TUTI

TECHNICAL UNIVERSITY OF MUNICH
TUM Data Innovation Lab

Resource Forecasting for Satellite Operations
using Multivariate Time Series Data

Authors Maria Hanna, Felix Mujkanovic, Guido Sasahara,
Maresa Schroder, Oscar Axel Vargas Salomén
Mentors Dr. Clemens Schefels, M.Sc. Leonard Schlag

German Aerospace Center (DLR)
Co-Mentor ~ M.Sc. Philippe Siinnen
Project Lead Dr. Ricardo Acevedo Cabra (Dept. of Mathematics)
Supervisor Prof. Dr. Massimo Fornasier (Dept. of Mathematics)

Feb 2021

Abstract

In this project, we investigate multivariate time series forecasting methods for the pur-
pose of estimating the future consumption of resources onboard satellites of the German
Space Operations Center, with the ultimate goal of easing resource planning for satellite
operators. This forecasting task requires the incorporation of past data, as well as com-
mands sent to the satellites during the forecasting time frame. Multivariate time series
forecasting is a continuously evolving area of research. While the field was traditionally
dominated by purely statistical methods, a variety of modern machine learning methods
have gained popularity in the past few years. However, only few of them are versatile
enough to fulfill our three key requirements: 1) using multivariate series, 2) forecast-
ing over a longer time horizon, and 3) leveraging known future inputs. We perform an
in-depth literature survey of commonly employed as well as very specialized methods,
resulting in the further examination of four promising approaches from different research
domains. A comparison between the models and a statistical baseline method shows that
two of the investigated models employing neural network architectures — Temporal Fusion
Transformers and ANFIS — achieve the lowest forecast errors across different time series,
history sizes and prediction lengths. Thus, we conclude that these two methods are best
suited to support resource planning for the German Space Operations Center.

Contents

[Abstract]

(1__Introductionl
(1.1 ~ Problem Definition and Goals ot the Project|
(1.2 Approachl

2 Data Exploration|
I2|l l]i!!z! :‘2§:l| -------------------------------------

[2.3 Parameter Interdependence| oo oL
[2.3.1 Principal Component Analysis|
2.3.2 Pearson Correlationl.

2.4 Data Samplingl
41 Overviewl e e e e e e e
[2.4.2 Sampling Rates| o0

[2.5 Data Preparation| oo

[3 Survey of Forecasting Methods|

[3.1 Classic Machine Learning With Prior Data Transtormation|
(3.2 Deep Learning|.
[3.2.1 Advanced Seq25eq Architectures|
[3.2.2 Probabilistic Time Series Forecasting|
[3.3 Classical Statistical Forecastingl
[3.3.1 Autoregressive Models| o000
[3.3.2 Exponential Smoothingl.
[3.3.3 Spectral Analysis|
[3.4 Hybrid Models|o
[3.4.1 Exponential Smoothing RNN|
[3.4.2 Introduction to Wavelet Hybrid Models|.
.43 Wavelet-ARIMAl
[3.4.4 Advanced Wavelet Approaches|.
[3.4.5 Wavelet Temporal Conditioned Normalizing Flow|
[3.5 Fuzzy Time Series Forecasting
BT ANTFIS
[3.6 Summary|

[4 Experiments|
M1 Baseline ARIMAI
[4.2 Temporal Fusion Transtormer|
[4.2.1 Implementation and Training|

[4.3.3 Nextsteps|. 20

4.4 Wavelet Normalizing Flow| 20
[4.4.1 Implementationl 20

442 Results and Future Workl.o 20

4.5 ANFISI 21
[4.5.1 Interpretability| oo 22

[4.5.2 Training, Results, and Future Work| 23

[4.6 Model Comparison| 24
©__Conclusionl 25
(Bibliography| 26

[Appendix A — Pre-Implementation Approach Evaluation|

[Appendix B — Breakdown of the MSE Results|

1 INTRODUCTION 1

1 Introduction

1.1 Problem Definition and Goals of the Project

The German Space Operations Center (GSOC) at the German Aerospace Center (DLR)
operates a number of low Earth orbit and geostationary satellites for Earth observation.
These satellites fulfill tasks for both scientific and commercial stakeholders.

