cycle counting methods. For
each stress level, the ratio of the number of load cycles (N) to the fatigue strength (Nf)
is calculated. This ratio, known as the damage ratio (D), represents the relative dam-
age caused by the corresponding stress level. The damage ratios for all stress levels are
summed together to obtain the cumulative damage (Dcum) resulting from the combined
load cycles. The cumulative damage (Dcum) is then compared to a predefined thresh-
old value, typically set at 1. If the cumulative damage exceeds 1, it indicates that the
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accumulated damage has surpassed the material’s fatigue strength, implying a higher
probability of failure. It’s important to note that the Palmgren-Miner rule assumes a lin-
ear relationship between fatigue damage and the number of load cycles. However, it is an
approximation and may not consider all factors influencing fatigue behavior, such as load
sequence effects or material properties at different stress levels. Despite its simplifications,
the Palmgren-Miner rule is widely accepted and offers a practical method for estimating
cumulative fatigue damage in engineering applications. It assists engineers in making
informed decisions regarding design life, maintenance intervals, and safety considerations
for structures subject to cyclic loading.
In our analysis, we attempted to apply the Palmgren-Miner rule to our datasets using
common fatigue strength values from other projects. However, these values did not yield
satisfactory results when applied to our simulation data. Additionally, we wanted to take
into account the effect of the cycle ranges since they highly affect the life time of the
semiconductor. As a result, we decided to proceed with linear regression models instead
of a simple implementation of the Palmgren-Miner rule.

1.4 Rainflow Analysis Visualization

There are several effective visualization techniques available to present the outcomes of
the rainflow counting algorithm. Here are some commonly employed methods:

Cycle Count through Timeline. This Figure 1 displays the temperature over time.
The cycles identified by the rainflow analysis are plotted here highlighted by red dots.
The x-axis represents the timeline in seconds, while the y-axis represents the stress values
- temperature in our case in Kelvin. The identified cycles are plotted within respective
stress range bins, allowing for a clear understanding of their distribution throughout the
timeline. [1]

Figure 1: Temperature over time with highlighted cycles.
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Cycle Range vs. Time vs. Count Plot. This plot showcases the temperature range
on the x-axis in Kelvin, the time range denoted as cycle period on the y-axis in seconds,
and the cycle count on the z-axis. Each data point represents an individual cycle, enabling
the observation of how stress range and count vary within the dataset over time. Different
markers or colors can be utilized to differentiate between various types or occurrences of
load cycles.

This plot can be interpreted as follows: for all time windows we can see mostly cycles with
low range. However, probably closer to the end of the simulation for some large time win-
dows the range of the cycle start to grow which means that the semiconductor is about to
die.
Cycle Range vs. Mean Stress vs. Count Plot. Similar to the previous plot,
this visualization presents the stress range on the x-axis. The mean stress is displayed on
the y-axis, the cycle count - on the z-axis. Individual cycles are represented by data points,
enabling the examination of the relationship between stress range, count, and mean stress
throughout the dataset. Distinct markers or colors can be used to differentiate between
different load cycle types or occurrences [1].

(a) Thermal cycles in dependence of the time
window and cycle range.

(b) Thermal cycles in dependence of the cycle
mean temperature and cycle range.

Figure 2: Rainflow Matrices.

Here the most severe cycles have high thermal swings, which indicates how important
it is to include those for the statistical data analysis, those most likely have the most
influence on the remaining lifetime of the semiconductor. These visualization techniques
offer valuable insights into the distribution, patterns, and characteristics of load cycles
identified through the rainflow counting algorithm. They aid in the comprehension and
analysis of the data, facilitating effective decision-making in fatigue analysis and structural
health monitoring.
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2 Statistical Data Exploration

2.1 Data Acquisition

The data is simulated using Python code. The code generates data by simulating the
parameters of a semiconductor and saving the parameter values over time until the semi-
conductor shuts down. Those parameters include temperature of the transistor, tempera-
ture of the cooler, power usage, base failure rate (predicted failure), accumulated damage,
risk of failure. The simulation is based on a configuration file written as Python script.
Both Python script and config are provided by the client (PROCON IT GmbH).
The configuration file contains various parameters that define the characteristics of the
simulation. They are related to semiconductor and cooler features, such as heat transfer
coefficients, specific heats, masses, areas, and temperature ranges. Those parameters are
known constants for the semiconductor environment.
The script initializes the simulation by setting the initial time, creating a power curve
generator yielding normally distributed values based on the temperature at which the
transistor enters thermal throttling. The generator produces the precentages of maxi-
mum power, providing a relative values instead of absolute ones. The steps this simula-
tion includes are: calculating heat flux, heat loss, energy loss, temperature loss for each
datapoint; generation of the temperature of the semiconductor for each value calculated
by the power curve generator - this relation between the power curve and temperatures is
deterministic, since the parameters of the semiconductor and the power curve are given
in the config.
It then runs the simulation for each transistor, saving the generated data in separate
CSV files for temperature, power consumption, failure rates, accumulated damage, and
risk of failure. The data is organized into directories for each transistor, which are then
compressed and uploaded to an S3 bucket for long-term storage.
The quantity of simulations has a significant impact on the model’s overall performance.
For this study, we were initially provided with 8 configurations, each consisting of 10
simulations. Thus, the results presented in this work can be further enhanced in future
iterations by incorporating additional data to enrich the model’s descriptive capabilities.

