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Abstract

The field of artificial intelligence and robotics has witnessed remarkable advancements,
triggering interest in researching the potential of human-robot collaboration to enhance
task performance. Although robots equipped with advanced sensors and electronics ex-
hibit high precision and strength, they lack the ability to understand humans. This is an
obstacle to improving the efficiency of human-robot collaboration. Bridging this compre-
hension gap poses unique challenges, as robots require explicit teaching to recognize and
comprehend human actions and humans require adaptability to different robot behaviors.
One way to address the challenges is to focus on human intention prediction so the robot
can be aware of not only the current human behavior but also be able to understand the
imminent intention.
This project builds on an experiment involving physical collaboration between humans
and robots [1]. We used the data collected from this experiment and explored various
algorithms (Long Short-Term Memory and Dynamic Bayesian Network) aimed at pre-
dicting the intended movement of humans in order to improve collaboration between
humans and robots. The main focus reside on predicting human movements in the near
future, specifically within the next 100-300 milliseconds for a better real-time anticipation
and adaptation of the robot’s actions and hence facilitation of synchronized collaboration
between humans and robots.
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1 Introduction

1.1 Motivation

Over the past decades, the field of artificial intelligence and robotics has witnessed signifi-
cant advancements, attracting substantial attention from researchers [2]-[3]. The interest
in robotic collaboration stems from its potential to enhance task performance, leading
to improved efficiency and productivity. For example, robots equipped with precise sen-
sors and robust electronics can maintain high accuracy and exert forces beyond human
limitations [4]-[5].
However, in order to achieve effective teamwork, team members should have the ability to
understand one another [6]. Human-robot collaboration presents a unique challenge in this
regard. Robots need to recognize and comprehend the actions of their human teammates.
While humans naturally acquire this skill over time, robots need explicit teaching [5]. This
recognition problem is made even more complex by the disparities present between robot
and human team members, both in terms of their mental/computational capabilities and
physical attributes [7]-[8]. Consequently, when faced with real-world uncertainty, robots
cannot always rely on human teammates to strictly follow a well-structured algorithm,
making it challenging to anticipate their reactions when things deviate from the expected
path.
The field of Human-Robot Interaction (HRI) investigates the design, development, and
study of interfaces and interaction modalities between humans and robots [9]. It en-
compasses both cognitive and physical aspects, each playing a distinct role in enhancing
collaboration and optimizing performance between humans and robots [5].
To address these challenges, one of the main focuses of HRI is empowering robots to
predict human intentions [10]. This means that, for a more intuitive interaction, the robot
should not only be aware of the current human behavior but also be capable of annotating
and predicting the human partner’s imminent intentions. Essentially, the robot needs to
possess high-level cognitive capacities for understanding human actions and predicting
intentions, akin to a human counterpart in a human-robot interaction task.

1.2 State-of-the-art

To achieve accurate and transparent collaboration between humans and robots, cutting-
edge approaches have concentrated on human intention detection [11], arbitration [12],
and communication [13]. Significant research efforts have been devoted to designing robots
with exceptional adaptability to humans, enabling them to seamlessly transition between
various roles [12], [14] and adopt personalized strategies tailored to the unique needs and
preferences of each human teammate [15].
However, this collaboration is contingent on the adaptability of humans to different robot
behaviors, an aspect that remains relatively under-explored in the literature. A first step
in this research direction would be human-human collaboration studies that showed the
vital role of haptic communication in facilitating partner understanding and enhancing
performance [16].
One recent study that delved into human adaptability to robots. This study examined
how humans adapt to distinct robotic behaviors and how haptic communication influences
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coordination when participants assume either a leader or follower role. The participants
were tasked with manipulating an object with internal degrees of freedom, requiring close
collaboration between humans and artificial agents. Through this investigation, valu-
able insights were gained to further our understanding of human-robot adaptability and
enhance collaborative interactions.

1.3 Goal of the project

This project analyzes data collected from the experiment. The goal is to explore vari-
ous algorithms aimed at predicting the intended movement of humans, with the ultimate
aim of fostering improved collaboration between humans and robots. During this experi-
ment, human participants were required to generate rapid movements and execute precise
adjustments. Consequently, our research focuses particularly on predicting human move-
ments in the near future, specifically within the next 100-300 milliseconds. This time
frame is of particular interest as it enables real-time anticipation and adaptation of the
robot’s actions, facilitating seamless and synchronized collaboration between humans and
robots.
The rest of the report is structured as follows: In section 2, we introduce the background
theory. Section 3 presents a literature review. Section 4 explains the experiment setup and
the different algorithms used to predict the human intent. Section 5 shows the results of
our models. In Section 6, we discussed the results, outlining its implications and potential
directions for future research.

