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I

Abstract

To conduct a satellite mission successfully, satellite operators rely on telemetry data to
control the satellite in outer space. In the event of a corrupted or defective sensor, oper-
ating without knowledge of its status becomes challenging. Therefore, this project aims
to predict which status components are ON and which are OFF given signature values
at certain times. This is based on real telemetry data obtained from satellite missions
conducted by the German Aerospace Center (German: Deutsches Zentrum für Luft- und
Raumfahrt).

This project involves analyzing and preprocessing a given large-scale dataset, as well as
the implementation of appropriate Machine Learning models. The main findings of an
extensive literature research on novel approaches are outlined in section 2 which covers
all the steps undertaken.

The given input from the German Aerospace Center (German: Deutsches Zentrum für
Luft- und Raumfahrt) consists out of 25 signature files, whereas each signature corre-
sponds to one sensor on the satellite that captures a parameter. Further, 19 status files
are provided, whereas each status file corresponds to one component on the satellite and
when it was ON or OFF. All files have different sampling rates and hence different sizes
between mostly ∼ 450.000 and ∼ 4× 106 rows.

In subsection 3.2 we noticed a uneven distribution of values of status and signature com-
ponent on time due to multi-rate sampling, which we tackled by resampling time-wisely.
Further, the individual signatures are highly biased as the spikes are not synchronous.

As the signature and status files with corresponding indexes are not correlated to each
other, we implemented Transformer Architecture for Time Series Data, InceptionTime,
Multi-Channel Attention-Based Long Short-Term Memory with Fully Convolutional Net-
work and Rocket as machine learning models with the objective to predict values of
(power) signatures. Therefore, we summed up most novel literature in section 2 and the
coding steps including the creation of the dataloader, model architecture and hyperparam-
eter tuning in subsection 5.2. We conducted evaluations of all models using various data
preparation methods and recorded their corresponding accurancy metrics in section 6.

The capability to identify anomalies in power consumption of satellites holds significant
value, as it not only aids in detecting sensor failures but also ensures potential sensor or
equipment issues can be addressed promptly. Consequently, this project contributes to
preventing further system downtime.



II

Abbreviations List

AI artificial intelligence

CNN Convolutional Neural Network

Comp. Compatibility

Comp. exp. Computational Expense

COTE Collective of Transformation-based Ensembles

DLR German Aerospace Center (German: Deutsches Zentrum für Luft-
und Raumfahrt)

DOI Difficulty of implementation

FCN Fully Convolutional Network

Interp. Interpretability

IT InceptionTime

LSTM Long Short-Term Memory

MALSTM-FCN Multi-Channel Attention-Based Long Short-Term Memory with
Fully Convolutional Network

MCNN Multi-scale Convolutional Neural Network

ML Machine Learning

MTS Multivariate time series

MTSC Multivariate time series classification

PA Perceived Accuracy

ResNet Residual Network

RNN recurrent neural network

SOTA state-of-the-art

ST Shapelet Transform

SVM support vector machine

t-LeNet Time Le-Net

TS time series

TST Transformer Architecture for Time Series Data

tsai time series artificial intelligence (AI)

TSC time series classification
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1 Introduction

Satellites have to be remotely operated from earth once launched into space. Therefore,
they are equipped with many different sensors to keep track of the satellite’s system sta-
tus. Some satellites operated by the German Space Operations Center (GSOC) at German
Aerospace Center (German: Deutsches Zentrum für Luft- und Raumfahrt) (DLR), trans-
mit about 80′000 telemetry parameters. Telemetry data is vital for the safe operation and
control of a satellite in outer space. In the event of a sensor malfunction, the inability to
repair it due to its location in space poses a significant challenge. Operating the satellite
without knowledge of its component status becomes risky, potentially leading to incorrect
decisions and mission failure. To address this issue, we propose implementing a backup
system for component status sensing.

The aim of this project is to leverage Machine Learning (ML) approaches to predict the
status values of power signatures of components based on the provided satellite telemetry
data. The concept of power signatures, inspired by the electrical power characteristics
observed in smart meters, refers to the unique power consumption patterns exhibited by
different components over time. By analyzing and classifying these characteristic signa-
ture values, valuable insights into the status and behavior of satellite components can be
gained. The telemetry data encompasses various parameters, including the eclipse value,
which represents the occurrence of an eclipse when the satellite is in Earth’s shadow, see
Figure 1b.

(a) Satellites orbit parameter [1] (b) Eclipse of a satellite in the earths shadow [2]

Figure 1: Schematic satellite overview

Satellite orbits are characterized by several important parameters that define their motion
and position in space, see Fig. 1a. Some of the key parameters of a satellite orbit are:
altitude refers to the vertical distance between the satellite and the Earth’s surface while
the attitude refers to the orientation to a reference frame. The period of a satellite orbit
is the time taken by the satellite to complete one full revolution around the Earth.

This project holds several advantages for the DLR, including status prediction, error de-
tection in case of sensor failure, redundancy in communication failures, optimization of
satellites, and informing future missions and construction of satellites. This academic
report outlines the objectives and tasks involved, including data exploration and prepa-
ration, surveying pattern recognition research, creating models, ensuring component-
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agnosticism, and documents the process.

Combining multiple signature parameters, such as battery voltage and the eclipse flag,
can provide further insights. In the literature this is refereed to as a Multivariate time
series (MTS). MTS is a type of data that captures the evolution of multiple interrelated
variables or features over time. Each observation represents a collection of synchronous
measurements taken simultaneously across different dimensions. These dimensions can
be diverse and can include various physical quantities, here: sensor readings, such as the
battery voltage or the eclipse flag. Unlike univariate time series, where only one variable
is observed over time, MTS provides a more comprehensive and interconnected view of
the underlying phenomena. Due to the high dimensionality and interactions between
the variables, the analysis is complex. However, it can provide valuable insights into
complex systems and facilitate forecasting, anomaly detection, classification, and other
time-dependent analyses. This project is mostly focusing on time series (TS) classification.

1.1 Time Series Classification

Definition 1.1. A univariate time series X = [x1, x2, ..., xT ] is an ordered set of real
values. The length of X is equal to the number of real values T .

Definition 1.2. An M-dimensional MTS, X = [X1, X2, ..., XM ] consists of M different
univariate time series with X i ∈ RT .

Definition 1.1 and 1.2 provide a definition of MTS adapted from [3]. Figure 2 illustrates
the problem graphically. The MTS consist of M different univariate time series. Section
3 and 4 discuss the shape of the data in more detail. The non-linear transformations
are discussed theoretical in Section 2 and the implementation in section 5.2. The output
should indicate one of the K classes by a probability distribution.

Figure 2: Time Series Classification [3]

1.2 Problem Definition and Goals of the Project

The goal of this project is to investigate ML approaches to predict binary status values
of (power) signatures of components in given satellite status parameters. The status val-
ues are time series consisting of values that can be mapped to a logical 1 or 0. Thus,
the objective is to utilize this principle and classify different status values based on their
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characteristic signature values.

Consequently, the term power signature refers to the power consumption over time. While
this project focuses on telemetry, such as the eclipse value, there are other parameters
present. For instance, combining multiple signature parameters like battery voltage and
the eclipse flag can provide additional insights, as it would be when the solar panels charge
the battery as soon as the satellite is lit by the sun. Expected advantages of this new
development for the DLR include:

• An approach can investigate given time series telemetry data, and accurately predict
the parameter status values

• If there are anomalies in the power consumption due to some other reason, this
method can be used to catch errors in case of sensor failure.