2.2 Data Preprocessing and Feature Engineering

To predict the lifetime estimation of the semiconductor, based on rainflow cycles, we
initially conducted the rainflow analysis on the simulated temperature data to extract
the temperature stress cycles. For this purpose, we employed the Python implementation
of the standard practice ASTM E1049-85 rainflow cycle counting algorithm for fatigue
analysis [12]. This process enabled us to obtain the rainflow cycles along with their
associated features, such as cycle magnitude, duration, and temperature.
To develop a model predicting material failure, we transformed the problem into a re-
gression task. As we lacked actual ’y’ values (failure rates), we generated synthetic ’y’
values based on the material’s lifetime. We calculated the ’time-to-failure’ for each data
point as follows: If the material failed at time ′T ′, then for each time t < T , the ’time-to-
failure’ was set to T-t. For time t >= T , the ’time-to-failure’ was set to 0. We used this
’time-to-failure’ as the target variable for regression, with rainflow counts as the input



2 STATISTICAL DATA EXPLORATION 8

feature for each time point. As for the failure rate, it is typically defined as the number
of failures divided by the total time. However, since we only have data for one failure
from the simulation, calculating a failure rate is not meaningful in this context. Instead,
the ’time-to-failure’ prediction from the regression model serves as a more appropriate
measure of when the material is expected to fail.
The next step is to calculate the rainflow counts for each data point and incorporate them
as features in the regression models. To achieve this, we implemented a rolling window
approach on the temperature data, computing the rainflow count for each window rather
than individual data points. Each window encompasses rainflow counts per bin, indicating
the cycle sizes. Consequently, we obtain a time series of rainflow counts. Notably, the bins
are designed to have smaller sizes at the beginning of the simulation, gradually increasing
towards the end.
Next, we utilized this time series of rainflow counts to predict the ’time-to-failure’ cal-
culated in the previous step. It is essential to highlight that the ’time-to-failure’ is also
transformed to represent the time to failure for each window rather than each data point.
In our implementation, the window size determines the size of the window, while the step
size determines how much the window moves for each step. In most cases, we set these
sizes to be the same, but it’s important to note that this choice can influence the model’s
performance.
In order to use processed data in the regression model, we introduced a new feature rep-
resenting the cumulative sum of the rainflow counts, which helps accumulate the effect
of these counts. Thus, higher rainflow counts lead to a faster increase in the cumulative
sum, indicating a potential decrease in the remaining lifetime of the semiconductor. Fi-
nally, we prepared the ’X’ and ’y’ data for the model by reshaping them into 2D and 1D
numpy arrays, respectively, and partitioned them into training and test datasets. Since
this is a time series problem, we adopted a temporal train-test split approach. The train-
ing set comprises all data up to a specific time point (80% for our case), and the test
set includes all data after that time point, ensuring a proper temporal evaluation of the
model’s performance.
For calculating the rainflow counts, we employed two different methods. The first method
involves computing a weighted sum, where each count is multiplied by the corresponding
bin weight, representing the cycle temperature magnitude range. This results in a single
feature representing the accumulated rainflow count per window, depicted as follows:

xi =
n∑

i=0

rainflow count(windowi)× bin size (2)

Since the amplitude of temperature cycles affects the failure rate, this weighted sum can
be a more meaningful feature compared to just the total count. However, we assumed
that there is an linear relationship between failure rate and cycle temperature magnitude
in this case. In order to overcome this issue, we also treat each cycle magnitude range
(each bin) as separate features and let the model learn which one of the bins affects most.
The number of features corresponds to the number of bins in the simulation, allowing
the model to assign weights to each bin’s counts. Consequently, the input of the model
consists of vectors, with each vector representing the rainflow counts for a specific bin.
The number of these vectors equals the number of bins used in the simulation.
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xij =
n∑

i=0

rainflow count(windowi, bin sizej) (3)

In this Data Preprocessing part, we generate a sum of rainflow counts as input and ’time-
to-failure’ as output. These processed datasets are then utilized to train the regression
models, explained in the subsequent chapters. We perform the train-test split in a tempo-
ral manner, where the model is trained solely on past data and tested on future data. The
model’s performance is evaluated using the metrics described in the following chapter.

3 Modeling

3.1 Metrics used to compare algorithms

To assess the accuracy of our prediction, we compare the predicted values with the actual
values from the testing data. Common evaluation metrics for evaluating machine learning
models for regression tasks include Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and R2 [5][6]. In the following formulas, yi represents the actual values, ŷi
the predicted values, ȳ the mean value of the sample and n the sample size.
RMSE is calculated by taking the square root of the MSE. This transformation is valuable
as it allows for a more intuitive interpretation of the average error magnitude, as the
RMSE values are in the same units as the target variable. Consequently, it facilitates a
more meaningful understanding of the average deviation between the predictions and the
actual values. The RMSE is given by:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4)

Some researchers have recommended using the MAE instead of the RMSE [15]. MAE
measures the average absolute difference between the predicted values and the actual
values, offering advantages in interpretability over RMSE. It provides a measure of the
magnitude of the errors made by the model. The MAE is given by:

MAE =
1

n

n∑
i=1

|yi − ŷi| (5)

For both metrics (RMSE and MAE), a lower error value indicates better performance,
indicating that the model’s predictions are closer to the actual values [6]. Another relevant
metric is R2, which represents the proportion of the variance in the dependent variable
(actual values) that can be explained by the independent variable (predicted values). It
ranges from 0 to 1, where higher values indicate a better fit of the model to the data and
a value of 1 represents a perfect fit [6]. The R2 is given by:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(6)
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In our analysis, we also introduce specific relative measures to evaluate the performance
of our models in predicting the remaining lifetime of transistors. The Mean Absolute
Error relative to whole lifetime calculates the mean absolute relative difference between
the estimated remaining lifetime and the measured remaining lifetime, normalized by the
measured lifetime of the whole simulation. This provides an overall assessment of the
accuracy of the predictions relative to the entire lifespan of the transistor.

