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Abstract

Annotation of video data requires a large amount of manual labor. Annotations are short
descriptions of the events occurring in a certain scene. Additionally, they are essential to
the successful archiving of video data. We introduce a novel architecture: the Multi-Modal
Transformer (MMT). It is a transformer architecture that leverages multiple modalities
of a certain video to: (1) clip a video into smaller segments that correspond to different
events, and (2) provide annotations that describe these segments. We evaluate our model
and show that it surpasses the state of the art competitors on all metrics. Contrary to
the usual development of Deep Learning models, it is more beneficial for the model to
adapt and learn continuously when it is deployed in production. Indeed annotations are
customer-specific and the model should be able to meet these specific needs. Consequently,
we propose Adaptive Long Term Captioning (ALTC), an online learning strategy that
enables our model to both learn to predict new words, and preserve its memory in the
long and short term. We show that ALTC not only reaches the same accuracy as offline
learning but surpasses it.
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1 Introduction

1.1 Motivation

The amount of data generated and stored is steadily increasing across different domains.
Notably, many companies from various industries rely on the storage of large amounts
of videos in their databases. Depending on the company’s needs, the videos need to be
annotated to facilitate certain downstream tasks such as archiving, video retrieval, video
analysis, etc. This task is typically done by human annotators, which renders the whole
annotation process slow, inefficient, very costly for companies, boring for employees, and
leads to only partially annotated databases. The goal of this project is to speed up
and automate the annotation process while still achieving human quality annotations by
automatically captioning videos using natural language sentences. Said annotations are
very customer-centric, hence, our end product should be able to continuously learn the
customers’ preferences.

1.2 Objectives

The goal of this project is to create a full technical prototype, that is the core of a
minimum viable product (MVP). This report focuses on the Deep Learning model that
powers the product. We divided the development of our model into 4 main phases:

1. Research: Identify the most promising approaches for video understanding and
captioning.

2. Prototyping: Develop, implement and evaluate the necessary individual modules on
a public dataset.

3. Integration: Combine the different modules into a unified continual learning frame-
work.

4. Deployment: Integrate the unified framework into the MVP’s back end architecture.

1.3 Our Approach

We identify Dense Video Captioning, the task of analyzing a video and captioning different
proposed sequences, as the closest solution to our problem from the literature. We create
a multi-modal transformer that leverages multiple modalities to extract high-quality an-
notations. Our proposed model surpasses the state of the art in Dense Video Captioning
when tested on the dataset ActivityNet Captions [16]. Moreover, to allow our model
to adapt to customer-specific needs, we propose a novel continual learning mechanism:
Adaptive Long Term Captioning (ALTC). ALTC not only matches the performance of
the model if it were trained offline but surpasses it due to its capability of extending its
own vocabulary when introduced with new words.
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2 Related Work

2.1 Dense Video Captioning

2.1.1 Introduction

Video content analysis is a complex field which includes a diverse set of tasks, such as
action recognition, object recognition and tracking, sentiment analysis or question an-
swering. We chose the task of video captioning as a core of the product. Video captioning
is the task of generating a text description for a given video clip. The current models are
solving this task by recognizing the activity which is present in the clip and generating
the natural language sentence which is describing this activity alongside other attributes.
In order to analyze long video sequences which contain multiple scenes with different ac-
tivities, it is necessary to divide the original video into a set of segments and generate
captions for every segment, which is known as dense video captioning. The classical ap-
proach to this task is to analyze only the visual component of the video content, but other
modalities such as audio or speech have shown to largely contribute to the understanding
of the semantic meaning of the video content. Analyzing multiple modalities can improve
the quality of the captions significantly. This approach is known as multi-modal dense
video captioning.