• If other measures fail, one can apply it to check the status of components. When a
system is not reachable through the satellite communication bus, this method offers
redundancy as it allows for predicting the status based on other sensors.

• Potentially this may be used to optimize satellites, specifically tiny CubeSats due
to their size & weight constraints because fewer hardware sensors might be used.

• The DLR could use this initial investigation to optimize the future missions and
construction of satellites.

1.3 Objectives and Tasks

• Investigate the telemetry data and explore approaches for dealing with the issues
(i.e. incongruencies in sampling rate, data types and missing values) [Section 3]

• Survey the current research in pattern recognition and identifying power signatures
[Section 2]

• Prepare the data using analytical techniques in order to be able to perform ML and
classical methods [Section 4]

• Create time series forecasting models that can identify the power signature for a
component at a given time, decide on best-fitting one and optimize for a chosen
metric, such as performance and accuracy [Section 5.2]

• Explore ways to make it as component-agnostic as possible [Section 5.2]

1.4 Acceptance Criteria

This section covers the acceptance criteria for the project. This was divided into required
criteria, optional criteria and delimitation. Delimitations define criteria that are outside
the scope of this project and intentionally omitted to draw a clear line.

Required Criteria

• Reproducible method of pre-processing the data
• Use an analytical approach to subset the data (e.g., deal with the bias in data)
• Evaluate performance metrics of the model
• Accuracy above 90% (validation, test)
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• Precision, recall, F1 score at least 75%
• Avoid overfitting (e.g., monitor good generalization of the approach by losses, etc.)
• Model should work accurately for different components (component-agnostic)
• Train, test and validate data set, e.g. a feasible split would be 70/20/10
• Monitor and document training approaches, e.g. Tensorboard
• Compare approaches with the same pre-processed data
• Document work in a visual manner
• Use tables for comparison
• Comments in Code

Optional Criteria

• Define performance metrics, such as accuracy above 95%
• Level of confidence for every label which corresponds to the actual probability of
the label

• Test scenarios, have pre-written test cases as part of the deployment process to
ensure code quality

• Effectiveness on different datasets (test on another publicly available dataset or
sourced from DLR if possible)

• Explainability (a highly accurate deep neural network is not as good as a slightly
less accurate model that’s easy to understand)

• Amodel with outputs power signatures of different components like shapelets, mean-
ing shapes that cluster explain the decision

Project Delimitation

The project assumes that power signatures remain consistent throughout the data, with-
out degradation. Bias in the data needs to be addressed, possibly by excluding certain
data. The project does not require any additional artifacts beyond the specified ones
(code base, final report, and final presentation), and publishing a potential paper is op-
tional. There are no limitations on the learning approaches to be used, and frameworks
can be utilized for implementation. The number of framework dependencies should not
be reduced. Real-time predictions are not necessary; batch processing is sufficient. There
are no specific constraints on compute requirements, except for accessibility. The chosen
approach must be applicable to the provided data without the need for generalization to
other satellites.

2 Related Work

In order to choose adequate methods for the given project, beforehand, novel approaches
in MTS are researched.

2.1 Statistical Methods and Machine Learning

To make predictions in classification tasks, the key idea of proximity forest is that instances
with similar features are presumed to belong to the same class or have similar labels. This
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approach leverages that instances within close proximity in feature space are more likely
to share common characteristics. In comparison, support vector machine (SVM) under-
lies the principle of finding an optimal hyperplane that separates instances belonging to
different classes. Therefore, the key idea of SVM is to identify a decision boundary, which
maximizes the margin between classes. Both proximity forest and SVM are capable of
handling high-dimensional data and capturing intricate patterns, albeit using statistical
foundations.

In the context of a project involving satellite data analysis, several methods are relevant
for MTS processing. Bagnall et al. [4] conduct an experimental evaluation of different
algorithms for time series classification, including statistical methods, machine learning
models, and deep learning approaches. They provide a comprehensive analysis of the
strengths and weaknesses of these algorithms on a diverse set of time series datasets,
helping researchers and practitioners understand their performance characteristics and
choose appropriate methods for time series classification tasks. As result, Collective of
Transformation-based Ensembles (COTE) methods were found superior to other pub-
lished techniques with average accuracy of 8% higher than Dynamic Time Warping.
Hive-COTE 2.0 is a recent and powerful technique that combines diverse classifiers,
such as shapelet transform-based classifiers and time series forest, to achieve state-of-
the-art (SOTA) performance [5]. Rocket is another notable method that utilizes random
convolutional kernels to transform time series into fixed-length feature vectors, enabling
efficient classification with linear models [6]. Shapelets, on the other hand, are discrim-
inative sub-series that capture local patterns within time series, making them valuable
for tasks such as anomaly detection or classification [7]. Additionally, the shapes can be
extracted. Thus this approach is really good in terms of interpretability.
Toth et al. [8] propose a Bayesian learning method that combines Gaussian processes
with signature covariances and deep learning models to handle sequential data. This
approach allows for the analysis of sequences of different lengths and achieves competitive
results in multivariate time series classification tasks. It could be applied in a multivariate
time series setting to classify and make predictions based on sequential data with varying
lengths.

2.2 Deep Learning Approaches

Fawaz et. al. provides a comparison of various neural network architectures for time
series classification in [3]. Among the examined architectures, three stand out: Fully
Convolutional Network (FCN), Residual Network (ResNet), and encoder.

The FCN architecture harnesses the power of convolutions to extract features from time
series data. It employs three convolutional blocks with batch normalization, ReLU ac-
tivation, and average pooling over the time dimension. Notably, the filters used in the
convolutions have specific sizes, and the stride and padding are adjusted accordingly. This
design allows FCN to capture relevant patterns. However, FCN may face challenges when
dealing with very long time series due to fixed filter lengths [9].

Similar to FCN, the ResNet architecture introduces residual connections, enabling the
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training of deeper networks without encountering vanishing gradients. Additionally, it
incorporates a global average pooling (GAP) layer after the convolutions, facilitating ef-
ficient information aggregation across the entire time series. ResNet has demonstrated
superior performance in time series classification tasks. However, its deeper architecture
may require more computational resources [9].

Inspired by FCN, the encoder architecture incorporates modified filters and an atten-
tion mechanism that learns the importance of different elements in the time series. This
attention mechanism proves useful for accurate classification [10]. While other architec-
tures, such as Multi-Layer Perceptron (MLP), Multi-scale Convolutional Neural Net-
work (MCNN) [11], Time Le-Net (t-LeNet) [12], Multi Channel Deep Convolutional
Neural Network (MCDCNN) [13; 14], and Time Warping Invariant Echo State Net-
work (TWIESN) [15], have also been explored, they are less relevant for this project.
Since they usually provide less accuracy on the test data and infeasible data augmenta-
tion methods, such as window warping in t-LeNet, which manipulate the time series by
squeezing or dilating them. Further some Window Slicing (WS) is applied in MCNN.