Mean Absolute Error Relative to Whole Lifetime =

(EstimatedLifetime−MeasuredLifetime)

Whole Lifetime

(7)

The Mean Absolute Error relative to ground truth lifetime measures the mean absolute
relative difference, normalized by the measured remaining lifetime, providing an overall
assessment of the accuracy of the predictions relative to the lifetime of each data point.

Mean Absolute Error Relative to Ground Truth Lifetime =

(EstimatedLifetime−MeasuredLifetime)

MeasuredLifetime

(8)

Next, the overprediction rate quantifies the proportion of instances where the predicted
remaining lifetime exceeds the actual measured remaining lifetime, offering insight into
the model’s tendency to overestimate the remaining lifespan of the transistor.

Overprediction rate =

∑n
i=1(ŷi > yi)

n
(9)

Similarly, the underprediction rate calculates the proportion of cases where the predicted
remaining lifetime falls short of the actual measured remaining lifetime, indicating the
model’s inclination to underestimate the remaining lifespan of the transistor.

Underprediction rate =

∑n
i=1(ŷi < yi)

n
(10)

3.2 Anomaly Detection

In this project, we explored the algorithm of Anomaly Detection [11] by utilizing the
Microsoft-provided Python code from their GitHub repository. However, we found that
the algorithm did not suit our specific problem due to several limitations.
Firstly, the algorithm lacks the capability to indicate the precise time of the semicon-
ductor’s real death, which is a crucial aspect in our context. Additionally, the anomalies
detected by the algorithm do not align with the actual death of the semiconductor, ren-
dering it unsuitable for our purposes. Lastly, the algorithm does not account for the
continuity of the data, which is a fundamental requirement in our scenario.
As a result, we determined that the algorithm described in the paper did not provide a
viable solution for our specific requirements.

3.3 Linear Model

Approach

In this section, we explore a linear model approach that incorporates rainflow counts as
features. Rainflow counting is a technique used to analyze and quantify fatigue damage
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in engineering structures subjected to cyclic loading. By including rainflow counts as
features in a linear model, we leverage this information to enhance model accuracy and
effectiveness.
To incorporate rainflow counts as features in a linear model, we follow the steps described
in 2.2. This way two setups are created: (1) - one feature as accumulated weighted cycle
counts, where weights are the bin ranges; (2) - separate cycle count as features.
Finally, we train a linear model, such as linear regression, using the created dataset. The
model learns the relationship between the rainflow count features and the target variable.

Table 1: Metrics for 1 simulation

Case MAE [s] MAE relative to lifetime MAE relative to GT RMSE [s]
Setup 1 9238 0.0001 0.005 10947
Setup 2 6443 0.00006 0.003 7987

Case R-squared Overprediction rate Underprediction rated
Setup 1 0.99 0.61 0.68
Setup 2 0.99 0.9 0.31

Table 1: The table presents 2 setup cases along with their corresponding metrics: 1 -
one feature as accumulated weighted cycle counts, where weights are the bin ranges; 2 -
separate cycle count as features.

Results

The obtained results demonstrate the model’s strong predictive capability in estimating
the remaining lifetime, particularly in scenarios where the lifetime spans several years.
Notably, in the conditions when the whole lifetime can be years a tolerable error range
was reached. To gain deeper insights into the prediction performance, it is customary to
employ the prediction vs. ground truth plot, a widely recognized technique for visual as-
sessment and evaluation of model predictions. In both cases an important take from those

(a) Prediction vs. True values - setup 1 (b) Prediction vs. True values - setup 2

Figure 3: Comparison of setup 1 and 2

plots is that they almost perfectly reflect the real ground truth. This is the case when
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only one simulation is used for trainig - model might be overfitted. A logical continuation
of those experiments would be adding more simulations into the training dataset. This
result also shows us that setup 2 where we use separate bin counts as columns should be
chosen for the future experiments.
The train-test split operation here should be conducted in a way where we keep the notion
of time series data. There are 2 ways do do it: 1 - first 80% of each simulation is for
training, last 20% is for testing; 2 - 80% of full simulations is for training, 20% is for
testing.

Table 2: Metrics for 1 simulation

Case MAE [s] MAE relative to lifetime MAE relative to GT RMSE [s]
Setup 3 5374162 6.22 13.1 7869036
Setup 4 10034422 11.6 9.47 16871316

Case R-squared Overprediction rate Underprediction rated
Setup 3 -4.83 0.77 0.23
Setup 4 -0.1 0.59 0.41

Table 2: The table presents 2 setup cases along with their corresponding metrics: 3 -
first 80% of each simulation is for training, last 20% is for testing; 4 - 80% of full
simulations is for training, 20% is for testing.

