
TUM Data Innovation Lab

Munich Data Science Institute (MDSI)

Technical University of Munich

&

Data Reply DE

Final report of project:

Real-time Augmentation of LLM for

Enhanced Document Knowledge Retrieval

Authors Jonas Knupp,
Promwat Guide Angsuratanawech,
Praveen Mohandas

Mentor Antonio Di Turi (Data Reply)
TUM Mentor Dr. Alessandro Scagliotti
Project Lead Dr. Ricardo Acevedo Cabra (MDSI)
Supervisor Prof. Dr. Massimo Fornasier (MDSI)

July 2024

1

Abstract

In the age of information and big data, people and companies face increasing challenges
in managing and utilizing their large amount of data. Effective knowledge retrieval and
processing broad data sources is difficult and lucrative. Employees usually invest a lot of
time looking for relevant details from several sources and a vast amount of files, which
leads to inefficiencies and potentially overlooked information.
This project aims to streamline this process by developing a unified, user-friendly platform
using Retrieval-Augmented Generation (RAG) to enhance knowledge retrieval and assist
in handling internal document collections. This has the potential to significantly increase
productivity, reduce costs, and lead to more informed decision making.
Our project has a serverless backend architecture, being cost-efficient and scalable. Re-
sembling a RAG pipeline, it consists of two main phases: ingestion and retrieval. During
ingestion, raw data is preprocessed, chunked, converted to meaningful vectors, and saved
in a vector database. During retrieval, a query is converted into a vector to identify
relevant data chunks, which are then used by an LLM to generate a response. Our sys-
tem can handle a variety of rich document formats, including PDF, PowerPoint, Excel,
and Markdown. It facilitates a multi-modal pipeline, to handle textual as well as visual
content well. It supports hierarchical chunking, table parsing, and more. Ingestion and
retrieval leverage efficient algorithms like Hierarchical Navigable Small Worlds (HNSW).
The frontend is a single-page application hosted on AWS Lambda, built with modern web
technologies. The system is user-friendly, minimalistic, scalable, and cost-efficient.

CONTENTS 2

Contents

1 Introduction 3
1.1 Motivation and Problem Definition . 3
1.2 Retrieval-Augmented Generation (RAG) 3
1.3 RAG for Request for Proposal . 3
1.4 AWS and Serverless Infrastructure . 4

2 Backend 4
2.1 Ingestion . 4

2.1.1 Rich Document Understanding . 4
2.1.2 Text Extraction and Formatting . 5
2.1.3 Text Chunking . 7
2.1.4 Text Embedding . 8

2.2 Retrieval and RAG . 9
2.2.1 Challenges . 9
2.2.2 Hierarchical Navigable Small Worlds 10
2.2.3 Classical RAG . 10
2.2.4 Multi-Participant Messaging . 11

2.3 Architecture . 14

3 Frontend 14
3.1 Overview . 14
3.2 Tech Stack . 15
3.3 Components Structure . 16
3.4 Progress . 16

4 Results 18
4.1 Use Case: Q&A . 18
4.2 Use Case: Processing RfP Documents . 22

5 Future Work 22

6 Conclusions 23

1 INTRODUCTION 3

1 Introduction

1.1 Motivation and Problem Definition

Effective retrieval and utilization of knowledge from vast data sources is crucial in the
modern business environment. However, employees often spend significant time searching
for relevant data across multiple sources, leading to inefficiencies and potentially over-
looked information. This project aims to streamline this process by developing a unified,
user-friendly platform using Retrieval-Augmented Generation (RAG) to enhance knowl-
edge retrieval and assist in handling internal document collections. This has the potential
to significantly increase productivity, reduce costs, and lead to more informed decision
making.

1.2 Retrieval-Augmented Generation (RAG)

Large Language Models (LLMs) are capable of modeling natural language text by learning
statistical patterns. They can produce human-like text, but the factuality of their output
is not guaranteed, resulting in subtly or drastically wrong responses to potentially critical
questions. Moreover, adjusting the internal knowledge of a generally pretrained LLM
with domain-specific, often changing, and detailed information is challenging. Retrieval-
Augmented Generation aims to address these issues by providing LLMs with contextually
relevant information when needed, hence reducing the probability of wrong answers, al-
lowing citation of trusted sources, and subsequently helping to build user trust.
RAG adds two phases before the LLM-based response generation, ingestion (section 2.1)
and retrieval (section 2.2. During ingestion, data is extracted from files, further pro-
cessed, chunked, and stored, such that during retrieval it can be efficiently searched
through, in order to find relevant chunks for a given query. These chunks are then used
as additional input for an LLM, to generate a response that is supported by the retrieved
information.