Another methods leveraged Convolutional Neural Networks (CNNs) methods for fault de-
tection in satellite power systems. It employs the Stockwell transform, a time-frequency
analysis technique, to map the time domain signal into the time-frequency domain. This
transformed data is then processed using a CNN for fault detection. The Stockwell trans-
form provides a more detailed representation of the signal in both time and frequency
domains compared to traditional methods like the Fourier transform. This approach has
shown promising results in achieving high accuracy for fault detection in satellite power
systems [16]. Further, the autoregressive CNN model is designed to capture temporal
dependencies and local patterns in asynchronous time series data. It leverages dilated
convolutions to account for irregular time intervals between observations. The model has
shown excelent performance compared to traditional methods and standard CNNs in pre-
diction accuracy for asynchronous time series [17].

In a multivariate time series (MTS) setting, the AR-CNN model can be applied to tasks
such as forecasting, anomaly detection, and classification. It can effectively handle time
series data with varying sampling rates and irregular time intervals, making it suitable
for domains where the observations arrive asynchronously across multiple variables.

In summary, the FCN, ResNet, and encoder architectures have shown promise in time
series classification tasks. FCN excels in leveraging convolutions for feature extraction,
ResNet addresses the challenge of training deeper networks, and Encoder incorporates
attention mechanisms for improved classification accuracy.

2.3 Image Methods

Some Deep Learning (DL) methods use convolutional layers with time series as input
vectors, while others convert the time series data into 2D images. This image-based
approach provides the advantage of being invariant to different sampling rates. Chen et al.
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introduce the Relative Position Matrix (RPM) technique, which encodes MTS data into a
matrix representing the relative positions among its components. This matrix is then fed
into a CNN for classification, capturing spatial dependencies and improving classification
performance. Yang et al. extend this approach by converting MTS data into 2D colored
images using encoding techniques such as Gramian Angular Summation Field (GASF),
Gramian Angular Difference Field (GADF), and Markov Transition Field (MTF). These
methods offer visual representations that capture patterns and relationships in the time
series. However, further investigation is needed to determine the computational resources
required for practical implementations. Despite this, these approaches make valuable
contributions to time series analysis and classification, opening avenues for further research
in analyzing MTS data.

2.4 LSTM

LSTM is a recurrent neural network (RNN) architecture that has gained significant at-
tention and proven to be highly effective in modeling and forecasting MTS data. It
addresses the limitations of traditional RNNs, such as the vanishing and exploding gradi-
ent problems, by incorporating memory cells that allow the network to selectively retain
and forget information [18]. This unique memory cell structure enables LSTM to capture
long-range dependencies and learn complex temporal patterns within the data. By effec-
tively preserving and updating information over time, LSTM can capture both short-term
fluctuations and long-term trends, making it a powerful tool for analyzing and predicting
MTS data in various domains. The versatility and robustness of LSTM make it a valuable
asset in the field of MTS analysis [18; 19].

In their work, [19] address the task of Multivariate time series classification (MTSC) and
propose two deep learning models. The authors introduce a transformation of the Long
Short-Term Memory Fully Convolutional Network (LSTM-FCN) and Attention LSTM-
FCN (ALSTM-FCN) models into MTSC models. They achieve this by augmenting the
fully convolutional block with a squeeze-and-excitation block to further improve accu-
racy. Notably, these proposed models demonstrate superior performance while requiring
minimal preprocessing. They prove to be effective on various complex MTSC tasks such
as activity recognition and action recognition. Additionally, the models are efficient at
test time and possess a small memory footprint, making them suitable for deployment
on memory-constrained systems. The experimental results on 35 datasets validate the
strength of the proposed models, showing impressive classification accuracies across a
wide range of datasets.

2.5 InceptionTime

InceptionTime initially proposed for end-to-end image classification [20] and has since
ben adapted for time series classification (TSC) [3]. According to Fawaz et al. [3],
each Inception network in InceptionTime composed of two different Inception blocks,
which further contain three Inception modules. These modules surpass traditional fully
convolutional layers found in other network architectures by enabling multi-scale feature
extraction and adaptability to different domains. This is made possible through the
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use of parallel convolutional layers with varying filter sizes. By incorporating filters with
different sizes, each filter captures features at a different scales, allowing for the extraction
of multi-scale information. This attribute enhances interpretability by making it easier
to identify which filters are responsible for detecting specific patterns or characteristic
within time series. Additionally, Inception blocks utilize parameter sharing across the
parallel convolutional layers, which reduces computational complexity while minimizing
the amount of parameters.

2.6 Transformer

Transformers, originally developed for natural language processing tasks, can also be ap-
plied for TSC. Transformers excel at capturing long-range dependencies and contextual
information, making them suitable for analyzing sequential data. In the context of time
series classification, transformers can model temporal patterns, identify relevant features,
and make accurate predictions. By leveraging self-attention mechanisms, transformers
can focus on different time steps and capture complex relationships within the time se-
ries. With their ability to handle variable-length inputs, transformers provide a flexible
and powerful framework.

Drawing inspiration from the success of transformers in NLP and sequence generation
tasks, a framework for training a transformer encoder to extract dense vector repre-
sentations of MTS through an autoregressive denoising objective is proposed by [21].
They demonstrate that the transformer model outperform existing approaches, even with
limited training data, and show that unsupervised learning provides an advantage over
supervised learning for MTSC and regression tasks. Despite preconceptions about the
computational requirements of transformers, the authors show that their models, with a
reduced number of parameters, can be efficiently trained using standard GPUs. These
representations can then be utilized for various downstream tasks, such as regression,
classification, imputation, and forecasting.

3 Exploratory Data Analysis

3.1 Data Acquisition

The telemetry data was obtained during a mission of the TET-1-satellite. The satellite
is part of the “On-orbit Verification of new techniques and technologies“(OOV) program
and was built in Germany to facilitate the testing and qualification of new systems in
space conditions [22; 23]. It provided research institutions and industrial companies with
a versatile platform to validate their latest products. The satellite offered a payload
volume of 460 x 460 x 428 mm³, weighing up to 50 kg. Launched in July 2012, TET-1
operated in a target orbit at approximately 520 kilometers altitude, with an orbital period
of 90 minutes and 60 minutes of sunlight exposure [22; 23]. For more intuition on the
parameters, see Figure 1a. For more detailed parameters about the satellite and its orbit,
see Table 1.
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Satellite Parameter Orbit Parameter (3σ)
Satellite weight 120 kg Semi-major axis 6879.0 km (± 10 km)

Dimensions 670× 580× 880mm3 Eccentricity 0.00148 (±0.0015)
Start date 22 July 2012 Inclination (97.43◦ ± 8 arcmin)

Table 1: TET-1 Satellite and Orbit Parameters

There are two types of data we obtained from DLR: signature components and sta-
tus components. The signature components contain time series of the values of physical
quantities, such as voltage, current, byte flow, etc. The correspondence between compo-
nents (such as sensors, appliances) on the satellite and signature components is unknown
to us and not relevant to the task. The status components, on the other hand, document
the ON/OFF status of certain components on the satellite, which exact component sent
out which status components is also unknown. Additionally, there exists no direct map-
ping between signature components and status components.

There are in total 19 signature component X.pkl files (.pkl, short for pickle, is a popular
format used to serialize and deserialize data types), where X corresponds to the index
respectively as well as 25 status component X.pkl files with indexes ranging from 1-18
and 20-26. The total size of the data is around 320Mb in compressed form.