(a) Prediction vs. True values - setup 3 (b) Prediction vs. True values - setup 4

Figure 4: Comparison of setup 3 and 4

Throughout the course of this experiment, it has been deduced that the intrinsic linearity
of the model is a valuable attribute within the domain of this dataset. Nonetheless, it
becomes evident that some other algorithm is imperative to accurately capture the diver-
sity exhibited by a set of simulations since the metrics gained from multiple simulations
have a wider range.
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3.4 SGD Regressor

We achieved favorable results with the Linear Model; however, our goal is to train the
model incrementally with new simulation data, allowing it to learn from all simulations
associated with the same type of semiconductor.

Approach 1

Therefore, we employ the SGDRegressor from the scikit-learn Python package [10], which
facilitates incremental learning, also known as ’online learning.’ This feature enables
SGDRegressor to execute linear regression and be incrementally trained using the partial
fit method. In the model class, when we call the train method with a set of temperatures,
the model is trained with that data. Subsequently, if we call the train method again
with a different set of temperatures, the model continues training with the new data. In
essence, each call to the train method continues the training of the existing model with the
new data stochastically. This ensures that the model retains the knowledge gained from
previous epochs, preventing it from forgetting what it has learned when presented with
new data. One of the challenges we encountered when transitioning to SGD Regressor was
the requirement for feature scaling. Unlike the linear regression model, SGD is sensitive
to feature scaling, making it advantageous to standardize the data before training. To
achieve this, we utilized the StandardScaler from the scikit-learn Python package [10]
for feature scaling in our modeling process. The StandardScaler standardizes features
by removing the mean and scaling to unit variance. It fits and transforms the rainflow
counts data before model training. It is curcial to apply the same transformation to
any data passed into the model for prediction. Therefore, only the transform function
is used on the testing data, not the fit feature of the scaler because the same scaling
(mean and standard deviation) as the training data should be maintained. This approach
guarantees that the model remains unbiased by any information in the testing data.
Moreover, the SGDRegressor model can benefit from multiple epochs of training. Unlike
Linear Regression, which analytically solves for model parameters, SGDRegressor employs
gradient descent and might require several passes over the data to converge to optimal
parameters. Consequently, we fine-tuned the hyperparameters, selecting different epoch
numbers for various cases while retaining the default learning rate.

Result 1

Subsequently, the model was trained, and the corresponding results can be observed in
Table 3. Initially, we utilized the cumulative sum of all temperature cycle ranges, which,
as shown in Table 3, yielded superior results compared to other approaches. Setup 1
illustrates the metrics for one simulation, also employed in the Linear Model section. On
the other hand, Setup 2 represents training the model with multiple features as separate
cycle counts.
Contrary to our hypotheses, the results in Table 3 did not align, as the performance
worsened with multiple features when assessed with the training data. According to the
literature, bins with the highest cycle range should have higher impact than linear rela-
tionships. As a result, Setup 2 was anticipated to yield lower errors compared to Setup 1,
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Table 3: Metrics for 1 simulation

Case MAE [s] MAE relative to lifetime MAE relative to GT RMSE [s]
Setup 1 10706 0.0001 0.004 13073
Setup 2 24947 0.0003 1.54 30225

Case R-squared Overprediction rate Underprediction rated
Setup 1 0.999 0.74 0.26
Setup 2 0.999 0.64 0.36

Table 3: The table presents 2 setup cases along with their corresponding metrics: 1 -
one feature as accumulated weighted cycle counts, where weights are the bin ranges; 2 -
separate cycle count as features.

given that the model would learn the importance of counts belonging to the specific bin
from the data. However, this was not observed, even though the difference was negligible.
The coefficients of the model are analyzed in Table 4 to understand the reasons behind
the observed behavior. Surprisingly, higher values in certain bins do not correspond to
higher importance, especially evident in the last bin (x13), which exhibits the least coeffi-
cient value. This suggests that it has minimal impact on decreasing the semiconductor’s
lifetime according to the trained model.
Additionally, there is an issue with x7 having a positive value, contrary to theoretical ex-
pectations, where it should reduce the semiconductor’s lifetime when in use. Investigation
reveals that large-value bins have small counts, leading to a sparse feature space that the
model struggles to handle effectively.
In addition, the significant difference in the magnitude of counts among different bins can
lead to challenges. Linear regression models tend to prioritize features with larger values,
favoring the first bins in our scenario. Despite standardizing the features, the variance
within each feature can still impact the model’s learning.
Moreover, lower bins’ counts exhibit more uniform variations across different cycles, pro-
viding the model with additional information to learn linear relationships from. As a
result, the first bins might better explain the linearity, given their occurrence around each
window size with almost the same probability.