1.3 RAG for Request for Proposal

A Request for Proposal (RfP) is an important document created by an organization to
announce and outline the specifics of a project and invite bids from potential contractors
or service providers. An RfP typically outlines the project background, scope of work,
vendor qualifications, proposal guidelines, evaluation criteria, contract terms, and time-
line. Analyzing RfPs and generating good proposal documents is crucial for potential
providers to secure contracts.
Our industry partner for this project, Data Reply, is an international tech consultancy
firm. Typically, they receive 1-2 RfPs per week from various organizations. Due to the
intensive workload required to create a comprehensive proposal, the firm can only produce
one proposal per month. This results in an average of 3-7 missed opportunities each month
to compete in a bidding process, leading to lost business prospects. Being introduced to
this opportunity for improvement while working on our project, we expanded the usage
domain of our RAG chatbot from general Q&A to supporting employees in analyzing
RfPs and drafting parts of proposals based on the company’s internal documents.

2 BACKEND 4

1.4 AWS and Serverless Infrastructure

One objective of our project was to use Amazon Web Services (AWS). This includes using
AWS Bedrock for LLMs and AWS RDS for the database, keeping data from Data Reply’s
clients in an already approved environment. Using AWS also makes it easier to later
handover the project to Data Reply with its extensive expertise in AWS.
Moreover, we aimed for a mainly “serverless” infrastructure, i.e. AWS Lambda. A server-
less computing service executes code in a customizable environment and automatically
manages the underlying compute resources. Unlike alternative hosting approaches, it al-
lows to run code without provisioning or managing servers. Continuous server operation
is not required, and costs are mainly determined by the actually used compute time [4].
This makes serverless architectures particularly advantageous for applications with vary-
ing or long idle times. Hence, for a quite specialized chatbot service with initially unclear
or relatively few requests per minute, this is an interesting direction to explore.

2 Backend

2.1 Ingestion

The ingestion involves extraction of meaningful data from various file types (e.g. PDF,
Powerpoint, Excel, Markdown), as well as further processing and chunking to more man-
ageable pieces of information, and finally converting chunks to meaningful numeric vectors
(embeddings) for later retrieval based on semantic similarity to a query embedding.

2.1.1 Rich Document Understanding

Data Reply has a diverse collection of documents, ranging from simple onboarding guides
to visually rich presentations, as shown in fig. 1.
There are various approaches that try to extract meaningful content from documents
containing complex layouts and relationships between text and visuals:

Dedicated layout understanding model: It aims to detect layouts in order to con-
struct good semantic boundaries, reading order, etc. However, it is can be insuffi-
ciently accurate when dealing with versatile document layouts such as in presenta-
tions.

Convert images to text: By applying an image-to-text model, one can obtain textual
descriptions of images, to be processed further by a text-only pipeline. However, this
approach suffers from loosing details as well as the relationship between images and
surrounding text. Especially for diagrams that consist of many small images and
text elements, like often found in Powerpoint presentations and scientific papers,
processing each element separately would be disastrous.

Convert all to images: A vision-centric pipeline that takes ßcreenshotsöf documents
and then applies an image embedding model (and optionally optical character recog-
nition (OCR)), is one of the most flexible approaches, but with current technology it
can still result in inaccurate text detection, loosing text details in image embeddings,
and slow performance.

2 BACKEND 5

Figure 1: Example documents from Data Reply.

Hybrid of text and full-page images: Similar to the previous approach, no hand-
crafted layout detection or image extraction is performed, and instead each page
is treated as ßcreenshoẗımage. But in addition to that, the computer-readable text
inside a file is also extracted and processed. This hybrid pipeline is more complex to
implement, but allows to benefit from both accurate text processing and overall con-
textual understanding of images and text together. However, the absence of smaller
image chunks might still lead to loosing fine visual details in image embeddings.

We chose a hybrid text and image approach due to its mentioned benefits. This meant the
need for a multi-modal pipeline (fig. 2). Image rendering was done by converting each file
type to PDF (for easier rendering), relying e.g. on LibreOffice compiled inside a custom
Docker image suitable for AWS Lambda, and then rendering each page. Text processing
is more intricate and discussed next.

2.1.2 Text Extraction and Formatting

Challenges Extracting clean text from documents is not always straightforward, de-
pending of the file type. Challenges include:

• Determining a good reading order.

• Formatting elements according to their semantic roles, e.g. headings, tables, etc.

• Excluding less relevant elements like headers, footers, and page numbers, while
ensuring the main content remains intact.

• Detecting and merging text spans that belong together but are split in the file’s raw
data for various reasons.

2 BACKEND 6

Figure 2: Multi-modal ingestion flow.

Milestone 1 We extract plain text from the converted PDFs using the unstructured
library, using the reading order of the raw data in the file. This approach allows a unified
pipeline for all file types convertible to PDF. Moreover, we determine the text length per
page, to assign page numbers to each text chunk later, together with other file metadata.