2.1.2 Literature Review

The problem of Dense Video Captioning (DVC) was introduced by Krishna et al. [16]
alongside a new dataset called ActivityNet Captions. The task was naturally divided
into two subtasks: generating the segment proposals from the original video (proposal
module) and then captioning the proposals (captioning module). The spatiotemporal
features [13] were extracted from the original videos and used as an input to the modules.
Both proposal and captioning modules were based on the LSTM networks [7] to capture
contextual information from past and future events.
Zhou et al. [33] proposed an end-to-end Transformer model for DVC. The encoder was
used to encode the video into appropriate representations, the proposal decoder formed
event proposals and the captioning decoder employed a masking network to restrict its
attention to the proposal event over the encoding feature. In addition, the model em-
ployed a self-attention mechanism [28], which enabled the use of an efficient non-recurrent
structure during encoding.
Moving to the multi-modal DVC, Rahman et al. [24] were first to include the audio
modality into DVC. Shi et al. [27] added the speech modality to improve the understand-
ing of cooking videos, using Transformer for video encoding, the pre-trained BERT model
[6] to create the embeddings for subtitles, and LSTM models for proposal and captioning
modules.
Iashin et al. [12] went further and used the mixture of three modalities: video, audio
and speech. Separate Transformers were used in the captioning module to process the
features extracted from the modalities. The output of the Transformers were concate-
nated and fed into several fully-connected layers in order to predict the caption sequence.
The pre-trained Bi-directional SingleStream Temporal action proposals network (Bi-SST)
proposed in [3] was employed as a proposal module. The video and audio features were
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extracted using the pre-trained I3D [4] and VGGish [9] models respectively, and the exter-
nal ASR module (youtube caption generator) was used to generate the speech transcript.
This model was extended by Chadha et al. [5] by building a common-sense knowledge base
using contextual cues to infer causal relationships between objects in the video. Common-
sense vectors generated by the knowledge base generator were concatenated with the I3D
features and fed together into the Transformer.
Iashin et al. proposed another version of the DVC model using a Bi-Modal Transformer
[11]. In this model, only two modalities were used as an input (video and audio), but the
Transformer architecture was adapted for a bi-modal input. The audio and video features
are extracted and passed through the bi-modal N-layered encoder to produce bi-modal
sequence representations utilizing novel bi-modal multi-headed attention blocks to fuse
the features from both sequences. The pre-trained bi-modal encoder was also used as a
feature extractor for the proposal generation module. Additionally, the GloVe [23] pre-
trained model was used for word embeddings. The results of this model were considered
SOTA at the end of the year 2020 based on the ActivityNet benchmark results.

2.1.3 Datasets

Figure 1: ActivityNet Captions dataset with
multiple temporally localized events. [16]

There are multiple commonly used dense
video captioning datasets. Some of these
datasets, such as YouCook II [32], are ap-
plication specific, while others are open
and contain different kinds of video types
[1]. Our model should have a broad un-
derstanding of various video types, so that
it can act as a base for future customer-
specific video types. Hence, application
specific datasets were disregarded. Out of
the remaining datasets, ActivityNet Cap-
tions [16] stood out. It has 20,000 videos
amounting to 849 hours with 100,000 de-
scriptive sentences, each with unique start
and end times. The average video length
is 180 seconds and the sentences have an
average length of 13.48 words [16]. It is
thereby the largest open dataset for dense video captioning [1] and contains longer videos
than many of the other datasets, which is why we chose it.

2.2 Online Learning

2.2.1 Introduction

In Supervised Learning, an agent is trained once on labelled data and then deployed in
the real world. While this works well for static settings, our work is very customer de-
pendant and the model should be able to adapt to the customer’s needs and preferences.
In this paradigm, known as continual learning, the model is trained online on a single
pass through the data stream that cannot be assumed to be i.i.d. Streaming Learning
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causes conventional Neural Networks to fail for two main reasons: (1) They are trained
with multiple passes through the dataset; and (2) non-i.i.d. data will cause catastrophic
forgetting [14], the concept of forgetting previously acquired knowledge when subjected
to new and different knowledge. An old fix to both of these issues is coined ”Rehearsal”.
When a new example arrives, it is mixed with old examples that the model has already
seen, and then this mixture is used to update the model. Full rehearsal is memory in-
tensive and slow as it has to store all previous data the model has seen. In our use case,
this data increases a lot as video warehouses tend to have a large amount of videos. That
being said, Full Rehearsal [8] has been shown to prevent catastrophic forgetting in many
continual learning settings.
During the past few years we have witnessed a renewed and growing attention to Contin-
ual Learning [20]. However, the field is still very premature, focusing mainly on standard
classification problems and thus the proposed methods are task-dependant and directly
using them in a different setting such as Dense Video Captioning is not possible. There-
fore, both adaptation and testing are required in order to confirm a method’s validity in
new tasks.

2.2.2 Literature Review

The sudden interest in Continual Learning (CL) and its applications, especially in the
sense of deep architectures, has led to rapid progress and initial research directions, leaving
the research community without common terminology and specific objectives. In line with
[14] and [31], here we suggest a three-way fuzzy categorization of the most common CL
strategies:

• Architectural techniques: Use complex architectures, layers, activation func-
tions, and/or weight-freezing strategies to mitigate forgetting.

• Regularization strategies: The loss function is expanded with regularization
terms in order to facilitate selective consolidation of the weights that are essential
for preserving past memories. This includes fundamental methods for regularization
such as weight sparsification, dropout or early stopping.

• Rehearsal strategies: The model is regularly fine-tuned with past knowledge to
reinforce links to memories it has already acquired. An easy solution is to store
part of the previous training data and to interconnect it with new training data.
Pseudo-rehearsal of generative models is a more difficult approach.