Table 4: Values of x1 to x15

x1 x2 x3 x4 x5

-2330313 -2321103 -2302851 -2317542 -2379920
x6 x7 x8 x9 x10

-2379054 21968 -780987 -997682 -2384306
x11 x12 x13 x14 x15

-2573449 -753447 -41622 0.0 0.0

To gain deeper insights into the prediction performance, a prediction vs. ground truth
plot is presented in Figure 5. The plot reveals that the SGDRegressor model’s predictions
closely resemble those of Linear Regression, indicating a similar explanatory capability
for the dataset.
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(a) Prediction vs. True values in seconds -
setup 1

(b) Prediction vs. True values in seconds -
setup 2

Figure 5: Comparison of setup 1 and 2 for SGD Regressor

Approach 2

To train the model incrementally with multiple datasets belonging to the same configu-
ration, we implemented a loop that retrieves files from the S3 AWS Bucket and performs
model training iteratively. The loop begins by initializing the SGD Regressor model.
Then, for each dataset, it downloads the data, extracts the temperatures, and trains the
model using the partial fit method. This approach ensures that the model updates with
new data while retaining the knowledge from previous datasets. After training with all
datasets, it is tested on two different datasets. The first test involved using the dataset
used during partial training referred to as Setup 1. Subsequently, we tested the model on
an unseen dataset to evaluate its performance on new data.

Result 2

We only present the results of the cumulative summation calculation of rainflow counts
since its superior to other methods. Please refer to Table 5 for the detailed results.

Table 5: Metrics for using all simulations

Case MAE [s] MAE relative to lifetime MAE relative to GT RMSE [s]
Setup 1 2990744 0.032 0.244 3449618
Setup 2 7058605 0.134 0.573 8147195

Case R-squared Overprediction rate Underprediction rated
Setup 1 0.589 0.999 0.001
Setup 2 -6.206 1.0 0.0

Table 5: The table presents 2 setup cases along with their corresponding metrics: 1 -
test results on the dataset which is used as a training dataset first; 2 - test results on the
dataset which the model has never seen before.

Based on the results, we can conclude that our model performs nearly as well on unseen
data as it does on the seen dataset. However, it is worth noting that training the model
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with multiple datasets affects its performance on the first dataset, resulting in slightly
worse performance compared to training it solely with the first simulation dataset.

3.5 Tree-based Methods

Approach

The Random Forest Regressor algorithm is based on the concept of decision trees, which
are simple yet powerful models for the regression task. Random Forest Regressor takes
this concept further by combining multiple decision trees to create an ensemble model. It
introduces the idea of random selection of the subsets of the original training data, with
replacement. This process is known as bootstrap aggregating or bagging. Each subset is
called a bootstrap sample. Then the algorithm follows by building an individual decision
tree for each bootstrap sample. At each node of the tree, the algorithm selects the best
feature and split the data based on a criterion (Squared error in our case). However,
instead of considering all features, Random Forest Regressor only considers a random
subset of features for each split. This randomness adds diversity to the ensemble. From
this decision tree setup an ensemble of decision trees is created by repeating the above
step to build multiple trees. To make a prediction, each tree in the ensemble indepen-
dently produces a prediction. For regression, the final prediction is typically the average
of all individual tree predictions.
The AdaBoost Regressor algorithm is another supervised learning algorithm that falls
under the category of ensemble methods. The AdaBoost Regressor algorithm follows a
boosting approach, which involves sequentially training multiple weak learners and com-
bining their predictions to form a stronger overall model. First step of the algorithm is to
train a weak learner (decision tree with a small depth). Then by calculating the weighted
error of the weak learner, updating technique is created: the weights of the misclassified
samples are increased, while correctly classified samples receive lower weights. The fi-
nal prediction is typically obtained by taking a weighted average of the individual weak
learner predictions (weighting is based on their performance during training).
In this study, our primary hypothesis centered around the sequential nature of the data,
particularly the stress calculations obtained through the rainflow counting algorithm. This
algorithm accounts for the cumulative property of stress, indicating that as the semicon-
ductor is utilized for a longer duration, it experiences greater stress. We explored the
impact of tree-based methods on this property. Specifically, we employed two regression
algorithms, namely Random Forest Regressor and AdaBoost Regressor. The features for
these models included accumulated cycle counts, which were used either as a single feature
or as multiple features for each bin.

Results

The utilization of a tree-based method introduces the possibility of neglecting the property
of accumulation, which is a crucial aspect of the data. This issue became apparent
during the simulation employed for training the models. As both approaches rely on
the Decision Tree algorithm, samples corresponding to the end of the simulation were
overlooked during feature splitting. Consequently, the algorithm consistently favored
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Table 6: Metrics for 1 simulation

Case MAE [s] MAE relative to lifetime MAE relative to GT RMSE [s]
Setup 1 170918 0.19 6.8 178906
Setup 2 126852 0.15 5.45 136297
Setup 3 171599 0.19 6.8 178694
Setup 4 126918 0.15 5.45 136358

Case R-squared Overprediction rate Underprediction rated
Setup 1 -11.87 1 0
Setup 2 -6.47 1 0
Setup 3 -11.84 1 0
Setup 4 -6.48 1 0

Table 3: The table presents 4 setup cases along with their corresponding metrics: 1 -
Random Forest Regressor with one feature as accumulated weighted cycle counts, where
weights are the bin ranges; 2 - same feature with AdaBoost; 3 - RFR with separate cycle
count as features; 4 - same features with AdaBoost.

smaller bins and predicted a constant high value, implying that the semiconductor would
never reach failure.