Milestone 2 Using plain text often makes it hard to understand the semantic role
of different text elements, e.g. headings of various levels, lists, tables, etc. Moreover,
the unstructured library introduces heavy dependencies for some file types, making it
slow to deploy to AWS Lambda. We therefore switched to manually using file-type-
specific libraries to extract text. Doing so allows to better recover the reading order,
using element coordinates, nesting, and metadata. For some file types like Powerpoint
and PDF, headings of various levels are detected based on relative font sizes. Furthermore,
we can format elements based on their role by using Markdown, being understood by most
LLMs, e.g.:

Ti t l e
Sub t i t l e

We can wr i t e ∗∗ bold ∗∗ , [l i n k s] (https : // example . com) ,
and much more , e . g . t a b l e s :

Name	Age
−−−−−	−−−
Al i c e	34
Bob	32

2 BACKEND 7

Milestone 3 We further tuned the text extraction, e.g. allowing multi-line headings,
merging split words, and compacting Markdown to reduce the resulting token count for
LLMs.
We created separate text variants for embedding model and chat model. For the em-
beddings, our goal is to maximize the information density, so we dropped text styling
like bold, italic, etc., and shortened URLs. For the chat model, i.e. the LLM receiving
retrieved text, our goal is to keep all nuances, hence we retained full Markdown styling
and URLs. This dual approach optimizes for each use case, enhancing both embeddings
and post-retrieval processing.
Using only font sizes to detect headings their levels sometimes lead to wrong results. Such
errors can propagate through all later content, resulting in wrong context information and
thus lost retrieval accuracy. We therefore implemented a hybrid heading detection and
alignment: Leveraging PDF metadata if available, we get an accurate table of contents
(TOC). We then find the corresponding text elements in the file content that best fit the
TOC, making use of coordinates provided in TOC metadata. This approach results in
more accurate identification of section headings and their levels, which especially impacts
retrieval accuracy for detailed text documents.

2.1.3 Text Chunking

Challenges The process of chunking is critical because embedding the entire content
of a file at once is impractical as it can result in loss of details and does not facilitate the
retrieval and citation of specific sections. The challenges of chunking include:

• Trading off between providing enough context to maintain meaningful and unam-
biguous chunks (→ larger chunks) and creating compact pieces of information that
are fast to process, allow fine-grained citations, and can be compressed to fixed-size
embeddings without loosing relevant details (→ smaller chunks).

• Recognizing semantic boundaries to split on, which can for instance involve deter-
mining sentence boundaries, including detection of abbreviations and solving other
punctuation-related pitfalls.

• Avoid mistreating chunks out of context, which could otherwise induce false re-
sponses and bad retrieval accuracy.

Milestone 1 We started with chunking via a sliding window, which involves moving a
fixed-size window over the text to create overlapping chunks. While this method is fast
and captures some adjacent context, it does not take semantic boundaries into account,
often splitting in the middle of paragraphs, sentences, or even words.

Milestone 2 We briefly considered semantic chunking via a language model, but due
to performance and cost, we chose a classical software solution: After having text as
Markdown, we parse it into an abstract syntax tree (AST), representing the hierarchy
of elements like headings and paragraphs. We further parse paragraphs into sentences,
words, and word-parts, using regular expressions. (We experimented with small language-
model-based sentencizing, but the performance loss was not worth the added accuracy.)

2 BACKEND 8

The final AST is then split recursively at increasing depth until the chunks fit into a max-
imum chunk size. This keeps sentences, paragraphs, or even chapters intact whenever
possible. Moreover, we include all headings of parent sections per chunk. This increases
the contextual awareness, hence causes more meaningful embeddings, more accurate re-
trieval, and finally better response generation.

Figure 3: Simplified example of an AST.

Milestone 3 Building on our custom pipeline, we made further small adjustments and
expanded the parsing to better support tables and lists. The latter resulted in also
recursively chunking such nested structures, e.g. tables are first chunked by rows, then
columns, then inner elements per cell, until fitting into the maximum chunk size. Crucially,
We keep table headers for each chunk inside a table row/column/cell, similar to how we
do it for section headings, to further profit from the mentioned benefits.

2.1.4 Text Embedding

Challenges Embeddings for texts and images are used to later perform semantic sim-
ilarity search. Embedding-based retrieval provided advantages over classical text search,
like being tolerant to synonyms, formulation variations, and spelling mistakes, and allow-
ing e.g. to search for images by text if text and image vector spaces are aligned. However,
it comes with own challenges and disadvantages, for instance:

• Embedding vectors have a fixed size (e.g. 512, 1024, or 2048 elements), with smaller
vectors being faster to process while larger ones have more capacity.