Satellites are characterized by limited resources shared among numerous instruments and
tasks. In addition, resource depletion, for example an empty battery, can lead to loss
of the satellite. Therefore, resources have to be carefully managed. However, real-time
resource control is not feasible, as contact to the ground station is only possible for a few
minutes every time the satellite passes over the same location for most of these satellites
flying in low Earth orbit. This means that resource usage between those communication
time windows has to be determined in advance. Furthermore, manual resource control
by human operators would require significant manpower and attention. In this complex
context, automated resource planning is crucial for smooth operation. Currently, the
resource planning system deployed at GSOC is based mainly on physical simulations set
up by experts. While this approach has proven to be successful in operation, it requires
expert knowledge and careful tuning based on past experience with each particular type
of satellite.

GSOC’s satellites record more than 70,000 telemetry parameters, i.e. the values recorded
by various instruments onboard the satellites, such as attitude determination components,
allowing the opportunity to leverage this data. The main purpose of this project is the
exploration of various data analysis techniques to investigate which methods may have
potential to optimize resource forecasting for GSOC’s satellites.

More specifically, we will use multivariate time series data from both telemetry parameters
and command parameters, i.e. commands sent from the ground station that modify the
satellites’ behavior, to forecast the behaviour of individual parameters (resources) relevant
for the satellites’ operations. The minimum forecast horizon of three hours is given by
the shortest possible time span between real-time communication slots with the satellite.
We will research both traditional statistical and modern machine learning (ML) methods
for multivariate input / univariate output time series prediction and evaluate them using
task-specific benchmark data. The data we will operate on is retrospective data from one
GSOC satellite collected over the span of around 3 years.

Major challenges we will have to overcome are meeting the requirement of conditioning
the forecast on known future commands, which will be sent to the satellite during real-
time communication, as well as the unusual representation of the command parameters
as time series. Further challenges include our relative lack of insight into GSOC'’s satellite
operations amplified by data secrecy requirements, the large number of possible algorithms
and input parameters, the absence of a clear evaluation metric, and the relatively long
time for which the forecast has to be sufficiently accurate.

1.2 Approach

As with any data project, we will first analyze the structure, shape, and statistics of the
data. How does the data look? How are the samples distributed in time? How typical are

2 DATA EXPLORATION 2

periods of missing data? Are all features available at all times? Are there outliers? Are
there obvious correlations between features? Do the statistics already unveil important
characteristics of the data?

Our answers to questions like these will in the next stage guide our comprehensive liter-
ature research and help us in deciding which time series forecasting methods are viable
regarding the data, which performance evaluation metric is right for our task, whether
we need additional data imputation, and so on. In the end, we aim to choose around five
state-of-the-art techniques or combinations of techniques from various distinct sub-fields
of ML for further investigation. By spreading our options and, for example, not only in-
cluding narrow domain-specific approaches tailored to time series, but also general learners
such as neural networks, we aim to maximize our chances in finding a well-performing
predictor.

In the next stage, each of us will implement and evaluate one or two methods. This
work will certainly not be independent, as many challenges in ML tend to consistently
arise, including the need for data cleansing, data transformation to purely metric form,
data imputation, and so on. We may also go back to the research stage in case we find
our approaches are severely lacking performance. Based on this, we will document each
method’s general suitability to the task, our approach to its implementation, challenges
that arose and our solutions to them, and finally its overall forecasting performance.

2 Data Exploration

In this section, we take a first look at the data and its structure. The full results can be
found in the data exploration notebook.

2.1 Data Set

We are provided with data from 1094 consecutive days from one GSOC satellite. While the
satellites record more than 70,000 parameters, our data set contains only a small subset of
11 telemetry parameters and 13 command parameters, which have been identified by DLR
experts as most relevant. In total, this results in around 150 million unique (parameter
value, time stamp) pairs. Due to security reasons, the data set was anonymized by the
DLR in advance.