3.6 Support Vector Regressor

Approach

Support Vector Regression (SVR) is a machine learning algorithm for regression problems
with a quantitative response inspired by Support Vector Machines (SVMs) for binary clas-
sification. Support Vector Machines (SVMs) is a class of supervised learning algorithms
that aim to find an optimal decision boundary that separates different classes of data
points. The key idea behind SVMs is to maximize the margin, which is the distance be-
tween the decision boundary and the nearest data points from each class. By maximizing
the margin, SVMs promote better generalization and robustness to unseen data. SVMs
achieve this by transforming the input data into a higher-dimensional feature space using
a kernel function. In this transformed space, SVMs can find a linear decision boundary
that corresponds to a nonlinear decision boundary in the original input space [7]. SVMs
can be extended to regression problems by replacing the quadratic error function of simple
linear regression with an ϵ-insensitive error function [13]. This error function ignores errors
below a certain threshold ϵ and penalizes points outside the ϵ threshold (see Figure 6)[4].
It can be seen as fitting a flexible tube of ϵ width around the estimated function to handle
errors above and below a certain threshold (see Figure 7)[9].
SVR offers the advantage of computational efficiency since its complexity is independent
of the input space dimensionality. Moreover, it exhibits excellent generalization capability,
leading to high prediction accuracy [2].As discussed before, we assume linearity between
the input variables and the target variable. To account for this linearity, we utilize a
linear kernel Support Vector Regression (SVR) model. The scikit-learn Python package
offers the ’LinearSVR’ model specifically designed for this purpose. It is similar to the
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Figure 6: Plot of an ϵ-insensitive error function (in red) in which the error increases
linearly with distance beyond the insensitive region. Also shown for comparison is the
quadratic error function (in green).[4]

Figure 7: Illustration of SVM regression, showing the regression curve together with the
ϵ-insensitive tube. Also shown are examples of the slack variables ξ and ξ̂. Point above
the ϵ-tube have ξ > 0 and ξ̂ = 0 points below the ϵ-tube have ξ = 0 and ξ̂ > 0, and points
inside the ϵ-tube have ξ = ξ̂ = 0.[4]

SVR model with parameter kernel = ’linear’ but scales better to large number of samples.
Also, Support Vector Machine algorithms are not scale invariant. Consequently, the
documentation strongly advises scaling the data. For instance, standardizing the data
to have a mean of 0 and a variance of 1 is recommended. Accordingly, we employ the
StandardScaler from the scikit-learn Python package to scale the data [10]. We focus
on fine-tuning the ϵ-insensitive zone and keep all other hyperparameters at their default
values. According to the scikit-learn documentation [10], the choice of an appropriate
value for ϵ depends on the scale of the target variable. Since we standard scale all variables,
we expect that low ϵ values would be appropriate. However, it must be added that we may
expect overfitting for epsilon values of 0 or close to 0. We will explore a range of potential
ϵ values (0.005, 0.010, 0.050, and 0.100) to train the linear SVR model. Following testing,
the variables are rescaled back to their original representation, and we then compute the
MAE for each configuration. Ultimately, we will select the ϵ value that yields the lowest
MAE on the test set.

Results

Based on the data presented in Table 7, the linear SVR model achieves the lowest MAE
when the ϵ value is set to 0.0. However, a linear SVR model without an epsilon value re-
sembles a simple linear regression, resulting in comparable MAE. Nevertheless, we expect
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overfitting in this case. To assess the model’s performance with a specific epsilon value,
we compute other relevant metrics using ϵ set to 0.005 (as shown in Table 8).

Table 7: MAE’s of linear SVR Model with different ϵ values

ϵ MAE[s]
0.000 9139
0.005 117,226
0.010 251,212
0.050 1,328,388
0.100 2,676,987

The analysis for the linear SVR model followed a similar approach to the linear regression
model, utilizing only one simulation for training. Although the linear SVR model with
some epsilon performs less favorably than the simple linear model, which is easier to con-
struct and interpret, it demonstrates that a more complex model might not be necessary
in this context.
Additionally, as stated in section 2.3.4, our objective is to train the model incrementally
with new simulation data, enabling it to learn from all simulations associated with the
same type of semiconductor. Thus, we focused on elaborating the SGD Regressor model
and, consequently, decided not to pursue further analysis with the linear SVR model.
Instead, we selected the SGD Regressor model as our final and relevant choice.

Table 8: Metrics for 1 simulation

MAE [s] MAE relative to lifetime MAE relative to GT RMSE [s]
117,226 0.001 0.034 118,399

R-squared Overprediction rate Underprediction rated
0.99 1.0 0.0

4 Application

4.1 Application Structure

After statistical data exploration and developing the prediction model, our task also
involves creating a web interface with a dashboard that displays well-designed plots and
provides estimates of the remaining lifetime of a transistor. Consequently, we designed
a main dashboard for end users, offering two options on the homepage: the “Inference
Results” page and the “Graphs” page 11.
The “Inference Results” page enables users to access predictions and inferences generated
by the trained SGDRegressor Model. When landing on the page, the user is given the
choice to click the “Fetch Results” button. Subsequently, the user will be presented with
comprehensive metrics and an overview, including rainflow counts, predictions, status, and
time to failure. Further details about this page’s functionality will be explained in Chapter
3.4. To develop this application, we utilized the best-performing model (SGDRegressor)
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described in Chapter 2.3.4, trained it, containerized it, and then uploaded it to a cloud
platform. Although AWS was initially considered, we switched to the Google Cloud
Platform due to time constraints.
The second option on the dashboard is the “Graphs” page, where users can select various
configuration numbers and transistor numbers. Based on their input parameters, the
corresponding plots are fetched from a dedicated AWS S3 bucket for plots. These plots
were created beforehand using the plot generator module, which obtained time series data
from the S3 bucket for transistor data, generated the necessary plots, and then uploaded
them to the S3 bucket for plots. A schematic overview of the application structure can be
seen in Figure 8.Further details about this workflow are provided in Chapter 3.3, offering
a comprehensive description of the module’s functionality.