• Embedding models must be well trained in order to capture meaning. Models for
text have to understand the used languages (in our case: German and English),
and models for images have to understand the provided visual elements (in our

2 BACKEND 9

case: document layouts, text of various fonts and languages, diagrams, etc.). For
instance, image models trained only on photography are not suited for document
understanding.

• Searching for verbatim text phrases is less likely to succeed with embeddings than
with classical/exact text search.

Milestone 1 Due to our multi-modal approach, we chose the “Titan Multimodal” model
to produce embeddings from texts or images in a common vector space, allowing to search
for images by text, which is necessary for our use case. However, the significant issue is
that it primarily supports English, therefore delivering an insufficient retrieval accuracy
for our German content.

Milestone 2 For text retrieval, we switched to the multi-lingual modal “Titan Embed
Text v2”, allowing much more precise German text retrieval. Unfortunately, this model
only supports text, leaving us with the suboptimal “Titan Multimodal” for images. While
the image retrieval accuracy in milestone 1 was better than for text, this switched now.
As reasons, we suspect not only the insufficient understanding of German for the image
model, but also the presence of large amounts of content per image (typically one per page)
rather than smaller, more manageable chunks, as well as the image model’s additional
training objective of considering visual aspects rather than only content-specific details.
We used UMAP [5] as a non-linear dimensionality reduction method to visualize the text
embeddings in 2D, as shown in fig. 4. One might consider the clusters of milestone 1 to be
better separated, but investigating closed, we saw that focused too much on distinguishing
by the high-level topic per file, while the milestone 2 embeddings clustered on more details
rather than superficial aspects.

2.2 Retrieval and RAG

2.2.1 Challenges

Retrieval-Augmented Generation (RAG) is increasingly popular due to its already men-
tioned benefits, but it is not without challenges, e.g.:

• There is an inherent tradeoff between recall and precision during retrieval: Recall
counts the useful retrieved chunks relative to all retrieved chunks, while precision
counts the useful retrieved chunks relative to all useful chunks. Optimizing for high
recall may lead to retrieving more irrelevant information, thus lowering precision,
while optimizing for high precision may result in missing relevant information, low-
ering recall.

• Allowing the user and LLM to control the retrieval should be done in a convenient
and error tolerant way.

• The retrieval and response performance can greatly affect usability. Ensuring that
a RAG system operates efficiently and cost-effectively, while also providing high-
quality results, can be challenging, especially with serverless infrastructure.

2 BACKEND 10

Figure 4: Embedding space visualization using UMAP. Milestone 1 seem to have better
separated clusters, but milestone 2 has more semantically useful clusters. [5]

2.2.2 Hierarchical Navigable Small Worlds

Comparing a query embedding with every ingested embedding is too inefficient for large
databases. Therefore, we leverage Hierarchical Navigable Small Worlds (HNSW) [3], an
approximate nearest neighbor (ANN) search algorithm designed for dense high-dimensional
vector spaces. HNSW provides high efficiency and precision with affordable performance,
making it ideal for our document retrieval needs. The algorithm operates by constructing
a hierarchy of neighborhood graphs from embeddings during ingestion. In the multi-
layered graph, each layer represents a different level of abstraction. The lower layers
connect nodes that are closer together, while the higher layers have sparser connections
linking more distant nodes. This hierarchical approach allows for efficient navigation and
search within large datasets by quickly narrowing down the search area through the lay-
ers, providing a good balance between speed and accuracy in finding approximate nearest
neighbors.
As similarity measure we use negative dot-product. The embeddings are normalized
beforehand, so this is equivalent to cosine similarity. Normalizing during ingestion and
using just dot-product during retrieval further improves the retrieval performance.

2.2.3 Classical RAG

The classical approach to retrieval in RAG systems involves a hard-coded retrieval process
before answer generation. This process is based on the original query or a reformulated
query by a language model (LLM) to incorporate context from previous messages, aiming
to create a standalone query. However, this approach is not very flexible because it
relies on pre-determined rules and does not adapt dynamically to the needs of different

2 BACKEND 11

Figure 5: Rough diagram of Hierarchial Navigable Small Worlds (HNSW).

situations in conversational, e.g. allowing multiple or no retrieval steps per message.

2.2.4 Multi-Participant Messaging

Instead of a fixed pipeline like “query-retrieve-response” per user message, we decided to
treat the user, AI, and knowledge base each as dedicated chat participant. This provides
the flexibility to integrate various services on demand in the future, orchestrated by the
AI. From the perspective of the AI, this is equivalent to tool-use or function-calling, but
for the user interface, we abstract it be more like a multi-participant chat.
Some models like OpenAI’s GPT and Anthropic’s Claude 3 support tool-use natively.
However, different model providers support different APIs and functionalities, and dis-
patching to tools is still the job of the client. We use cross-compatible adapters from
LangChain [2] where possible. On top of that, the tool-use is abstracted into a a custom,
small, and generic concept of multi-participant messaging. It allows arbitrary participants,
full control over execution, and is designed with observability in mind, being asynchronous
and interoperable by middlewares, used e.g. to limit the number of retrieval requests per
user message.