2 Background Theory

To ensure a comprehensive understanding of the rationale behind the method selection, we
begin by providing background definitions and explanations of the algorithms employed
in the project.

2.1 Human Intention Prediction

Human intention prediction is a field of research that focuses on understanding and pre-
dicting the intentions of individuals. Successful prediction of human intention can lead
to more efficient, safer, and more natural human-machine interactions, fostering the in-
tegration of robots into human-centric environments such as healthcare, manufacturing,
and domestic settings.
The prediction of human intention involves analyzing multimodal sensory information,
such as visual and haptic feedback. Researchers employed various techniques to extract
relevant features from the sensor data and model the relationship between these features
and human intentions.
Numerous studies have been conducted to explore and predict human intent using a variety
of methods. Machine learning techniques, such as Support Vector Machines (SVM),
Hidden Markov Models (HMMs), and deep learning architectures like Long Short-Time
Memory (LSTM) are applied to classify and recognize patterns in the sensory data. These
models can learn the mapping between sensor inputs and corresponding human intentions
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to afterward generalize and recognize specific modalities. Another approach involves using
probabilistic graphical models, such as Bayesian Networks (BN) or Dynamic Bayesian
Networks (DBN), to model the causal relationships between observed cues and human
intentions. These models capture the uncertainties and dependencies in the data, allowing
for robust inference and intention prediction. Some of these algorithms (SVM, HMM,
DBN) are designed to work with categorical data and are utilized as classifiers. They aim
to categorize the human movements into specific intention classes (moving up, staying
still, etc.). On the other hand, some algorithms (LSTM) are capable of predicting the
precise values of the movement variables such as position, velocity, and other relevant
parameters. These algorithms provide a more granular understanding of the intended
human movements.
In this project, our focus revolves around analyzing time series data. In 2.2 and 2.3, we
identified two selected algorithms that are suited for handling such data [17].

2.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) archi-
tecture designed to address the vanishing gradient problem, which hampers the learning
of long-term dependencies in sequential data [18]. LSTM introduces memory cells and
gating mechanisms that enable the network to selectively retain or forget information over
time [19]. The core element of LSTM is the memory cell, denoted by Ct, which stores
and updates the memory state at each time step t in the sequence [20]. Figure 1 below
illustrates the procedure at one time step. The memory cell interacts with three types of
gating mechanisms: the forget gate, input gate, and output gate [19]-[20].

Forget Gate The forget gate, denoted by Ft, determines the amount of information
from the previous memory cell state, Ct−1, that should be forgotten. It takes as input
the previous cell state and the current input, denoted as Xt. The forget gate output is
obtained by applying the sigmoid activation function, which restricts the values to the
range of 0 to 1:

Ft = σ(wf · [Ht−1, Xt] + bf )

where wf and bf represent the weights and biases associated with the forget gate.

Input Gate The input gate, denoted by It, determines the amount of new information
to be incorporated into the memory cell state. It consists of two components: the input
gate itself and the candidate cell state. The input gate controls the update of the memory
cell state, while the candidate cell state, denoted by C̃t, represents the new candidate
values to be added to the memory cell state. The input gate output and candidate cell
state are computed as follows:

It = σ(wI · [Ht−1, Xt] + bI)

C̃t = tanh(WC · [Ht−1, Xt] + bC)
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Cell State As mentioned before, the network will have enough information from the
forget gate and input gate to decide and store the information from the new state into the
cell state C̃t. For this, the previous cell state C̃t−1 gets multiplied with forget vector Ft. If
the outcome is 0, the values will be dropped from the cell state. After that, the network
takes the output value of the input vector It and performs point-by-point addition, which
updates the cell state giving the network a new cell state Ct.