Figure 8: Schematic overview of the application structure

4.2 Modeling Workflow

The final Python program comprises two main classes: DataPreprocessor and
SGDRegressorFailurePredictor. Each class fulfills distinct roles in the data processing
and modeling pipeline. The DataPreprocessor class calculates and stores the rainflow
counts for the dataset, while the SGDRegressorFailurePredictor class handles model
training and predictions.

4.2.1 DataPreprocessor

The DataPreprocessor class preprocesses the semiconductor temperature data, com-
puting rainflow counts (used as a feature for failure prediction) and time-to-failure data
using sliding window calculations. The identifier differentiates datasets from different
semiconductors, enabling preprocessing for multiple data sets, where it serves as a unique
identifier for each dataset.
Rainflow counts and time-to-failure are calculated for each ’window’ of data and stored in
dictionaries (rainflow-counts and time-to-failure) using the dataset identifier as the
key. If the data for a particular identifier is processed in multiple batches, the rainflow
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counts for the new batch are added to the existing counts for that identifier so that we
can refactor the data in real-time.

4.2.2 SGDRegressorFailurePredictor

The SGDRegressorFailurePredictor class utilizes the DataPreprocessor object to re-
trieve the preprocessed data. It employs an SGDRegressor model from Scikit-learn to
predict the time-to-failure based on the rainflow count data. The identifier is used to
select the appropriate data for each semiconductor. To evaluate the model’s performance
on unseen data, a train-test split is performed.
The separation of the two classes, DataPreprocessor and
SGDRegressorFailurePredictor, follows good programming practice and enhances us-
ability in the front-end. The DataPreprocessor object enables us to store intermediate
results of rainflow counts. As new real-time data arrives for the same semiconductor, it
can be aggregated with the previously saved rainflow counts for that dataset up to that
point. This modular approach ensures that the DataPreprocessor class focuses on data
preprocessing, while the SGDRegressorFailurePredictor class is dedicated to machine
learning modeling. This separation results in code that is easier to read, maintain, and
debug.
This design effectively separates data preprocessing from the regression model, although
the calculation of rainflow counts and time-to-failure data from temperatures is conve-
niently encapsulated within a single class. The preprocessing is performed only once,
and the preprocessed data is then passed to the FailurePredictor upon creation. This
approach offers efficient handling and processing of large datasets by dividing the data
into manageable batches for training the regression model and evaluating its performance.

4.3 Visualization Workflow

The final component of the project scope involves creating a user-friendly web interface
that displays well-designed plots. To achieve this, we developed a specialized plot gen-
erator module. Initially, the module requires two input parameters: the simulation’s
configuration number and the transistor number. The time series data is stored in a
dedicated S3 bucket named “tum-di-lab-prod-transistor-timeseries”, organized in folders
like “config33/transistor 0”. Based on the input parameters, the module establishes a
connection to the relevant S3 object, fetching the required data in the form of a zip
file. The module then proceeds to process the data, unzipping the file and reading
the temperature data from the CSV file. Once the data processing is complete, the
module performs a rainflow analysis, generating two types of rainflow plots based on
the obtained rainflow counts. These two plot types are the “Cycle Range vs. Time
vs. Count Plot” and the “Cycle Range vs. Mean Stress vs. Count Plot”, as dis-
cussed in Chapter 1.4. To achieve visually appealing results, we employ the Matplotlib
Python package. The generated plots are subsequently uploaded to another dedicated
S3 bucket named “tum-di-lab-prod-plots”, organized in the same manner as the time
series bucket. Eventually, when a user accesses the visualization page in the web inter-
face, they can select the corresponding configuration and transistor numbers. This action
triggers the fetching of the relevant two plots from the S3 bucket containing the plots.
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A schematic overview of the current visualization workflow can be seen in Figure 9.

Figure 9: Schematic overview of the current visualization workflow

It’s essential to highlight that the current workflow relies solely on the existing simulated
time series data in the S3 buckets, consisting of 8 configurations, each with 10 transis-
tors. Furthermore, in this initial implementation of the visualization module, the plot
computation was carried out locally on our device. However, this preliminary version is
static and lacks the ability to accommodate new data uploads and perform computations
on cloud infrastructure. To improve and refine this workflow, we propose the following
enhancements and developments:

1. Enable Temperature Data Upload via User Interface: The user interface
should offer the capability to upload temperature time series data, which will be
automatically saved to the timeseries bucket.

2. Implementation on Cloud Infrastructure: The entire process should be exe-
cuted on cloud infrastructure. When data is uploaded, an AWS Lambda function
should be triggered, responsible for waking up an EC2 instance. The Lambda func-
tion should pass the folder structure numbers (configuration and transistor number)
to the EC2 instance.

3. Automated Triggering of Plot Generation Module: Upon receiving the pa-
rameters from the Lambda function, the EC2 instance will initiate the plot gen-
eration module. This module will process the new data, create the relevant plots,
upload them to the designated S3 bucket, and display them on the web interface.