Benefits:

• Full control by LLM, allowing flexible query reformulation. (See e.g. fig. 6.)

• Ability to avoid retrieval if history contains sufficient information, leading to faster
answers. (See e.g. fig. 6.)

• Ability to query multiple times for complex subtask orchestration (although LLMs
usually need good prompting for this to work, or manually implemented subtask
execution concepts, which we do not have done yet).

• Using native tool-use/function-calling allows to reliably guide the LLM to adhere
to a specified argument schema. This can be used to introduce additional retrieval
parameters instead of just using a text query. We support e.g. filtering by files,

2 BACKEND 12

page range, etc. (See e.g. fig. 7.) There is future potential for controlling sorting,
grouping, etc.

• Allows extensions with other tools/APIs, e.g. to add various capabilities in the
future.

Drawbacks:

• More control by LLM means more opportunity for mistakes. Initially, we had rout-
ing of LLM messages to the user or knowledge base based on custom recipient
syntax (like [to ¡recipient¿]), which caused the LLM to sometimes confuse user and
knowledge base. Switching to native tool-use/function-calling APIs eliminated this
weakness since some LLMs are trained for this, but it restricted our choice of LLMs
to such. We therefore rely on Anthropic Claude 3/3.5.

• Letting the LLM invoke retrieval introduces an additional roundtrip, thus increasing
the response time.

Figure 6: Example of message flow in multi-participant messaging with knowledge base
retrieval as LLM-controlled tool.

We apply various techniques to improve and extend the RAG functionality, for instance:

2 BACKEND 13

Message time: Every message from user to LLM includes a prefix with the date/time
it was send, which allows the LLM to correctly convert relative dates/times to absolute
ones in order to produce standalone queries for the knowledge base retrieval.

Chunk metadata: We include metadata like chunk ID, chunk index, file ID/name,
page number, etc. in each retrieved chunk. Together with the retrieval parameters, the
LLM can invoke followup retrieval requests that expand the chunk context. In most
cases however, the LLM currently does not leverage this opportunity, hinting at room for
improving the system prompt.

Citations: The LLM is instructed to accurately cite retrieved chunks for generated
claims by using the chunk ID to create a Markdown link. Clicking this link in the frontend
opens a chunk preview, allowing the user to check and explore sources. This process is
still not perfectly reliable, occasionally generating wrong citations if many chunks were
retrieved.

Figure 7: Example of query filtering

Reranking: After retrieving text chunks based on embedding similarity, an efficient
cross-encoder model can be applied to each chunk together with the query, in order to
obtain more precise scores to further sort and filter chunks by relevance. This reranking
allows to initially retrieve a larger number of chunks while keeping the workload for the
more resource-intensive and slower chat LLM low. In contrast to the LLM, the reranking
cross-encoder does not look at all chunks at once, hence reducing the issue of full attention
having quadratic complexity. Moreover, reranking can be naively parallelized across all
chunks. However, since our project was restricted to only using AWS, and AWS does
not provide a reranking model, we had to host a small reranker via ONNX inside AWS

3 FRONTEND 14

Lambda ourself. This resulted in slow performance, so we decided to disable it and instead
focus on high-quality ingestion and retrieval.

2.3 Architecture

Figure 8: Infrastructure and high-level dataflow of the backend. Image adapted from [1].

Tech Stack:

AWS CloudFormation: Manages infrastructure as code, enabling automated provi-
sioning and configuration of AWS resources, ensuring consistency and ease of man-
agement.

AWS Lambda: Handles serverless compute operations, executing the complete backend
logic using Python without the need to manage servers, ensuring scalability and cost
efficiency.

AWS API Gateway: Manages and exposes (RESTful) APIs, facilitating secure and
scalable communication between the frontend and backend.

AWS RDS (Relational Database Service): Manages the database with PostgreSQL,
configured with pgvector to provide a vector database for storing embeddings.

AWS Bedrock: Hosts LLMs such as Claude 3 for generating responses and Amazon
Titan for embedding texts and images, ensuring fast AI inference.

3 Frontend

3.1 Overview

The goal of this project is to create a web chatbot for internal use at Data Reply. There-
fore, one of the most important elements of this project is the frontend. It is undeniable

3 FRONTEND 15

that no matter how good the backend is, without a good user interface, it will not satisfy
user experience. It is the first thing that users see when they interact with the system.
Therefore, it is crucial to design the frontend to be as user-friendly as possible. We want
to design the frontend to be as minimalistic as possible while allowing users to access
every feature with minimal effort. Our goal is for users to be able to use the system
without any introduction. Moreover, we want to provide flexibility for future feature
additions. There are two hosted URLs: https://chat.datareply.de/, which is the
production branch connected to the tested API and provides only stable features, and
https://chat-dev.datareply.de, which is the development branch that allows devel-
opers to test new, untested features.