Telemetry parameters are denoted by the prefix Param, while command parameters are
denoted by CParam. The parameters are divided into logically related groups, denoted by
the letter T.

2.2 Individual Parameter Behavior

From Figures [I| and [2] as well as basic statistical measures (number of samples, mean,
range, standard deviation) and plotting of spectrograms, we can see that most of the
non-command parameters share the same periodicity (likely the duration of an orbit) and
are mostly stationary. The nominal ranges, means, and variances of all non-command pa-
rameters differ yet are close-by, even though some series contain singular outlier samples.
Most the command parameters do not exhibit periodicity. Some of the command param-
eters have metric values, while others are of categorical nature, sometimes with few and

2 DATA EXPLORATION 3

— Param_T1.1 — CParam_T1.1
N A A A A A VA A YA A G VAV Wl st sy bl) L || — cremTi
—— Param_T2_1 CParam T2_1
15 —— Param T2.2 — CParam T2.2
— Param 123 E h E [! ! DE! E — CParam_T2.3
10 CYVRITRERAERE ¥ ~ IBEIRN | — param T2.4 — CParam_T2.4
— Param_T2.5 — CParam_T3_1
— Cparam _T3.2

V
5 —— Param_T3_1
L ']; ']: = 1; 404 ,]: = H: ']1; qﬁ '] il —— Param_T3_2 -l CParam_T4_1

o Param_T4_1 CParam_T4_2
s B —— Param_T4_2 — CParam_T4_3
- — —— CParam_T4_4
. AT T T Tt oot
240 242 244 246 248 250 252 254 256 258 260 262 264 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Hour Day

Not to scale

Figure 1: Plot of all non-command param- Figure 2: Plot of all command parameters

eters over a single day. over 20 days.
A NHNMS 0 A NN HININlmleHINIHINlmlqlml
PCA graph of variables N N UNTNSOMORON ayay sy Ay ALY g A

[A Y S U A
||||||'_|}_|'_|}_|'_|E

~
EEEEEEEEEEE
COCOCOOCOOOOO©
g G G G Gl S Gl S
© ©@© O OO OO OO O
[W« W W W M W« M WY W WY

L

Dim 2 (16.34%)
+ CParam
+ CParam
+ CParam
+ CParam
+ CParam
+ CParam
+ CParam
+ CParam
+ CParam
+ CParam
 CParam

Param_T
Param_T
Param_T.
Param_T.
Param_T.
Param_T.
Param_T.
Param_T.
Param_T.
Param_T.
Param_T.
CParam_T1
CParam_T1_2 A
CParam_T2_2 A
CParam_T2_3
CParam_T2_4
CParam_T3_1 A
CParam_T3_2 4 [|
CParam_T4_1 A
CParam_T4_2 -

1
2
1
2
3

4

ABWWNNNNNE -

5
1
2
1
2 4
1

CParam_T4_3 A

CParam_T4

-1.0 05 0.0 05 10 CParam_T4_5 A
Dim 1 (27.61%)

Figure 3: Principal Component Analysis of Figure 4: Pearson Correlations between the
samples of pairs of time series. Positive cor-

all parameters and commands.
relations are blue, negative ones are red.

sometimes with a large number of states, whose ordinals sometimes also extend to very
high numbers. As such, the nominal ranges, means, and variances of the command pa-
rameters differ greatly. Additionally, there are large differences in the number of samples
among the command parameters. Finally, CParam_T2_1 is always 0 and can therefore be
removed from our data set.