A schematic overview of the proposed future visualization workflow can be seen in Figure
10. By implementing these proposed changes, the workflow will become dynamic, allowing
users to upload new data and visualize the plots seamlessly on the web interface. The
utilization of cloud infrastructure will enable efficient and scalable processing of data and
plot generation. These future enhancements are crucial steps towards optimizing the
visualization module and ensuring its practical application in real-world scenarios.
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Figure 10: Schematic overview of the proposed future visualization workflow

4.4 Deployment and User Interface

As the final stage of the pipeline, we have implemented a model deployment code that
allows the visualization of results through a front-end dashboard. This deployment code
enables the model’s use in a production environment, offering predictions through an API
built with Flask, a lightweight web framework. The model’s main objective is to predict
the time to failure of a transistor using rainflow counts derived from temperature data.
During our initial experimentation, the deployment model is trained with transistor data
retrieved from S3 buckets. The trained model is then exported to desired formats such
as .pb and .joblib for use during the inference stage. Python serves as the programming
language for model training. However, conventional machine learning inference methods
do not apply to this use case, as the model results depend on the entire dataset’s rainflow
counts. To address this challenge, we introduced an alternative approach utilizing the
DataPreprocessor class. This class calculates rainflow counts and generates time to failure
based on the given temperature data. The rainflow counts are computed using a sliding
window approach, iterating over the temperature data to extract counts within each
window. These counts are then accumulated to obtain a continuous count, enabling
efficient processing of large datasets.

4.4.1 Dashboard

Figure 11: Snapshot of Dashboard.
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The front-end Dashboard of the application communicates with the model’s API endpoint
to retrieve predictions and present the results in a user-friendly manner. The deployment
code provides an API endpoint at /predict, enabling users to make predictions using
the trained Transistor Failure Prediction model. By sending a POST request with the
necessary data, users can obtain the model’s predictions, represented as time to failure
[in days] and the corresponding status (critical or not critical). Furthermore, the user will
be presented with comprehensive performance metrics (MAE, MSE, R2 and RMSE) and
an overview, including the sample used as a test set, the rainflow counts, test label and
predictions on the test set [both in seconds] 12.

Figure 12: Snapshot of Demo Results.

4.4.2 Cloud Deployment

The entire model and its dependencies are packaged and deployed as a Docker container.
This container encapsulates the necessary Python libraries, the trained machine learn-
ing model, and the Flask application for serving the model. For efficient execution and
scalability, we deployed the Docker container using Google Cloud Run, which provides
a fully managed serverless environment. Cloud Run automatically scales the container
based on incoming requests, ensuring continuous availability to handle user queries. More-
over, Cloud Run offers an API endpoint that allows external applications, including the
frontend Dashboard, to interact seamlessly with the model.

4.4.3 Possible Future Works in Deployment

We propose the following future enhancements and developments to enhance the applica-
tion’s utility in real-world scenarios:

1. Model Versioning: Develop a versioning system for the deployed models to facil-
itate easy management and rollback to previous versions if needed.

2. Automated Retraining: Implement an automated retraining pipeline to period-
ically retrain the model on fresh data, ensuring it stays up-to-date and relevant.

These improvements aim to keep the deployed model up-to-date and easily manageable,
thereby empowering the system to provide better results and improve the end-user expe-
rience.
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5 Conclusion

In conclusion, this work tackles the important issue of thermomechanical fatigue lead-
ing to transistor failures. Through effective use of rainflow analysis and machine learn-
ing models, such as the SGD Regressor, we can now estimate the remaining lifetime of
semiconductors, enabling predictive maintenance, cost optimization, and enhanced safety
measures.

From initial statistical data exploration, we identified key features and data preprocessing
needs, setting the stage for our modeling phase. This exploration highlighted the impor-
tance of rainflow counts for our predictive models.

The modeling phase of the project witnessed an exploration of various machine learn-
ing algorithms, including Trees based algorithms, Linear Regression, and SGD Regressor,
each evaluated based on their predictive capabilities. However, after an in-depth compar-
ison, the SGD Regressor emerged as the most viable option for our application due to its
efficiency and performance in handling the large dataset. It gives the most reliable results
with Linear Regression while it also handles the data efficiently because of its stochastic
nature. Its performance on unseen dataset with MAE is 7058605 seconds (81 days) over
10 years period.

Our web application displays rainflow analysis and estimated lifetimes, alerting engineers
when systems reach critical stages. Furthermore, the application displays the estimated
remaining lifetime of semiconductors by using SGD Regressor, enabling practical im-
plementation for real-world scenarios Utilizing Google Cloud Run, AWS, and Docker
containers, our scalable deployment strategy ensures seamless operation across various
environments.

This work contributes significantly to thermomechanical fatigue analysis, underlining the
importance of predictive maintenance in key systems like wind turbines and electric ve-
hicles. By aiding in failure prediction, operational reliability is improved and downtime
minimized, driving a proactive maintenance approach.

As for future work, advanced techniques like Deep Learning and Semi-Supervised learning
could further improve predictions. Also, more advanced methods or experimental methods
can be used to calculate the ground truth. The scope of the work could be expanded to
include more semiconductor components, and real-time data integration could make the
system more dynamic. Finally, mobile and desktop versions of our application could
improve accessibility and user experience.
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