3.2 Tech Stack

The frontend is a single-page application hosted on AWS Lambda since we already use the
AWS stack. Here is the list of components we use to create the frontend web application:

React: A JavaScript library for building user interfaces. It allows developers to create
reusable UI components, making the development process more efficient and easier
to manage.

Vite: A modern frontend build tool that offers fast server start, hot module replacement
(HMR), and optimized builds, making development quicker and more efficient. This
tool helps develop and build the source of the web application before it can be hosted
on AWS Lambda. When choosing a build tool, we considered Vite and Next. We
chose Vite since most of our functionality suits client-side rendering, not server-side
rendering (which Next is known for), and we don’t need the backend functionality
from Next.

React Query: A powerful data-fetching library that simplifies fetching, caching, and
synchronizing data. It makes handling the data fetching lifecycle-loading, data, and
error-easier.

Amazon Cognito: Provides authentication, authorization, and user management for
the web app. It stores separate chat histories for different users and ensures only
authenticated users can use the system.

Microsoft Azure: Allows connection to SharePoint, which is the main storage for Data
Reply employees. They can ingest files from their drive into our system and reference
them.

shadcn/ui: Prewritten UI components using Radix UI and TailwindCSS, allowing flex-
ible configuration based on our needs.

React Mentions Lets users use ’@’ to mention files inline with text in a textarea, indi-
cating which files the AI should focus on.

React Dropzone: Enables users to drag and drop files to upload to S3 buckets, which
can be used for asking questions.

https://chat.datareply.de/
https://chat-dev.datareply.de

3 FRONTEND 16

React Markdown: Renders the response message in Markdown format, with different
text styles such as Heading 1, Heading 2, Body, List, etc., making it easy for users
to follow the response.

React Photo View: Allows users to scroll through selected images from files attached
to messages.

Figure 9: Frontend Architecture Diagram

3.3 Components Structure

The frontend is divided into several components, each with its own responsibility. Here
is the structure of the components: The App. layer is the main component that contains
the entire frontend application. Underneath it are AuthContext, which communicates
with AWS Cognito to handle authentication, and React Query, which interacts with our
backend and provides React Hooks for easily fetching data in the child components.
Inside the FileDialog component, we have UploadFileDialog, which makes an HTTP
request to our backend to upload files to S3 buckets and ingest them into our database.
Similarly, SharepointDialog contains ListSharepointFiles, which fetches files from
Microsoft Azure and displays them in the frontend, allowing users to choose which files
to ingest into our system via IngestionConfirmDialog.

3.4 Progress

Milestone 1 The project was handed over from Data Reply with initialized frontend
code using React, but it didn’t meet our needs. We started fresh with a new React
app using Vite. For this milestone, we built core functionality, setting up the app with

3 FRONTEND 17

Figure 10: Component Diagram of App layer

Figure 11: Component Diagram of File Dialog layer

Figure 12: Component Diagram of SettingsDialog and ChatList

essential libraries like React Query, shadcn/ui, and TailwindCSS. We created a login page
using Amazon Cognito and AWS Lambda UI components. We also initialized sidebar

4 RESULTS 18

and chat area components for testing API interactions, including creating, sending, and
deleting chats. Error handling and loading indicators were implemented. We added a
collapsible section in the chat area to show how the final answer was derived, and included
functionality to select custom APIs for testing different backend versions.

(a) Login Page (b) Initalized Chat Page

Figure 13: Achievement from Milestone 1

Milestone 2 After Milestone 1, we presented the app to Data Reply. They wanted it
to generate RfP documents. Since the app was for Q&A style conversations, it wasn’t
suitable for long documents. Therefore, we focused on core features like image references,
file ingestion from SharePoint, full-screen picture preview, and a centralized settings dialog
with theme selection, documentation link, LLM model selection, and a customizable API.

Milestone 3 After Milestone 2, we focused on making the application’s core function-
ality robust. We fixed bugs and added missing features. In Milestone 3, we added the
ability to attach files inline with text sent to the AI, either by selecting a file or typing the
file name with the ’@’ key. We also integrated file ingestion from Microsoft SharePoint,
which was delayed from Milestone 2 due to authorization issues. Users must connect
their Microsoft account to fetch and select files from SharePoint. Lastly, we configured
the backend to respond in Markdown format for easier readability.