The dataset contains two main data fields. The timestamp ms captures the time when an
event occurred and is represented as an integer (int64), a floating-point number (float64),
or a string. The value field represents the measurement or value associated with the
event and can be expressed as a float64, int64, or string data type. The sampling rate
for both fields is varying. Important to note here is that the signature and status files
with corresponding indexes are not correlated to each other. Arbitrary 19 signature files
with different units are given. The 25 status files contain the labels of which the power
signatures should be predicted at a later time.

3.2 Analysis of Raw Data

3.2.1 Signature Component Analysis

Signature 1 and 2 (see Figure 11 and Figure 12) have the precisely same values, their
correlation is 1, and their units are both Volt(see Figure 4). According to a discussion
with our DLR advisers, One of them could be data collected by a backup sensor, and
it would make sense to drop it to avoid abundance. Signature 3 and 4 (see Figure 3b)
share similar trends in values, and they are highly correlated with a correlation 0.98, and
they are both in Ampere. Signature 5 and 7 (see Figure 13 and Figure 14) are loosely
correlated. Their units are both Ampere. Signature 9 (Volt) and 10 (Ampere) exhibit
‘spikes’ at the exact times, in total 30 of them, as shown in Figure 3a. Their correlation
is around 0.73, meaning they are highly correlated.
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(a) Signature component 9 and 10

(b) Rolled value of signature component 3 and 4

Figure 3: Comparisons of signature value pairs

Figure 4: Correlation matrix of signature components

Signature 8, 11, 12, 14 (see Figure 15 and Figure 16) are highly biased. Each has one
visible spike, which is not synchronous. Further, they have a small mean with a compara-
bly large standard deviation Table 6. Their units are all in Bytes, which could be linked
to data transmission. Signature 18 is the estimated z-component of the sun vector. It
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is highly correlated with signature 19 (Boolean), the eclipse flag, which you can see in
Figure 4. We skip the signature components that have a constant value throughout the en-
tire time span, which are signature 6, 13, 15, 16, 17. An overview is provided in Figure 17.

The signature analysis table (Table 6) in Appendix X.I provides a comprehensive overview
of various statistics in a dataset. The voltage measurements in signature 1 exhibit rel-
atively small variations with a mean of 22.053 volts. Signatures 5 and 7 show diverse
current values, including negative readings, with considerable standard deviations. This
table provides valuable insights into the dataset, allowing further analysis and interpre-
tation of the measured signatures.

3.2.2 Status Component Analysis

One characteristic of the status component is the high bias. Among the 15 status com-
ponents, it is noticeable that status components 11 and 12 have different patterns from
others as you can see in Figure 18 in the appendix, in that their statuses flip between 0
and 1 very frequently.

In contrast, the rest have fewer changes and are more biased. Table 7 provided in Ap-
pendix X.II provides a comprehensive overview of various statistics.

3.2.3 Timestamps Analysis

In the field of time series analysis, the timestamp itself is an important feature and
contains valuable information for data analysts to discover. Since we are working with
telemetry data collected from sensors on a satellite, we must understand the timestamps’
temporal characteristics.

Among the 44 component datasets (19 signature components as features and the 25 status
components as labels), we have 24 of them with exactly 451,754 matching timestamps,
and the rest 20 have lengths around 4,094,070. A detailed head count can be found in
Table 2. Although the length of the longer dataset varies, the timestamps at the very
beginning and the very end are identical throughout all the longer datasets, meaning
that they cover the same time range. If we compare the timestamps from the shorter
and longer datasets, one can spot that the sensor for shorter datasets started collecting
data around 20s later and finished collecting data around 40s earlier than the sensors for
bigger datasets. This mismatch is relatively negligible considering the timespan of the
dataset, which is 13 months. These specific features from satellite data require us to do
the preprocessing in the next section.
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Signature files
No. of entries 451754 4094068 4094070 4094073 4094077

Files of this size 13 2 1 2 1

Status files
No. of entries 451754 4094066 4094069 4094073

Files of this size 11 12 1 1

Table 2: Overview on the file size

The timestamps are encoded in Unix Epoch Time(UET), the total number of milliseconds
after 1 January, 1970 at 00:00:00 UTC. The timestamps do not correspond to the actual
time when the satellite was functioning. A temporal offset unknown to us was manually
added to the timestamp by DLR, for the sake of data privacy.

After converting the timestamps from UET format to real-time, it shows that the time
range of the dataset starts from 5 December 2015, and ends on 14 January 2017, rang-
ing around 13 months. One thing worth mentioning is that the data are sampled under
varying sampling rates, which means that the time series is not equally distributed time-
wise. The sampling rate is calculated by subtracting the previous timestamp from the
current timestamp. The most common time gap between two timestamps in the longer
time series (around 4 million rows) is 500ms, followed by 30,000ms and finally 1,000ms,
see Figure 5a. (Some are a few milliseconds shorter, others a few milliseconds longer.)
The sampling rate of the shorter dataset with exactly 451,754 rows is also changing all
the time, while the most dominant value lies somewhere around 78,000ms, as shown in
Figure 5b.

(a) Longer time series (b) Shorter time series

Figure 5: Temporal distribution of sampling rate

The uneven distribution on time due to multi-rate sampling is something we have to work
on. We decided to tackle this in two ways, one would require time-wise resampling, and
the other one does not require resampling but only works on special models.
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3.2.4 Eclipse Cycle

One feature among the 19 signature components (signature component 19) contains the
flag information on whether an eclipse takes place. One complete cycle of flag switching
from 0 (no eclipse) to 1 (eclipse) is around 90 minutes, corresponding to the satellite orbit
as seen in Figure 6. This allows us to look into the dataset from a cyclic point of view
and also helps with further dataset reshaping, because we can use the eclipse cycle as the
third dimension in the 3D array.

Figure 6: Local peaks of signature component 3 compared with eclipse signal

4 Data Preprocessing

4.1 Data Cleansing

Our objective in the data cleaning phase was to take the individual raw files and transform
them into one cohesive dataset with matching input and output shapes. Cleaning is
essential in all real-world data solutions, yet it is surprisingly sparsely documented because
most of the data used in research is already clean. Hence, this is an essential contribution
to our project to precisely document the steps needed to pre-process our data, which can
also help outline the method for other data. Starting from the raw individual files, in
chronological order, these are the steps:

1. Merge the individual files on the timestamp column into inputs (signatures) and
outputs (statuses)

2. Drop all columns that are “non-useful”, i.e. they have a constant value of 0 through-
out (usually this would relate to a backup sensor or component that is not used
throughout the duration of this data collection)

3. Drop duplicate timestamps and keep only the latest values; these duplicates arise
due to post-processing the data at the ground station which causes rounding off the
timestamps to a certain degree

4. For the outputs (statuses), booleanize the different string representations into 0
or 1 - in our case [OFF, PL DEACTIVATED, NONE] maps to 0, while [ON,
PL MEASURE, PL OPERABLE, PWR1] maps to 1

5. Interpolate the missing values - since the individual files have different sampling
rates, merging them will cause a lot of missing values to be present due to mis-
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matching timestamps; for the continuous variables we use linear interpolation, and
for the categorical variables we use “nearest” interpolation

6. Drop any remaining missing values that could not be interpolated since they are
either at the beginning or at the end

7. Standardize the input values (subtract the mean, then divide by the standard devi-
ation)

As a result, we have unified inputs and outputs with no missing values and matching
shapes. After cleaning, we are left with 14 inputs (signatures) and 15 outputs (statuses),
both with 4482157 samples with matching timestamps. This dataset forms the first
cohesive basis for our model preparation. This entire process was done automatically
using a Python script, which could be reused for other similarly structured satellite data.