In Figure 2, we show the multiple reviewed methods in the categorization we have just
described. Although more methods are being discovered in the respective categories, re-
search has been extensive in their combination, especially at the intersections of the three
categories.
One of the first architectural techniques suggested is Progressive Neural Networks (PNN)[26],
which is based on a combination of parameter freezing and network expansion. Although
PNN has been shown to be successful on short series of simple tasks, the number of pa-
rameters of the model tends to increase at least linearly with the number of tasks, making
it difficult to use for long sequences. CopyWeights with Re-init (CWR) [18], which has
recently been proposed, is a simpler and lighter counterpart to PNN (at the expense of
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Figure 2: Taxonomy of Continual Learning Strategies

lower flexibility) with a fixed number of shared parameters and has already been shown
to be useful for longer task sequences.
Learning Without Forgetting (LWF) [17] is a regularization technique that tries to main-
tain the accuracy of the model on old tasks by enforcing consistency of performance
through distillation of knowledge [10]. Elastic Weights Consolidation (EWC) [15] and
Synaptic Intelligence (SI) [31] are other well known regularization techniques, each ex-
pressed around a weighted quadratic loss of regularization that penalizes moving weights.
ICARL [25] and GEM [19] are illustrated at the intersection of rehearsal and regulariza-
tion strategies. The former requires an external fixed memory to store a subset of old
task data based on an elaborate sample selection procedure, but also employs a distilla-
tion step acting as a regularization. The latter, referred to as Gradient Episodic Memory,
uses a fixed memory to store a subset of old patterns and apply regularization constraints
to the optimization of losses, aimed not only at regulating forgetting, but also at improv-
ing accuracy on previous tasks while learning the subsequent ones (a ”positive backward
transfer” phenomenon). Recent research on the memory-efficient implementation of pure
rehearsal strategies is given in [8], where a modern partitioning-based stream clustering
strategy called ExStream has been shown to be very competitive with a full rehearsal
approach (storing all previous data) and other memory management techniques.
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3 Results and Discussion

3.1 Evaluation Metrics

For evaluating the quality of our generated video captions we choose two of the most used
evaluation metrics: BLEU [22] and METEOR [2].
BLEU: Bilingual Evaluation Understudy (BLEU), was proposed to measure the quality
of machine translated sentences at a corpus level. However, it has also been extensively
used in video captioning tasks. BLEU evaluates a machine generated caption with the
ground truth or the reference caption(s) by forming n-grams (a group of n adjacent words)
from the generated caption and looking for matches at the n-gram level in the ground
truth caption(s). This accounts for the BLEU-N score where N actually corresponds
to the number of n-grams used while matching. For example, BLEU-3 and BLEU-4
(also referred to as B@3 and B@4) uses 3-grams and 4-grams respectively to match the
generated caption with the ground truth. These are the most used measurements for
evaluating the quality of captions. In practice the logarithm of BLEU score is used [1]:

log BLEU = min(1 − lr
lc
, 0) +

N∑
n=1

wn logpn (1)

where lr/lc corresponds to the ratio between the lengths of the reference caption(s) and the
machine generated caption respectively. wn refers to the positive weights and pn refers to
the geometric mean of the modified n-gram precisions. BLEU is a precision based metric,
it tends to favor shorter captions. To rectify this, a brevity penalty is used (second part
of the equation) which penalizes captions which are shorter than the reference captions.
The BLEU score ranges from 0 to 1 with 0 meaning there is no correspondence between
the ground truth caption and the generated caption and 1 meaning they are exactly the
same.
METEOR: Metric for Evaluation of Translation with Explicit Ordering (METEOR), was
proposed in 2005 to rectify the shortcomings of the precision based metric BLEU. Contrary
to the BLEU, METEOR introduced a recall based evaluation scheme which eradicated
the shortcoming of the exact word matching mechanism of BLEU. In addition to the
exact word matching, METEOR also matches word stems, synonyms and paraphrases.
The METEOR score comprises of uni-gram based precision (P), recall (R) and a F-score.
The precision and recall are combined in the following way [1]:

P =
mcr

mct

, R =
mcr

mrt

, Fmean =
10PR

R + 9P
(2)

Here mcr corresponds to the number of uni grams that were matched in both generated
and the reference captions, mct stands for the uni-gram count in the generated and mrt

is the total uni-grams present in the reference caption respectively. Like BLEU, the
METEOR score also ranges from 0 to 1 with 0 meaning no correspondence to 1 meaning
exact correspondence between the two captions.
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3.2 Final Results

3.2.1 Offline Learning

We report our model’s results using the B@3, B@4, and METEOR metrics described in
Section 3.1. Our model is trained and tested on the regular ActivityNet Captions, which
consists of 100k temporally localized sentences for 20k YouTube videos. The dataset
is split into 50/25/25% parts for training, validation, and testing. Since ActivityNet
Captions is a challenge, the test set is not provided with the ground truth and hence we
will be reporting our results on the validation set. Moreover, the dataset is a collection
of Youtube videos. This means some of the videos have been removed since the inception
of the challenge. Therefore, we only possess 91% of the original training dataset. All
metrics are averaged for every video with temporal Intersection over Union thresholds:
[0.3,0.5,0.7,0.9]. The original evaluation script had a mistake as was discovered by [21].
Henceforth we use the updated evaluation script in our reported results.