4 Results

4.1 Use Case: Q&A

Our final application is an internal chatbot for Q&A. Users log in to access the main
chat page, where they see chat history on the left. They can start a new chat by clicking
“New Chat”, entering a name, and chatting with the AI. For example, when asked for
the contact person of the onboarding document as shown in Figure 14a, the AI provided
correct information, which can be verified via a citation link to review relavant text chunk
as (Figure 14b)

4 RESULTS 19

(a) Asking AI for Contact Person (b) View Relevant Text Chunk

Figure 14: Example of Q&A Use Case with citation link

User can also mention files inline with the text by typing ’@’ followed by the file name
(Figure 15a) or by clicking the plus button to open file dialog to select files. In this
example, we ask for summary of the onboarding document which in this case we specific
a file to focus on by mentioning it inline. Moreover, we also force the AI to reply back in
a table format as shown in Figure 15b .

(a) Inline File Mention (b) Response from Inline File Mention

Figure 15: Example of Inline File Mention

To specify a more specific part of a file, the user can also pick images from files to the
message by clicking the photo icon. In this case, we select two images from Data Reply’s
CV to ask for the strengths it found in both CVs as shown in Figure 16a and Figure 16b.

If retrieved from a database, the response will show what AI asked the Knowledge Base
and what was found in the Knowledge Base. This is in a collapsible section that can
be expanded to view details in a Markdown format, including headings, body text, and
lists (Figure 17a). Users can also see a full-screen file preview by clicking the image
(Figure 17b).

At the bottom of the chat list, the user can press their name to open the settings dialog.
In the settings dialog, the user can change the theme, select the LLM model, and choose

4 RESULTS 20

(a) Select Images from File (b) Response from Selected Images

Figure 16: Example of Selecting Images from File

(a) Expanded Response Details (b) File Preview from Image

Figure 17: Example of Expanded Response Details and File Preview

the API to use (Figure 18a). The user can also click on the Documentation button to
open the documentation page (Figure 18b).

At the top of the chat list, there are Refresh, File, and Create New Chat buttons. The user
can visit the file dialog by clicking the File button (Figure 19a). In the file dialog, the user
can upload files to the system, preview uploaded files, and ingest files from Sharepoint as
shown in Figure 19b.

4 RESULTS 21

(a) Settings Dialog (b) Documentation Page

Figure 18: Example of Settings Dialog and Documentation Page

(a) File Dialog (b) Upload File Dialog

Figure 19: Example of File Dialog and Upload File Dialog

In order for the user to ingest files from Sharepoint, the user must first connect their
Microsoft account to the system (Figure 20a).After that, the user can navigate to the
folder and select the file to ingest (Figure 20b).

(a) Sharepoint Login (b) Sharepoint File List

Figure 20: Example of Sharepoint Login and File List

Remark: Due to non-disclosure agreements, we censored some parts of the screenshots.
The actual application is fully functional and does not contain any censored parts.

5 FUTURE WORK 22

4.2 Use Case: Processing RfP Documents

The application isn’t suitable to generate long documents, but can be used to ask questions
about them. For example, we can ask “Regarding the attachedFile, list 5 Data Reply
employees suitable for position 5.1.” to obtain a list with short descriptions. It can’t gen-
erate entire chapters due to backend and frontend limitations. To create full documents,
we need more precise AI constraints, while current AI responses are too superficial.

5 Future Work

Since this project was limited to three months, it leaves much room for improvements,
for instance:

Extended testing: Due to intricacies of real-world usage, we conducted qualitative eval-
uations by having users use the system and evaluate their responses. Our quanti-
tative evaluation was very small-scale and should be extended to get reliable mea-
surements. In a production environment, a rigorous testing pipeline should be im-
plemented, not only for retrieval and response quality, but also including classical
software unit tests, integration tests, performance tests, end-to-end tests, and more.

Hybrid retrieval: Searching for exact text, e.g. specific formulations, is better done
with a classical text search, leveraging full-text indexing. State-of-the-art retrieval
should therefore aim for a hybrid approach of using classical and embedding-based
search.

System prompt tuning: We encountered that the LLM rarely invokes followup re-
trieval requests. This could likely be addressed to some extend by adjusting the
system prompt. For models that are not trained for complex retrieval, injecting
further instructions after each retrieval could lead to better behavior.

Subtask orchestration: By letting the LLM split complex tasks into subtasks, and
focusing on each of them individually, might lead to better responses overall. For
instance, applying a subworker per retrieved chunk can be seen as generalization of
reranking, and allows a per-chunk action, e.g. discarding the chunk, recursing by
issuing followup queries, or returning a summary to the parent worker.