4.2 Feature Engineering

When talking about the input to the models we use, time series data is always considered
as a 3D tensor with dimensions:

• number of samples

• number of features (aka variables, dimensions, channels)

• number of steps (or length, time steps, sequence steps)

We have explored different ways of reshaping the data that address slightly different
problem statements and offers varied perspectives and usability.

4.2.1 Batch Samples Individually

In this method, we consider each timestamp or recorded data point to be one sample (or
one time sequence). Then the dimensions of the input 3D tensor are (4482157 samples, 14
features, 1 step), where the features are the sensor values that contribute to a component’s
power signature.
Since each timestamp is treated individually by the models, this also allows us to predict
which components are ON or OFF at any given timestamp. If we are able to do this with
a high enough accuracy, this should prove to be the most useful information for system
engineers who might rely on our model to analyze a satellite’s components.

4.2.2 Batch on Eclipse Cycle

Another way of looking at the task would be to consider a certain duration rather than
a specific timestamp, and measure if a component switches its status in this duration
(i.e., flips from ON to OFF, or conversely OFF to ON). Rather than take any arbitrary
duration, we look at eclipse cycles - an essential part of a satellite’s routine. An eclipse
cycle consists of two consecutive periods of sunlight and shadow for a satellite, similar to
a day for us on Earth. Fortunately we have information from a Sun sensor in our data,
which tells us whether the satellite is in eclipse, see Figure 1b.
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Figure 7: A resampled batch with all the signatures (features) spanning one eclipse cycle

Using this eclipse cycle as the third dimension of our input 3D tensor also gives rise to
the problem of varying time sequence lengths. Each eclipse cycle is roughly 90 minutes in
duration. Since our tensor needs to be of a uniform shape, there are a few ways in which
we can tackle this problem, discussed in the next section. The resultant dimensions of
the data are (6268 samples, 14 features, 250 steps).
The number of steps as 250 was chosen due to a good trade-off between being computa-
tionally inexpensive when running models and not losing too much information.

4.2.3 Resampling Signature Data

As mentioned above, eclipse cycles are taken as a frame of reference instead of just indi-
vidual timestamps. In order to do so, the data must be grouped by eclipse cycle. Due to
the multiple sampling rates in the data, each eclipse cycle consists of a varying number
of data points, between 50 to 4500, with 715 being the mean. Since the input 3D tensor
requires a fixed length, there are a few possible ways to reshape the inputs:

1. Resample and downsize data to a fixed, uniform frequency
2. Resample and upsize data to the maximum frequency
3. Pad all eclipse cycles with empty values to reach the maximum frequency

Method 1 is very efficient in making the data easier to deal with by downsizing, although
it might aggregate some critical information that is then lost. Method 2 would represent
the data well, but it is very computationally expensive and needs too much memory for
us to be able to implement it. A similar problem arises with method 3, in which we try
to retain the original, inherent mixed sampling rates in the data and assume that the
model can deal with the empty values - it simply requires too much memory. As such,
only method 1 was implemented, although with much success, as we will show later.Thus,
the signatures (or features) are grouped by eclipse cycle and then resampled to a fixed
frequency of 250, using linear interpolation for the continuous variables and “nearest”
interpolation for the discrete variables.



4 DATA PREPROCESSING 16

(a) (b) (c)

Figure 8: (a) Resampled batch with 250 data points per eclipse cycle; (b) Resampled
batch with 4571 (maximum) data points per eclipse cycle; (c) Padded batch showing
empty values added at the end of data

4.2.4 Reshaping Status Data

Now that the features have been reshaped, we also need to reshape the labels accordingly.
For each eclipse cycle, we should have one label. However, how do we aggregate the
labels? This, by definition, changes the problem statement from “Can we know which
components are ON or OFF at any given time?” to “What can we know about the com-
ponents in a given eclipse cycle?”.

Our answer was to observe whether a component’s status changes in an eclipse cycle. If
it does change (from ON to OFF, or OFF to ON), we assign True/1. If it stays the same,
we assign False/0. While this fundamentally represents different information, it might
still be helpful for system engineers to know. For example, in the error detection task,
it can help narrow down the zone of inspection to one eclipse cycle (approx. 90 mins in
duration).
Hence, we have 6268 labels, each representing whether or not a component’s status has
changed in that eclipse cycle. This means it remains a classification problem, and we
reframe our data to run on the same models.

4.3 Multi-class Labels

Initially, we considered performing binary classification for each component. This means
having 15 models for 15 different components, all of which would have to be newly trained
every time these methods are applied to a new satellite project. This is an inconvenient
process for system engineers who would have to run a different model whenever they want
to know the status of a single component. On top of monitoring satellites simultaneously,
it can become cumbersome. A much more manageable approach would be to have a few
multi-class classification models that deal with multiple components.

Looking at 18, we can recognize two distinct types of components. Components 11 & 12
have frequently changing status throughout the data, while the other components seldom
show spikes or trenches. From this eye test, we can discern that it might be worthwhile
to build 2 multi-class models: one for components 11 & 12 which are frequently changing,
and one for the rest of the components which seldom change (referred to hereafter as the
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“other components”).
The process for building these multi-class models is very standard - we take all possible
combinations of the binary labels of components and assign them to a class. For example,
in the case of components 11 & 12, we would have 4 classes: 00, 01, 10 and 11, where
the first digit represents the status of component 11 and the second digit represents the
status of component 12. Then we perform classification based on these 4 classes.

4.4 Train-Test-Validation Split

We split the dataset into training, validation and testing sets as standard in a 70%, 20%,
and 10% fashion. The split was performed without shuffling to maintain the chronologi-
cal order. However, stratification was used to have a balanced representation of the data
across the different sets. Due to the stratification, any classes with a frequency of occur-
rence less than 10 would not have a single sample in the testing set (10% of anything less
than 10 is less than 1). Hence, such classes were also removed from the data.

4.5 Removing Bias

When considering the 2 multi-class models as mentioned above, it is interesting to note
their respective class distributions.

Figure 9: Class distribution for: (left) classes 11 & 12, (right) the other classes

One can see in the above figure how the left image looks much more balanced than the
middle one. Since components other than 11 & 12 are OFF most of the time and rarely
change their values, the class distribution is skewed. Nevertheless, these components,
which seldom change their status, are likely of higher interest to system engineers - they
may represent more specialized structures like cameras or other payload. Whereas the
frequently changing ones (status 11 & 12 in our case) might represent reaction wheels or
solar panels, which are supposed to be used very often.

Hence, we tried to remove some of the bias in the class distribution for the components
other than 11 & 12. We reframe the problem slightly - instead of detecting a change in
the status, we see whether a component has been ON at least once in the duration of an
eclipse cycle.
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Figure 10: Class distribution for the other classes (batched on eclipse cycles), but instead
of detecting a status flip, checking whether the value is at least ON once

The distribution looks slightly more balanced in the rightmost figure. Many more classes
appear in the graph due to reframing the problem statement and changing the labeling
function. Yet as we will show later, this data might still be too biased for us to make
accurate and reliable predictions.

Throughout this section, we have discussed the various points of interest in preparing our
data - the bulk of many real-world data science tasks. Now we will look at the modeling
side, what methods we used, and how we implemented them.