Output Gate The output gate, denoted by Ot, controls the flow of information from
the memory cell state to the output of the LSTM. It determines which parts of the memory
cell state will be revealed as the output. The output gate output and the LSTM output,
Ht, are calculated as:

Ot = σ(wO · [Ht−1, Xt] + bO)

Ht = Ot · tanh(Ct)

In these equations, Ht−1 represents the previous hidden state, and σ and tanh denote the
sigmoid and hyperbolic tangent activation functions, respectively. w and b represent the
weight matrices and bias vectors associated with the corresponding gates.
By incorporating memory cells and gating mechanisms, LSTM can effectively capture
long-term dependencies in sequential data. The forget gate regulates the memory cell by
determining which information to discard, while the input gate allows new information
to be integrated. The output gate controls the flow of information to the final output.
This architecture has proven highly successful in tasks such as natural language processing,
speech recognition, and time series prediction, where long-term dependencies play a crucial
role [17].

Figure 1: LSTM cell graphical illustration of data flow. [2]

2.3 Baysian Network and Dynamic Bayesian Network

Bayesian Networks is a powerful probabilistic model that has been widely used in various
fields [21]. It is a graphical model that captures probabilistic dependencies among a set
of variables through a directed acyclic graph (DAG) [17]. It is a flexible framework for
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representing and reasoning about uncertainty and causal relationships among variables
[22]. Dynamic Bayesian Networks extend the capabilities of BNs by explicitly modeling
the temporal dependencies and evolution of variables over time [23]. DBN is able to model
the multivariate time series, where the relation between variables as well as the evolution
over time will be both effectively captured [24].

2.3.1 Bayesian Networks

Bayesian Networks are a class of powerful tools for dealing with the uncertainty problem
usually present in probabilistic models. Each node corresponds to a variable and each
edge connecting two nodes represents the conditional probability for the corresponding
variables [25]. The edges are directed and can only navigate in one direction.
Let (X1, X2, . . . , Xn) denote the nodes of the network and Parents(Xi) the set of nodes
that the node Xi depends on in the network. The joint probability distribution of the
variables acquired by the BNs can be decomposed using the chain rule of probability as
follows:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi |Parents(Xi))

Figure 2: Bayesian Network - Directed Acyclic Graph. [26]

To quantify the dependencies between variables, conditional probability tables (CPTs) are
associated with each node in the network. A CPT specifies the conditional probability
distribution of a variable given its parent variables.
Inference in Bayesian Networks involves calculating probabilities of events or making
predictions based on observed evidence. The posterior probability of a target variable
given evidence can be calculated using Bayes’ theorem:

P (Xi |E) =
P (Xi) · P (E |Xi)

P (E)

where E represents the observed evidence and P (E) acts as a normalizing constant.
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The strength of Bayesian Networks lies in their ability to combine prior knowledge or
beliefs with observed data to update beliefs and make informed inferences. By leveraging
the graphical structure and probabilistic reasoning of Bayesian Networks, researchers can
gain insights into the relationships between variables, identify influential factors, estimate
probabilities of different outcomes, and make informed decisions under uncertainty.

2.3.2 Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN) are usually defined as an extension of Bayesian Net-
works specifically aiming at time series modelling [27]. The architecture that forms the
static interpretation (nodes, edges and probabilities) is identical to a BN. However, the
nodes and edges in DBN include the temporal dimension [27]. DBNs allow not only con-
nections within one time slice (intra-slice connections) but also connections between time
slices. These temporal connections would incorporate condition probabilities that would
be incorporated in the CPT [28].
It is worth mentioning that the states of a dynamic model do not need to be directly
observable. They can be inferred from other variables that can that can be directly
measured. Also, each state can be regarded as a complex structure of interacting states.
In other words, each state at one time instance may depend on states at the previous time
instance or/and states in the same time instance [28].

3 Literature Review

After a detailed background theory, we delve deeper in the literature to understand the
state-of-the art techniques used in the field of human-robot fine movement collaboration
focusing on human intent prediction.