Comparison to the State of the Art. We compare our Multi-Modal Transformer
with multi-headed proposal generator to other methods in the literature of DVC [21, 17,
33, 29, 12, 11, 24, 30, 16]. The results of the comparison for captioning both ground
truth and learned proposals are shown in Table 1. Evaluating captioning modules is still
an open research problem and the METEOR metric is only a proxy. Therefore, we omit
the results of certain models that employ Reinforcement Learning (RL) to optimize the
METEOR specifically, especially because any model can be adapted to perform RL after
Supervised Learning (SL). Instead, we report these models’ scores after solely training in
a supervised learning setting.
According to the results, our model outperforms all other models on both ground truth
and Learned Proposals. Although, this is still not a fair comparison since our model uses
only 91% of the training dataset.

Full Dataset GT Proposals Learned Proposals
Available B@3 B@4 METEOR B@3 B@4 METEOR

Mun et al. Yes - - - - - 6.92
Krishna et al. Yes 4.09 1.60 8.88 1.90 0.71 5.69

Li et al. Yes 4.51 1.71 9.31 2.05 0.74 6.14
Zhou et al. Yes 5.78 2.71 11.16 2.91 1.44 6.91

Wang et al. Yes - - 10.89 2.27 1.13 6.10

Teng et al. No - - 11.49 - - 7.65
Iashin et al. No 4.52 1.98 11.07 2.53 1.01 7.46

Rahman et al. No 3.04 1.46 7.23 1.85 0.90 4.93
BMT No 4.63 1.99 10.90 3.84 1.88 8.44

MMT [Ours] No 5.83 2.86 11.72 4.00 2.01 9.43

Table 1: Experimental Results of State of the Art DVC models compared to MMT trained
on ActivityNet Captions on both GT and Learned Proposals
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3.2.2 Online Learning

We evaluate ALTC on the original BMT model [11]. This is due to the concurrent
development of both the improved model and the online learning strategy. Therefore, we
had to use a fixed model to train and test the validity of our Online Learning methods.
We report our model’s results using the B@3, B@4, and METEOR metrics. We use the
ActivityNet Captions dataset with a different split. First we train an offline BMT model
on the full training dataset. Then we split the validation set into a 80/20 split. We
train our model using ALTC on 80% of the validation set and report our results on the
remaining 20%. Since ALTC is a captioning strategy, it is more beneficial to report our
results on the captioning module using ground truth proposals. We additionally compare
our online model to two offline baselines: (1) BMT trained only on the orignal training
dataset, and (2) BMT trained on the original training dataset and 80% of the validation
set.

Ablation Study. We perform an ablation study to show the impact of each component
separately. Our results are shown in Table 2. We can see that the BMT model which is
additionally trained on the 80% of the validation dataset in an offline manner achieves a
METEOR score of 11.12. Our goal would be to be able to match this performance when
we train on the same 80% of the data in an online manner. We can see that our novel
online strategy ALTC shows an improvement over the offline model.
In short, our proposed online strategy, ALTC, not only matches the performance of our
offline learning baseline, but surpasses it.

Method B@3 B@4 METEOR

BMT(offline + Train Set) 4.9 2.3 10.51
BMT(offline + Train Set + 80% Val Set) 5.66 2.71 11.12

ALTC 5.7 2.8 11.23

Table 2: Online Learning Experimental Results

4 Conclusion

In this report, we introduced a novel Dense Video Captioning model, the Multi-Modal
Transformer, that suggests important segments of a video and provides captions for each of
them. Our modal leverages multiple modalities to perform the aforementioned tasks. We
show that our model surpasses all of the current state of the art in dense video captioning
on B@3, B@4, and METEOR scores evaluated on the ActivityNet Captions dataset.
Additionally, we proposed an online learning strategy, Adaptive Long Term Captioning,
that leverages adaptations of architectural, rehearsal, and regularization strategies to
allow the model to adapt to the customer’s needs and continuously learn and improve after
being deployed in production. We show that ALTC not only matches the performance of
offline learning, but, with the added capability of learning new words, surpasses it.
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