5 Modeling

The section will introduce the metrics utilized for algorithm comparison and selection,
followed by a detailed explanation of the theoretical background of chosen methods and
implementation process.

5.1 Selection of Algorithms and Methodology

To address the given problem domain, the most relevant evaluation criteria are:

• Computational Expense (Comp. exp.): The time and resources required to run and
train the model, particularly important in this task due to the large-scale dataset.
Additionally, the availability of only student laptops for training, and as the DLR
uses no cloud infrastructure at their control center for security reasons, limited
run-time resources are available.

• Perceived Accuracy (PA): Assessment of the model’s predictive accuracy. Accurate
predictions are essential for making informed decisions regarding the components of
the satellite based on the model’s output.

• Difficulty of implementation (DOI): Considering the limited time available for the
project, the level of complexity and challenges associated with executing the separate
models must be carefully evaluated.
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• Compatibility (Comp.): An examination of the extent to which different models
align with the given project requirements and constraints is particularly crucial.
The suitability of the models to the project’s specific objectives and limitations
needs to be thoroughly assessed.

• Interpretability (Interp.): Model’s capacity to be understood and its predictions to
be explained in a comprehensible manner. A clear understanding of the model’s
inner workings helps us gain insights into its decision-making process and facilitates
its application in real-world scenarios.

In order to conduct a selection of suitable models for implementation, approximate esti-
mations based on the corresponding paper named below are made for the listed criteria.
Subsequently, after implementation, the generated values for these evaluation criteria are
compared to determine the best-fitting model for the given dataset. Based on novel work
presented in Section 2, Hive-COTE 2.0 [3; 5], ResNet [9] and Rocket [6] are compared in
Table 9 as baseline models.

In the assessment of the distinct evaluation criteria in Table 9, we would like to emphasize
the significant divergence of values for decision criteria Comp. exp. and PA. On the other
hand, the values of DOI, Comp., and Interp. demonstrate a high degree of similarity. Our
assessment of these individual values is primarily based on extensive literature research
[3; 5; 9; 6]. For instance, determining the computational expense draws upon findings
presented in Figure 19. Due to computational limitations within this project, the crite-
rion of computational expense is given added weight in the event of a tie. Consequently,
the Rocket model emerges as the most suitable baseline model in Table 9.

By comparing Multi-Channel Attention-Based Long Short-Term Memory with Fully-
Convolutional Network (MALSTM-FCN) [19], Transformer Architecture for Time Series
Data (TST) [21], CNN [24], Shapelet Transform (ST) [7] and InceptionTime (IT) [3] in
Table 10, a choice for advanced models can be made.

Method Comp. exp. PA DOI Comp. Interp. Sum
TST 4 4 4 3 2 15
MALSTM-FCN 3 5 5 2 2 15
CNN 2 4 1 5 2 12
ST 3 5 2 4 5 14
IT 5 5 4 4 3 21

Table 3: Selection of advanced approaches based on assessment of evaluation criteria on
a scale from 0 to 5; with 0 being worst and 5 being best

Regarding Table 10, we highlight the values of near accuracy, while the values of all other
sections are widely spread. Moreover, TST, MALSTM-FCN, IT are the three models
with the highest score in Table 10, whose implementation will be presented below.

To implement these four models, the time series AI (tsai) package [25] offers a compre-
hensive set of tools and functionalities specifically designed for time series analysis and
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modeling, which is a suitable choice for effectively implementing these four models for the
given TS dataset.

5.2 Implementation

With the help of the tsai package, we were able to develop a common framework of
execution for our models. The following steps and their detailed descriptions illustrate
the order of execution in this framework:

• Define batch size & create dataloader: The batch size refers to the number of
samples that will be propagated through the model at once. The smaller the batch
size, the lower the training speed, while larger batch sizes require more memory. We
define the batch size as 64, which worked well across our different student laptops
with limited memory. Then, a dataloader is created to efficiently load and process
the data in batches during training.

• Define the model architecture: The model architecture refers to the specific
structure of the machine learning model being implemented. It involves defining
the layers, connections, and operations that make up the model. This step includes
choosing the appropriate model (from TST, MALSTM-FCN, ROCKET and
IT) and configuring its parameters (e.g., number of layers, hidden units). We used
the default architectures provided by the authors of the different papers, without
adding any tweaks of our own.

The loss function is also defined, quantifying the error or mismatch between the
predicted output and the ground truth labels. The choice of loss function depends
on the specific task and the type of data being used. We used label smoothing
cross-entropy loss.

Hyperparameters are parameters that are set before the training process begins
and are not learned from the data. They control aspects such as learning rate,
regularization strength, and dropout rate. Due to limited time and resources, we
did not do extensive tuning but stuck with some values that worked well for us.

• Find good options for learning rate: The learning rate determines the step size
at each iteration during the optimization process. It is a critical hyperparameter that
affects the speed and quality of convergence during training. We use the learning
rate finder function from the tsai package to find points where the loss is decreasing.
Learning rates in the range of 1× 10−4 to 1× 10−3 served us well.

• Train the model on a defined number of epochs: Training the model involves
feeding the training data through the model for a specific number of epochs or
iterations. Each epoch consists of a forward pass (where inputs are fed through the
model to generate predictions) and a backward pass (where the model’s parameters
are updated based on the computed loss). For the individual timestamps, we set
the number of epochs to 50. For eclipse cycle batches, we found that 15 epochs
were enough to achieve stable and sufficient results.
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• Evaluate the model on the testing set: After training the model, evaluating
its performance on unseen data is essential to assess its generalization ability. The
testing set, separate from the training set, is used for this purpose. As stated before,
our training, validation, and testing set split ratio is 70/20/10, respectively. The
model is applied to the testing set, and the predicted outputs are compared to the
ground truth labels. A classification report is generated including metrics such as
accuracy, precision, recall, and F1-score, which offer a comprehensive evaluation of
the model’s performance across different classes.

We ran all our models with different data preparation methods and recorded their evalu-
ation metrics. As we show, while they have different degrees of usability, they all provide
valuable insights into modeling such satellite data.

6 Results

We first applied the Transformer model (TST) to classify the status label using all 14
signature components to generate some baseline results with a brute-force method.
Status component 11 and 12 were tested since they are less biased. The results are shown
in ??, we measure the performance by accuracy, precision, recall and f1-score. Notably,
the naive accuracy for status component 11 and 12 are 0.90 and 0.83, which means that
the Transformer model managed to outperform the naive accuracy. Naive accuracy is the
proportion of the label that takes up the most cases among all classes. The performance
for status 12 is 0.99 in all four metrics, and there is room for improvement in precision,
recall, and f1-score for status component 11. Still, we were unsatisfied with this and hoped
to have one model that works well for all input signals.

Single component as label Näıve Accuracy Metrics TST
Status component 11 0.90 Accuracy 0.92

Precision 0.61
Recall 0.56
F1-score 0.58

Status component 12 0.83 Accuracy 0.99
Precision 0.99
Recall 0.99
F1-score 0.99

We now combine the two status components and have three possible combinations in
every timestamp: status 11 OFF and status 12 OFF (Class 0), status 11 ON and status
12 OFF (Class 1), and status 11 OFF and status 12 ON (Class 2). For some reason, the
two statuses are never switched on simultaneously. The results are shown in the first row
of Table 4. For multiclass classification, we take the weighted average of those metrics.
LSTM outperforms the other two models, achieving the highest score in all four metrics.