2.3 Parameter Interdependence
2.3.1 Principal Component Analysis

Figure |3 shows the results of a Principal Component Analysis performed jointly for both
command and non-command parameters. The variance captured by the first two PCA
dimensions is highly significant, indicating a meaningful result. We observe that some
sharp cliques form, while other parameters are only loosely connected. We may assume
that the following sets of parameters are strongly connected: non-command parameters
T3_1 and T2_2; non-command parameters T1_1, T1 2, and T2_5; non-command parame-

2 DATA EXPLORATION 4

(1) P21, C32 (2) P23, P41, C11, C31 (3) P11, P24, P25 (4) C22, C41,C43

P | oo vl | B
‘ S e e

Time Time Time Time

Not to scale

Figure 5: Exemplary correlated series. Non-command parameters are blue and command
parameters are orange. The parameter names are listed from top to bottom.

ters T2_2 and T2_4 and command parameters T1_1 and T1_2; non-command parameters
T4_1 and T4_2 and command parameters T2 2, T2_3, T2 4, and T4_3.

2.3.2 Pearson Correlation

Next, we computed the Pearson Correlations of a 100-day sub-series and plotted them
(Figure . We find that a lot of parameters are redundant, visualized by the dark blue
2 x 2 squares along the diagonal. Param T2 4/5 are even the inverse of each other. Apart
from that, there are various correlations within the non-command and the command
parameters, but there are only few strong correlations between the two groups.

We illustrate the correlations by plotting some of the correlated time series in Figure [f]
In plot (1), we can see a command parameter and a non-command parameter that are
highly correlated. Plot (2) shows two command parameters that are inversely correlated,
and two non-command parameters that are correlated with both of the command param-
eters. In plot (3), the lower two non-command parameters are nearly inversely equivalent
to each other. The top parameter is highly correlated, but it seems that there is no
causation between the top two parameters, and instead the correlation is just caused by
both parameters depending on the orbit seasonality. In plot (4), we see three command
parameters that are somewhat correlated.

2.3.3 Auto-Correlation and Cross-Correlation

In the final step, we examined auto-correlations of the parameters and cross-correlations
between the parameters and the commands. These statistics are an important tool to
understand interdependence between time series.

We employ auto-correlation to detect periodicity. Non-command parameters T1_1, T1_2
and T2_1 do not show any auto-correlation. All other non-command parameters show
auto-correlations on various lags. Especially non-command parameters T3_1 and T3_2
are continuously auto-correlated with decreasing trend up to lag 31. The non-command
parameters T4_1 and T4_2 show a continuously decreasing auto-correlation up to lag 7.
As depicted in Figures [6H9] command parameter T2.4 exhibits strong periodic cross-
correlation with non-command parameters T2_1, T2_3, T2.5, T4_1, and T4_2, which is
highly correlated to T4_1. Other parameter pairs do exhibit only slight or no periodic
cross-correlation with varying period lengths.

Summing up, we see that there are indeed immediate correlations in the data that should
be quite easy for a machine learning model to learn. Some of them may be a result
of underlying causation, while others are most definitely only correlations. We stop the

2 DATA EXPLORATION)

data_file_peal, “CParam T2_4°] & data_fle_peal, "Param_T2_1°] data_lo_peal, "CParam._T2_4"] & data_fle_peal, "Param_T2_3'] data_tlo_peal, "CParam_T2_4] & data_fle_peal,"Param_T2_5'] data_flo_peal, "CParam_T2_4] & data_fl_peal,"Param_T4_1°]

It

‘ ¢ 'r‘v'l\]‘u‘w flﬂi ”llIJMI HMWVLH

Figure 6: P21, C24 Figure 7: P23, C24 Figure 8: P25, C24 Figure 9: P41, C24

92 w1 w02 0
nee
02w 02

Param_T1
Param_T1
Param T2
Param_T2
Param T2
Param_T2_/
Param_T2
Param_T3_}
Param T3
Param_T4_
Param T4
CParam_T1.
CParam_T1.
CParam T2
CParam_T2.
CParam T2
CParam_T2.
CParam T3,
CParam T3,
CParam_T4
CParam_T4,
CParam T4,
CParam T4
CParam T4,