3.1 Long Short-Term Memory Algorithm

The advances and development in the field of deep learning played a role in the prediction
of intention for humans in a human-robot interaction context. Algorithms like RNN and
LSTM were used to deal with time series data for the intention recognition. For example,
in [29, 30], Yu et al. developed two RNN models: a supervised multiple timescale one
and another object augmented-supervised multiple timescale. They were both tested and
used for the understanding and detections of human intentions based on human motions
in real time. The same research group also proposed an LSTM model for a better tackling
of the human intention recognition task [31]. Another deep RNN was proposed in [34]
for intention detection by using wearable IMU sensors. [32] proposes on the other hand
a deep LSTM architecture for accurately recognizing the human intention in a human-
robot collaborative setup based on skeleton information of human motion. The authors
proposed a typically multiple stacked LSTM model combining the advantages of single
LSTM layer and deep stacked network structure. We investigate the use of LSTM in a
human-robot collaboration setup with new type of input data and different parameters
(for example the use of haptic feedback, observations and others).
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3.2 Dynamic Bayesian Network Algorithm

As discussed in Section 2.3, Dynamic Bayesian Networks are powerful and interpretable
tools that capture correlations and causations between variables occurring over time.
Oliver and Horvitz [33, 5] conducted a comparative study between DBN and HMM for
recognizing office activity using video, audio, and computer interaction evidence. They
trained separate HMMs for each data modality and also developed a DBN that integrates
all three modalities simultaneously. Results showed that the DBN outperformed the
ensemble of HMMs. Researchers were also interested in the modelling of robot-user actions
and teaming strategies (robot-robot, human-human).
Bayesian Network has been used for human-intention detection. For example, [34] pre-
sented Bayesian Networks in a robot-grasping tasks in real-world scenarios. They showed
the ability of predicting a hand grasping movement from uncertain sensory data. However
there are limited literature on using DBN to predict human intent. DBN was often used
in decision making and cognitive sciences researches [35], [36], [37]. [38] pioneered the
use of DBN for modeling the human intention detection in a human-robot collaborative
setup (called in the paper intention-action-state scenario) to facilitate for probabilistic
intention inference. DBN was also used in [39] to learn interactions between assistive
robotic walker and human users. The model was able to recognize a subset of possible
actions of gait stability, such as standing up, sitting down or assistive strolling, and then
adapt the behaviour of the device accordingly.
In this project, we explored the use of DBN to predict the human intention (velocity and
hand position) in the next timestamps according to different factors and data collected
(from the task, the user and the other participant). Different combinations were tried to
understand the relevant dependencies for meticulous human-robot collaboration.
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4 Methods

This section presents the methodology followed in this project from the data preprocessing
to the description of the different models used in the project.

4.1 Setup and Data

4.1.1 Experimental Setup

The experimental setup has been designed to investigate the utilization of haptic feedback
in physical human-robot collaboration. The task was to balance a ball on a board at a
target area. The participants controlled the left side of the board, while the artificial
agents controlled the right side. The task requires precise coordination between humans
and artificial agents. The experiment was simulated using virtual reality (VR) technology.
The participants interacted with each other through haptic devices (Phantom Touch; 3D
SYSTEMS) that generates force feedback.
The experiment consisted of 11 participants, and each dyad performed a total of 600 trials.
The duration of each trial ranged from 5 to 15 seconds. To investigate the impact of haptic
feedback on intention prediction, the experiment was designed with two conditions. In
half of the trials, participants received haptic feedback from the devices, while in the
other half, they solely relied on visual information. There were two types of artificial
agents, namely the low-gain and the high-gain agent. The high-gain agent was much
more proactive compared to the low-gain agent.
During the experiment, kinematic and kinetic data were recorded at a sampling rate of
1000 Hz. The recorded data encompassed the participants’ movements, haptic feedback,
environment variables throughout the task. This comprehensive dataset provides valuable
insights into the collaborative dynamics between humans during physically interactive
tasks. The experiment aimed to better understand how humans utilize haptic feedback
to predict the intentions of their partners. By analyzing the recorded data, the study
intends to uncover patterns and behaviors that contribute to effective collaboration.