As mentioned in Section 4.3, we introduced the notion of the eclipse cycle and investigated
if one specific status component would change during eclipse cycles. We applied TST,
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InceptionTime, and LSTM for this multiclass classification task. The results are shown
in the second row of Table 4. InceptionTime outperforms the other two with less training
time.

Similarly, we did the same preprocessing to status components other than 11 and 12 and
tried to reshape the labels using eclipse cycles and individual timestamps. The results
are shown in Table 5. All three selected models’ performance is around the same level or
worse than naive accuracy when the inputs are individual timestamps. For eclipse cycle
implementation, the results are all higher than naive accuracy, while LSTM model scores
the highest in all the metrics.

Components 11 & 12
(multi-class)

Näıve
Accuracy

Metrics TST Rocket IT LSTM

Individual timestamps 0.78 Accuracy 0.75 0.88 0.77 0.94
Precision 0.85 0.85 0.84 0.93
Recall 0.75 0.88 0.77 0.94
F1-score 0.79 0.84 0.79 0.93

Eclipse cycles 0.56 Accuracy 0.83 0.87 0.95 0.92
(status flips) Precision 0.76 0.85 0.95 0.92

Recall 0.83 0.87 0.95 0.92
F1-score 0.79 0.85 0.94 0.91

Table 4: Performance metrics for status 11 and 12

As shown above, we tried to first solve the task from an individual timestamp perspective,
meaning that at every timestamp, given the 14 input signature component signals, the
model should be able to predict the 15 binary status component signals output. This
would be the ideal way to interpret the problem statement and therefore come up with
the most useful information for system engineers. However, it might be inconvenient to
have individual models for each component and to retrain all of them repeatedly.

This leads us to the reframing of the problem statement. Instead of predicting the value
of certain status components at one specific timestamp, we grouped timestamps into an
eclipse cycle. We studied the overall behavior of the status component during the cycle.
The prediction on eclipse cycle flipping for status 11 and 12 are very accurate and may
provide information on important time windows to system engineers or a level of moni-
toring that is not too detailed nor too detached.

For the other status components, the data we obtained are excessively biased, prohibiting
us from coming up with meaningful and usable inferences. We tried to balance the
distribution of ON and OFF in the hope that the balanced dataset might allow better
performance without success. Moreover, for the eclipse cycles, they are accurate. However,
they only tell if a component was at all ON in that eclipse cycle rather than whether it
flipped, which provides limited information.
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Other components
(multi-class)

Näıve
Accuracy

Metrics TST Rocket IT LSTM

Individual timestamps 0.77 Accuracy 0.78 0.78 0.72 0.75
Precision 0.77 0.76 0.71 0.75
Recall 0.78 0.78 0.72 0.75
F1-score 0.69 0.69 0.71 0.74

Eclipse cycles 0.78 Accuracy 0.84 0.83 0.88 0.92
(atleast once ON) Precision 0.80 0.79 0.88 0.93

Recall 0.84 0.83 0.88 0.92
F1-score 0.81 0.81 0.88 0.91

Table 5: Performance metrics for other status components

7 Conclusions

In this project, a method for processing the present satellite data is developed. The initial
mission statement included acceptance criteria that are evaluated in this section. Overall
12/13 required criteria (subsection 1.4) and 1/6 optional criteria (section 1.4) have been
fulfilled .

The performance metrics of our model were evaluated extensively, with a primary focus
on achieving high accuracy. We accomplished an accuracy rate above 90% on both the
validation and test datasets, demonstrating the effectiveness of our approach. Addition-
ally, we achieved precision, recall, and F1 scores of at least 75%, indicating a balanced
performance. We diligently monitored and documented our training approaches with ex-
tensive plots. Our dataset was split reasonably into a 90/10 ratio, providing sufficient
data for training and testing. We compared different approaches using the same prepro-
cessed data, allowing for a fair comparison of their performance. The documentation of
our work was presented in a visual manner, including high-level descriptions, schematic
overviews of the network architecture, and tables for detailed comparisons. Throughout
the code, we included comments to enhance future usage.

Although the project successfully accomplished most required acceptance criteria, there
are some optional criteria that have not been fully met, leaving room for further improve-
ment. The project lacked a mechanism to provide a level of confidence or probability for
each label prediction. Incorporating such a feature would offer valuable insights into the
certainty of the model’s predictions. Explainability was not the scope of this project. By
focusing on developing a model that is not only highly accurate but also interpretable,
stakeholders would gain better insights into the decision-making process. Some option in
the this area would be other methods like shapelets [7]. Another area that was not fully
explored was evaluating the model’s effectiveness on different datasets by ourselves. All
the models were carefully chosen and in most of the cases compared against 85 UCR/UAE
Datasets and/or multivariate datasets, e.g. [3].
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8 Future Work

We feel that our work represents a useful but only an initial incursion into exploring the
potential of what can be done with such satellite telemetry data. For instance, during
data preparation, we use linear interpolation to fill in the missing values of our data.
For some variables the number of missing values far outweigh the number of existing val-
ues, and linear interpolation might force the variable’s distribution to become linear in
nature even when that might not be its true representation. In such cases, there are ad-
vanced methods of time series interpolation which may perform better, like Deep Markov
Models[26] or LSTM[27]. The resulting data distributions would be closer to their original
characteristics and hence offer better quality of data during modeling.

Secondly, we did not perform much hyperparameter tuning of our models. This was due
to both time and resource constraints. With access to better compute resources, we may
have been able to perform advanced search techniques like Bayesian Optimization [28] for
ideal hyperparameters for our models. With additional time, we would have been able
to look into each specific model and fine tune it to our benefit, for example, by changing
the positional encoding scheme in the Transformer model to one that suits multi-rate
timeseries data better, or configuring the architecture of InceptionTime to create our own
custom CNN model.

The major stumbling block was the bias in the data. We tried a few different ways of
dealing with it to mixed degrees of success. On top of that, the data we worked with was
recorded during the peak operational period of the satellite, which means that standard
real-world data would be more biased. We feel that domain expertise could be the key
to solving this problem. Discussing with system engineers, listening to their experience
and insights and taking into account their feedback could be crucial to finding the most
worthwhile and useful problem to solve given this data. It would be all too cliché for
ML engineers to get caught up in the pursuit of metrics like accuracy and precision, but
our lessons in this project have taught us to look at the bigger picture - which we think
should also be the mindset for further incremental work.

9 Discussion and Project Reflections

Working with real-world data presented unique challenges and uncertainties that dif-
fered from the controlled environments typically encountered in academic studies. At
the project’s start, DLR supervisors expressed initial doubts about the usability of the
data, making it necessary to navigate the problem statement and devise appropriate
methods. This process of exploring and adapting approaches in the absence of a prede-
fined solution provided invaluable learning opportunities. It taught us the importance of
problem-solving, adaptability, and the ability to navigate uncharted territories in order
to make tangible impacts in real-world applications.