Param_T
Param_T:
Param_T.
Param_T:
Param_T2_
Param_T2_.
Param T2
Param_T3_;
Param_T:
Param_T4_]
Param T4
CParam _T:
CParam _T:
CParam_T:
CParam_T:
CParam_T2_
CParam T2/
CParam_T3_
CParam_T3_;
CParam_T4__
CParam_T4_
CParam_T4_
CParam T4,
CParam_T4.¢

Tl a oo e a N e e T e o e s e e

AR A INNNR AR R ERRRRR AR
BB SR WO NSNS) ! (
sl I e R o s e e s e

1 12

0 121 243 365 486 608 730 851 973 1095 10
Day

Figure 10: Sampled data points of all pa- Figure 11: Sampled data points of all pa-
rameters over the whole time span. rameters over a span of two days.

correlation analysis at this point because further insights should be generated by the
machine learning models, rather than manually acquired.

2.4 Data Sampling

Sampling rate is a key hyperparameter in time series analysis, and therefore requires
careful selection. In order to make an informed decision, we first have to analyze how the
data set is sampled, i.e., which intervals lie between consecutive observations.

2.4.1 Overview

To gain an overview of possible gaps in data, we visualize the sampled data points over
the whole data set. As can be seen in Figure [I0] there is a group of command parameters
that has several larger gaps in the data.

A more detailed look at a shorter range of two days (Figure clearly demonstrates
that while all parameters vary in their sampling rate over time, the sampling rates across
different parameters peak at similar times. Furthermore, we observe that the command
parameters with the missing data are sampled less frequently in general than the other
parameters.

2.4.2 Sampling Rates

In general, we observe that time stamps (and therefore the sample intervals) are charac-
terized by some measuring variance, so discretization may be useful.

We can assign the parameters to four distinct groups regarding their sample frequency.
We used these groups to gain a more detailed view on how the sampling intervals vary
within this data set:

2 DATA EXPLORATION 6

e Group 1 (all non-command parameters, CParam_T1, CParam T4 4 and T4.5):
Through discretization over the intervals, we clearly see that three main sampling
rates are used: 30 seconds, 1 second, 0.5 seconds. Only 157 of around 50.000 inter-
vals between consecutive samples differ.

e Group 2 (CParam_T2 and CParam_T3_2 through CParam_T4_3): The standard
sampling interval for this group seems to be 78 seconds. A few times each day, data
is sampled every 6 seconds.

e Group 3 (CParam_T3_1): The sampling times are largely similar to group 1. How-
ever, this parameter is sometimes sampled in very short succession, which differen-
tiates it from the others.

From this analysis, we can derive some possible relations between the sample intervals
and the commands:

e CParam_T3_1 only occasionally takes on values other than 4, and is the parameter
that is occasionally sampled in rapid succession; this may suggest that the exact
timing of the switch is of crucial interest, which may affect our choice of sample
rate.

e The control parameters that can take many different values are all in the group that
gets sampled less frequently (however, that sampling group also contains the binary
CParam_T3_2).

In order to be able to make an informed decision on an appropriate choice of sampling rate,
two questions may demand further exploration: First, we may have to further look into the
relation between increased sample frequency and the telemetry parameters. Furthermore,
deeper investigation may be required to confirm or disprove our assumed relation between
sample frequency and command parameters.

2.5 Data Preparation

As discussed in Section two main issues had to be resolved before we could start
applying forecasting models to the data set: 1) the varying sampling rate and 2) gaps in
the data. Furthermore, we had to decide on a history size (i.e., how much past data to
use for a forecast) and a forecasting horizon (i.e., how long the forecast should be).
Different models require different history sizes for optimal performance, so we chose to
try our models on two history sizes: 3 hours and 12 hours. Due to the relatively short
periodic behavior of the command parameters, we expect that even longer history sizes
would not benefit the forecasting performance and may instead lead to worse predictions
due to overloading the models with irrelevant data.