4.1.2 Data Preparation

In this section, we describe the preprocessing and organization of the recorded data, which
was performed to facilitate further analysis and modeling.
The recorded data was loaded and organized for each participant and experiment. The
data for each experiment was stored in separate folders, and the processed data was
obtained by combining the data from all experiments for each participant. In this project,
we only used the trials where haptic feedback was available.
For the training of DBN, we selected the following variables: the velocity of the partici-
pants, the relatve position of the ball to the target, the velocity of the ball, the orientation
of the board, and the force feedback of the participant. Since DBN only works with cat-
egorical data, we grouped these variables into categories using predetermined bins. The
resulting dataset was randomly split into 80% of training data and 20% of testing data.
The data from each trial was organized into sequential segments of four consecutive data
points.
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Similarly for the LSTM model, relevant information from the dataset was extracted. This
included measurements related to participant velocity, the relative position of the ball,
the categorical representation of ball position, and the applied force. The dataset was
downsampled to 5 Hz to reduce its size and simplify the analysis. This downsampling
allowed for a more manageable dataset while retaining the essential information.
To facilitate the prediction task, a sliding window approach was adopted. Each input
sequence for prediction consisted of 10 consecutive data points. The total length of the
downsampled dataset was determined, and the data was split into training and testing
sets using the same ratio as before.
For each data point in the downsampled dataset, starting from the 10th data point, the
previous 10 data points were used as the input sequence. The corresponding target value
was recorded, representing the next step to be predicted.
In summary, the data preparation step involved selecting relevant measurements, down-
sampling the dataset, and organizing the data into input sequences and target values for
training and testing the prediction model.

4.2 Models

After data preparation, different prediction algorithms were tested to find a compromised
solution for the problem at hand: human-intent prediction.

4.2.1 Long Short-Term Memory Model

For this study, we employed a LSTM neural network model to predict the trajectory of
human limb dynamics in different agent gain settings. Our LSTM model consisted of two
LSTM layers, each comprising 400 neurons, to facilitate a deeper understanding of the
complex temporal patterns in the input data. Furthermore, we appended a fully con-
nected Dense layer with a single output unit to produce trajectory predictions. A Batch
Normalization layer was applied to normalize the input to the Dense layer, improving
convergence during training.
The model was trained using the Adam optimizer with a learning rate of 0.001 and the
mean squared error (MSE) loss function to quantify the discrepancy between the predicted
and ground truth trajectories.

4.2.2 Dynamic Bayesian Network Model

Different DBNs network were designed during the study. We present two DBNs in this
section. Both networks have the same nodes/criteria influencing the prediction of the
current position or velocity of the hand : hand velocity, ball position, ball velocity, board
angle. For example, the previous and current position of the ball affect the hand velocity.
The previous position through affecting the previous board angle and the current position
of the ball directly affecting the Hand Velocity. The exact network structures where we
can see the different nodes dependencies (each for current and previous state) are shown
in Fig. 3, 4.
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Figure 3: DBN model with haptic feedback

Figure 4: DBN model without haptic feedback

We used the pgmpy python package to construct, train and test the DBNs. The parame-
ters of the DBNs are trained using Maximum Likelihood Estimator. We used the DBNs
to predict the human movement in 100ms, 200ms or 300 ms.

4.2.3 Persistence Model

The limited rate of change in hand position or velocity, attributed to the inertia in the
human body, often results in the hand maintaining its movement status from the previous
timestep to the new timestep. Based on this idea, we constructed this simple persistence
model that assumes the velocity in the previous timestep will maintain at the current
timestep. Hence the equation, V elt = V elt−1.
This is a naive way of predicting the human movement. This persistence model will be
used as a baseline for evaluating our models.
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5 Results

5.1 Long Short-Term Memory

In the experiment with the high gain agent, which represents a relatively easier task,
we observe that the LSTM model effectively predicts the trajectory of the system, as
demonstrated in Figure 5. The relatively low test loss value (indicated in the plot) further
substantiates the model’s performance on the test data. The low test loss signifies that the
model’s predictions closely match the ground truth values, validating the efficacy of the
LSTM architecture in capturing the dynamics of the system under the high gain setting.

Figure 5: LSTM method with high gain agent

In contrast to the relatively easier task with the high gain agent, the experiment with the
low gain agent proves to be more challenging for the LSTM model to predict the trajectory
using the human limb dynamics. Figure 6 shows that the LSTM model’s predictions (in
blue) deviate from the ground truth data (in red). The trajectory predictions display
a noticeable discrepancy from the actual values, suggesting that the model struggles
to accurately represent the intricate limb dynamics under this setting. The relatively
higher test loss value, which is indicated in the plot, is indicative of the model’s reduced
performance on the test data.
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Figure 6: LSTM method with low gain agent