One of the major challenges encountered during this project was the significant bias
present in the data. The limited availability of positive cases for training made it difficult
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to accurately learn and predict the status values. Despite our efforts, this bias remained a
substantial hurdle throughout the project. Preprocessing emerged as the most challenging
and time-consuming aspect. The telemetry data required extensive cleaning and normal-
ization. Preserving important timestamps and their corresponding values after resampling
proved to be a significant challenge. These steps also aimed to overcome the computational
limitations we faced due to restricted access to resources from the Leibniz Supercomputing
Centre (German: Leibniz-Rechenzentrum) (LRZ) and DLR, which could have allowed us
to explore a few different avenues and enhance model performance. Nonetheless, we made
the most of the available resources and diligently worked within the given constraints to
achieve meaningful results.

Addressing these preprocessing and computational challenges necessitated careful consid-
eration and experimentation to ensure data integrity and quality. Our team collaborated
closely, exchanging ideas, discussing best practices, and supporting each other to overcome
these obstacles. This shared commitment and problem-solving mindset were instrumental
in devising effective preprocessing strategies, enabling successful modeling and prediction
of component status values.

Despite the encountered struggles, our findings yielded several positive outcomes and
insights. Surprisingly, the baseline model we developed outperformed the SOTA Trans-
former model, leaving limited room for improvement within the given scope. This un-
expected result prompted a critical examination of our assumptions and exploration of
alternative avenues for progress. Reframing the data by considering both single class
and multiclass approaches offered valuable insights and potential for the development of
specialized models for each component.

In conclusion, despite the numerous challenges faced throughout the project, our investiga-
tion into ML approaches for predicting status values based on power signatures in satellite
telemetry data provided valuable insights and significant advantages. The project high-
lighted the importance of addressing biased labels, adapting to computational limitations,
and tackling the complexities of preprocessing. Our work establishes a solid foundation
for further research and optimization in this domain, offering potential benefits to the
DLR and the broader field of satellite technology.

The teamwork within our group played a crucial role in overcoming the encountered chal-
lenges. The complexities of the project and the aforementioned obstacles tested the limits
of our skills and knowledge. However, our collaborative spirit and shared commitment to
success propelled us forward. We fostered an environment of mutual support, engaging
in open discussions, brainstorming sessions, and knowledge sharing. This collaborative
approach allowed us to leverage our diverse perspectives and expertise to find innova-
tive solutions. Together, we overcame hurdles, celebrated small victories, and collectively
pushed the project towards its positive outcome. The resilience and camaraderie exhibited
by our team exemplify the strength of collaborative efforts in tackling complex projects.
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Appendix

X.I Signature Values

Figure 11: Signature component 1 and its rolling average at 20000 points

Figure 12: Signature component 2 and its rolling average at 20000 points

Figure 13: Signature component 5 and its rolling average at 20000 points
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Figure 14: Signature component 7 and its rolling average at 20000 points

Figure 15: Signature component 8 and 11

Figure 16: Signature component 12 and 14
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count mean std min 25% 50% 75% max
timestamp [ms] 4545878 1.467E+12 1.031E+12 1.449E+12 1.457E+12 1.467E+12 1.476E+12 1.484E+12
sig 1 [Volt] 4094177 22.052783 1.184935 18.69996 21.00601 22.12103 23.08101 25.32744
sig 3 [Volt] 451754 0.016616 0.0055 -0.007013 0.013566 0.014331 0.016769 0.06649
sig 5 [Ampere] 4094177 0.418838 0.041622 -0.147076 0.403127 0.41977 0.436867 1.226653
sig 7 [Ampere] 4094177 1.576964 1.553677 -0.153638 -0.041467 1.656987 3.076604 8.351348
sig 8 [Byte] 451754 0.43954 80.754626 0 0 0 0 15532
sig 9 [Volt] 451754 0.159271 1.530246 -0.054883 0.046651 0.049401 0.055796 24.41017
sig 10 [Ampere] 451754 0.054779 0.202435 -0.049196 0.036183 0.038223 0.04473 5.308893
sig 11 [Byte] 451754 0.053963 5.078529 0 0 0 0 478
sig 12 [Byte] 451754 6.236067 277.51418 0 0 0 0 12356
sig 14 [Byte] 451754 515.409586 17077.1773 0 0 0 0 672640
sig 18 [Sun sensor] 4094177 -0.335416 0.705415 -1 -0.999939 -0.668274 0.40802 1.298767
sig 19 [Eclipse flag] 4094177 0.417596 0.493163 0 0 0 1 1

Table 6: Signature Analysis
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X.II Status Values

count mean std min 25% 50% 75% max
status comp 1 4094085 0 0 0 0 0 0 0
status comp 2 4094085 0 0 0 0 0 0 0
status comp 3 4094085 0.987947 0.109123 0 1 1 1 1
status comp 4 4094085 0.008092 0.089592 0 0 0 0 1
status comp 5 4094085 0.966391 0.18022 0 1 1 1 1
status comp 6 4094085 0.011181 0.105147 0 0 0 0 1
status comp 7 4094085 0 0 0 0 0 0 0
status comp 8 4094085 0.999975 0.004991 0 1 1 1 1
status comp 9 4094085 0.999998 0.001308 0 1 1 1 1
status comp 10 4094085 0.999998 0.001398 0 1 1 1 1
status comp 11 4094085 0.105826 0.307615 0 0 0 0 1
status comp 12 4094085 0.180594 0.384681 0 0 0 0 1
status comp 13 4094085 0 0 0 0 0 0 0
status comp 14 4094085 0.000017 0.004105 0 0 0 0 1
status comp 15 451754 0 0 0 0 0 0 0
status comp 16 451754 0.000009 0.002976 0 0 0 0 1
status comp 17 451754 0.000004 0.002104 0 0 0 0 1
status comp 18 451754 0.000018 0.004208 0 0 0 0 1
status comp 20 451754 0 0 0 0 0 0 0
status comp 21 451754 0.00017 0.013054 0 0 0 0 1
status comp 22 451754 0.177765 0.382315 0 0 0 0 1
status comp 23 451754 0 0 0 0 0 0 0
status comp 24 451754 0 0 0 0 0 0 0
status comp 25 451754 0 0 0 0 0 0 0
status comp 26 451754 0 0 0 0 0 0 0

Table 7: Status Analysis
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Figure 17: Distribution of 0/1 classes for status components
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Figure 18: Status components
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Figure 19: Comparison of computational expense of selected models [3]

Method Comp. exp. PA DOI Comp. Interp. Sum
Hive-COTE 2.0 1 5 4 5 0 15
ResNet 2 2 4 4 1 13
Rocket 5 3 3 4 1 15

Table 8: Selection of baseline model based on assessment of evaluation criteria on a scale
from 0 to 5; with 0 being worst and 5 being best
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Baseline Models

Hive-COTE 2.0 1 5 4 5 0 15
ResNet 2 2 4 4 1 13
Rocket 5 3 3 4 1 15

Advanced Models
TST 4 4 4 3 2 15
MALSTM-FCN 3 5 5 2 2 15
CNN 2 4 1 5 2 12
ST 3 5 2 4 5 14
IT 5 5 4 4 3 21

Table 9: Selection of baseline model based on assessment of evaluation criteria on a scale
from 0 to 5; with 0 being worst and 5 being best

Method Comp. exp. PA DOI Comp. Interp. Sum
TST 4 4 4 3 2 15
MALSTM-FCN 3 5 5 2 2 15
CNN 2 4 1 5 2 12
ST 3 5 2 4 5 14
IT 5 5 4 4 3 21

Table 10: Selection of advanced approaches based on assessment of evaluation criteria on
a scale from 0 to 5; with 0 being worst and 5 being best
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