The minimal acceptable forecasting horizon according to DLR requirements is 3 hours,
which roughly equates to two orbits. Therefore, this was our chosen forecasting horizon.
We used a sliding window approach to determine how to partition the data into samples.
We slide the window by the length of the forecasting horizon in each step: for a forecasting
horizon of 3 hours, each window starts 3 hours apart. This guarantees that no time point
is included in the test data more than once.

3 SURVEY OF FORECASTING METHODS 7

As some of our chosen models require the intervals between time steps to be constant, we
had to resample the data to a constant sampling rate. After discussions with the DLR,
we decided that no deeper investigation into the questions raised in Section was
necessary; selecting a reasonable constant sampling rate was sufficient.

As shown in Section [2.4.2] every parameter is commonly sampled at a rate of once every
30 seconds or more. Therefore, the lowest reasonable interval is 30 seconds, which is
the first resolution we investigated. This rate requires forecasting 360 steps to obtain
a forecast of 3 hours, which may be too difficult for some models. To account for this
issue, we additionally work with sampling intervals of 180 seconds and 600 seconds, which
greatly reduces problem complexity.

We applied linear interpolation to the real-valued parameters during resampling; however,
categorical parameters required a different approach. As we assume any changes in those
parameters to be relevant to the forecast, we apply the following strategy: If the value
changes between two of the resampled time steps, we set the new value in the already
first step to make sure that the models can recognize that this change happened before
the second step. As we are not able to account for multiple changes between two time
steps without introducing additional categories, we do not handle this case, but instead
only use the first change.

Gaps in the data can cause inaccurate interpolation and therefore poor prediction perfor-
mance. Therefore, they have to be removed. We decided to use 180 seconds as a threshold
to determine a gap: if two samples are more than 180 seconds apart for any parameter,
we do not use any samples from that time frame. Therefore, we obtain data that is not
continuous, but has no gaps within each continuous (i.e., gap-less) interval.

We use the first 80% of the data for training and validation; the final 20% are held out
as test set that is only used for performance evaluation at the end.

3 Survey of Forecasting Methods

Most traditional time series forecasting methods do not directly lend themselves to our
special challenges, that is, (a) the multivariate data, (b) the exogenous variables (com-
mand parameters are available during the forecasting horizon), and (c) the long forecasting
horizon. Hence, we conducted an extensive literature survey to identify methods from var-
ious research fields that are most suitable to our challenge. In the following, we will first
present the most promising approaches from the literature and put them into context.
Concluding this chapter, we then summarize the strengths and weaknesses of each model

in Section [3.6

3.1 Classic Machine Learning With Prior Data Transformation

This approach is the most straightforward one. We just interpret a fixed-size history
of the time series as a feature vector for a traditional machine learning (ML) model
such as k-nearest neighbors, decision tree, neural network, or Support Vector Machine
(SVM). The model then forecasts a small, fixed-size forecasting horizon. We may apply
the model iteratively to achieve any forecasting horizon. A straightforward extension is
to use one or more transformations to transform the history to a fixed-size vector, and

3 SURVEY OF FORECASTING METHODS 8

then use that vector as the feature vector. There is an abundance of time series-specific
transformations available in the literature, including the Wavelet, Shapelet, WEASEL,
Tsfresh, and Catch22 transformations.

This approach trivially supports all of our special challenges. It uses proven and highly
optimized traditional ML models and allows to easily incorporate research on time series
feature extraction. Also, if the ML model is easy to interpret, the whole forecaster will
be mostly easy to interpret. However, all this comes at the cost of not considering the
temporal structure of the data, which is crucial to prediction accuracy. Therefore, we will
not pursue this approach.

3.2 Deep Learning

Deep neural networks (DNNs) are multi-layered artificial neural networks aimed at learn-
ing abstract representations from data through an iterative optimization process called
backpropagation. Due to their flexibility and prediction strength, they have become
popular tools for many applications, one of which is time series forecasting [12]. Deep
learning approaches to multi-step time series forecasting can generally be classified into
two types [12]:

e Iterative methods predict one step at a time and use each output as an input to the
next step. Typically, they use the same model weights in every step. This reduces
computational complexity, but limits their flexibility.

e Direct methods predict the full output vector at once. Therefore, they require large
amounts of training data, increasing with the length of the prediction, but are more
flexible in dealing with inputs of various structure.