The x-axis of the figures represents the time steps, with each time step corresponding to
a duration of 200 milliseconds. As the experiment with the low gain agent takes a longer
duration to complete, the x-axis of Figure 6 is longer compared to the x-axis of Figure
5, reflecting the extended time required for the low gain agent’s trajectory prediction. In
summary, the LSTM model demonstrates proficient trajectory prediction capabilities for
the relatively easier task with the high gain agent, while facing challenges in accurately
capturing the intricacies of human limb dynamics for the low gain setting-

5.2 Dynamic Bayesian Network

The accuracy on the training data is always slightly higher than the validation data, as
expected. There is a decrease in accuracy as the prediction horizon increases. This is
expected, as it is more difficult to predict longer periods of time into the future. We
found that in the case of higher gain, the accuracy difference between training data and
verification data is larger than that of lower gain.
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Figure 7: train data and test data comparison for DBN model

Comparing DBN model with the persistence model, it can be seen that as the predic-
tion time step changes from 100ms to 300ms, the performance of DBN relative to the
persistence model has been significantly improved showing that the network is actually
learning.

Figure 8: Accuracy improvement of DBN model over persistence model
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In the confusion matrix, the x-axis is the actual state and the y-axis is the predicted state.
We can see that the values on the diagonal of the matrix are significantly greater than
the values on the off-diagonal positions, which means that the prediction made by the
DBN model is correct most of the time. The accuracy to correctly predict still state is the
highest. When humans are moving up or down, DBN often mis-classifies the movement
to be still. However, the accuracy is still more than 50%.

Figure 9: Confusion matrix for DBN model. Here the x-axis is the actual state and the
y-axis is the predicted state. 0 means down, 1 means still, 2 means up

In the comparison chart with and without haptic feedback, we found that the prediction
accuracy is always higher with haptic feedback. However, this difference is very subtle.
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Figure 10: With haptic and without haptic comparison for DBN model
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6 Discussion

In this project, we used LSTM and DBN to predict the intended movement of the par-
ticipants. Both algorithms showed promising results.
For LSTM, the predicted trajectory consistently underestimates the magnitude of the
intended velocity, but it demonstrates good alignment with the timing of the changes in
the actual trajectory. LSTM performs better when participants worked with the high
gain agent compared to the low gain agent. The reason may be that participants tend
to be more passive and generate less movement when working with the high gain agent,
thus less variable and easier to predict. This can be reflected in the magnitude of Fig. 5
and Fig. 6.
We employed DBN to predict human movements into the future at different time intervals,
specifically 100ms, 200ms, and 300ms. As the prediction horizon increases, we observed
a gradual drop in prediction accuracy. However, despite the decrease in accuracy, the
advantages of using DBN over the persistence model become more pronounced as the
prediction horizon extends further into the future. The DBNs with or without force
feedback showed similar accuracy. This may indicate the haptic feedback did not provide
extra information compared to visual feedback. However, when we reduced the DBN
nodes and only try to infer the hand velocity using ball relative position, previous hand
velocity and force feedback, we see an increased accuracy due to haptic feedback when
participants worked with the high gain robot (Fig. 11). This coincides with the findings
that haptic feedback leads to an improvement in coordination between participants and
the high gain agent, but not with the low gain agent. This result indicate that haptic
feedback improves the prediction of human intent when visual feedback is incomplete.
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Figure 11: The accuracy of DBN with reduced nodes. Blue bars shows the DBN with
two nodes: hand velocity, ball relative position. Orange bars shows the DBN with three
nodes: hand velocity, ball relative position and force feedback.

Both LSTM and DBN offer unique strengths and limitations. LSTM excels at handling
time series data and predicting precise values of intended velocity. On the other hand,
DBN takes a single timestep as input and is limited to predicting categorical outcomes,
indicating whether participants intend to move up, down, or stay still. The inability to
predict exact values is a drawback of DBN compared to LSTM. However, DBN is a much
more compact network than LSTM. Its simplicity and interpretability allow for a clearer
understanding of the relationships between different variables. In contrast, LSTM is often
regarded as a “black box” due to its complex architecture, making it more challenging to
interpret the inner workings of the model.
Due to the time constraints of this project, we were unable to fully explore additional
possibilities for enhancing the network structure, which could potentially lead to further
improvements in prediction accuracy. Nonetheless, the intent predictor demonstrates
promising potential in enhancing coordination between humans and robots. The integra-
tion of the intent predictor with the robot controller poses an important avenue for future
research.
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