Fine-grained knowledge extraction: Extracting triples (e.g. subject, predicate, ob-
ject) from larger text/images chunks to build a detailed knowledge graph can lead to
more precise relational retrieval. However, on our documents this approach tended
to loose nuances of complex content. Moreover, it was challenging to unify syn-
onyms for predicates/terms/formulations/etc. across processed document chunks.
As alternative, and inspired by the attention mechanism of modern AI models,
we experimented with generating just natural language question-answer pairs from
documents, to be embedded and retrieved as usual. Our early tests seem promising.

Streaming responses: The more complex the work by the LLM gets, the longer is the
waiting time for the user. A future development of our chat system should therefore

6 CONCLUSIONS 23

implement the de-facto standard user experience of streaming responses/subtasks
as they get generated.

File versioning: Reingesting files should not invalidate previous citations and conversa-
tions about older versions. We therefore see it as an important future work to have
a file versioning system that adheres to immutability of history.

RfP document generation: Our current chat app is not well suited to generate and
iteratively refine long documents like proposals to RfPs. Future development might
improve this by providing a more collaborative editing experience and more control
over what and how to generate.

6 Conclusions

This project has successfully developed a unified, user-friendly platform using Retrieval-
Augmented Generation (RAG) to enhance knowledge retrieval and assist in handling
internal document collections at Data Reply. The system has demonstrated several im-
pressive capabilities:
The ingestion pipeline is highly capable, handling a variety of rich document formats
including PDF, PowerPoint, Excel, and Markdown. It leverages efficient algorithms like
Hierarchical Navigable Small Worlds (HNSW) to preprocess and index the content, en-
abling fast and accurate retrieval later on. The ingestion pipeline supports hierarchical
chunking, table parsing, and other advanced techniques to extract meaningful content
from complex documents.
The retrieval process is also highly flexible, allowing the Language Model (LLM) to dy-
namically control and refine the queries sent to the knowledge base. This multi-participant
messaging approach provides great control and extensibility, enabling features like avoid-
ing redundant retrieval if the chat history already contains sufficient information. The
system also supports advanced retrieval parameters like filtering by file, page range, etc.
to further narrow down the search.
The overall system architecture is designed to be serverless, cost-efficient and scalable,
leveraging AWS services like Lambda, RDS, and Bedrock. This makes the platform very
flexible and suitable for a specialized chatbot service with varying usage patterns. The
frontend is a single-page application that provides a clean and intuitive user experience.
In summary, this project has delivered a powerful knowledge retrieval platform that can
significantly improve productivity, reduce costs, and lead to more informed decision mak-
ing at Data Reply. The system’s advanced capabilities in document ingestion, retrieval,
and response generation, combined with its efficient and scalable architecture, make it a
valuable tool for the company.
As an additional proof of concept, we used our app to generate this conclusions chapter.

REFERENCES 24

References

[1] Best Practices in Retrieval-Augmented Generation. url: https://gradientflow.
substack.com/p/best-practices-in-retrieval-augmented (visited on 07/19/2024).

[2] LangChain: Use Cases and Tool Use. url: https://python.langchain.com/v0.1/
docs/use_cases/tool_use/ (visited on 07/14/2024).

[3] Yury Malkov and Dmitry Yashunin. Efficient and Robust Approximate Nearest Neigh-
bor Search Using Hierarchical Navigable Small World Graphs. 2016. arXiv: 1603.
09320 [cs.IR]. url: https://arxiv.org/abs/1603.09320 (visited on 07/17/2024).

[4] Serverless Retrieval-Augmented Generation on AWS. url: https://aws.amazon.
com/startups/learn/serverless-retrieval-augmented-generation-on-aws

(visited on 07/19/2024).

[5] UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.
url: https://umap-learn.readthedocs.io/en/latest/ (visited on 07/19/2024).

https://gradientflow.substack.com/p/best-practices-in-retrieval-augmented
https://gradientflow.substack.com/p/best-practices-in-retrieval-augmented
https://python.langchain.com/v0.1/docs/use_cases/tool_use/
https://python.langchain.com/v0.1/docs/use_cases/tool_use/
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://aws.amazon.com/startups/learn/serverless-retrieval-augmented-generation-on-aws
https://aws.amazon.com/startups/learn/serverless-retrieval-augmented-generation-on-aws
https://umap-learn.readthedocs.io/en/latest/

	Introduction
	Motivation and Problem Definition
	Retrieval-Augmented Generation (RAG)
	RAG for Request for Proposal
	AWS and Serverless Infrastructure

	Backend
	Ingestion
	Rich Document Understanding
	Text Extraction and Formatting
	Text Chunking
	Text Embedding

	Retrieval and RAG
	Challenges
	Hierarchical Navigable Small Worlds
	Classical RAG
	Multi-Participant Messaging

	Architecture

	Frontend
	Overview
	Tech Stack
	Components Structure
	Progress

	Results
	Use Case: Q&A
	Use Case: Processing RfP Documents

	Future Work
	Conclusions