LSTM Encoder LSTM Decoder

Decoder Outputs

==ns

Decoder Inputs

r.

st sl st st
| 1 T 1

‘ Encoder States)

Figure 12: Exemplary overview of an Encoder-Decoder architecture.

We require model flexibility to include known command parameters during the forecasting
horizon, which iterative methods cannot provide. For this reason, we have to use a direct
method. Their general form is a sequence-to-sequence (Seq2Seq) network (as illustrated
in Figure . In the first step, the whole input sequence is encoded using a neural
network. The output of the encoder is then decoded using a second neural network
that accepts additional inputs at each steps [12]. Typically, the network used in this

3 SURVEY OF FORECASTING METHODS 9

architecture is a type of recurrent neural network (RNN), as RNNs are by their design a
natural fit for processing sequential data: each cell contains a memory of past information
that is updated iteratively as the the inputs are processed. A commonly used RNN
architecture is long short-term memory (LSTM), which is better at learning longer-range
dependencies [7]. Tt is possible to use other types of units for the encoder-decoder design,
such as convolutional neural networks (CNNs), which are useful for spatial prediction and
classification. As we work with temporal data, which is sequential in nature, we expect
an RNN-based architecture to be best suited for our task.

3.2.1 Advanced Seq2Seq Architectures

While simple Seq2Seq architectures have shown moderate success in time series forecast-
ing, they tend to struggle to model dependencies between outputs and known future
inputs, particularly if the forecasting horizon is long [4]. In the past few years, several
additions to the architecture have been proposed to solve this challenge.

Attention mechanisms learn important temporal dynamics, allowing the network to di-
rectly focus on significant time steps in the past |20, [13]. Graph neural networks are
networks that typically leverage known graph structures to more accurately learn depen-
dencies. In the domain of time-series forecasting, a separate network can be trained to
learn graph-like dependencies between variables, allowing the forecasting network to use
this knowledge [26]. A popular method to improve interpretability of results is to gen-
erate quantile forecasts that show the uncertainty of predictions instead of single-point
forecasts |4, |13].

The Temporal Fusion Transformer [13] is a Seq2Seq architecture that includes several
of the additions outlined above, such as attention mechanisms and quantile forecasts.
Furthermore, the architecture includes variable selection networks at each step, which
further improves interpretability. For these reasons, we choose this as our Seq2Seq model.

3.2.2 Probabilistic Time Series Forecasting

Probabilistic time series forecasting aims at predicting the probability distribution of a
time series. Since methods forecasting a single point instead of a distribution disregard
the risk caused by high noise in the data, probabilistic forecasting is a very powerful tool
when uncertainty is high. Normalizing flows map the complex distribution of the data
to a commonly known and simple distribution by sequentially employing bijections and
invertible functions. The original density of the data can then easily be expressed in terms
of this simple distribution via the change of variable formula [18]. Deep learning models
for probabilistic time series forecasting based on conditional normalizing flows [18] are
capable of modelling conditional multivariate dynamics of time series, thus incorporating
interaction effects and statistical dependencies in between the separate series. These
Temporal Conditioned Normalizing Flows are suitable for our purposes, since they allow
for estimating the distribution of the parameter of interest conditioned on the command
parameters.

3 SURVEY OF FORECASTING METHODS 10

3.3 Classical Statistical Forecasting

Classical statistical methods serve as a standard approach towards data modeling. Al-
though they are more and more often replaced by more powerful approaches capable of
recognizing richer patterns, the statistical methods tend to offer better interpretability
and require less data. Motivated by this, we first study the most widespread classical
methods. Later, in Section [3.4.3) we augment them with non-statistical extensions to
improve model performance and obtain hybrid models which are suitable to our task.

3.3.1 Autoregressive Models

Autoregressive models make predictions based on lagged data, i.e., past information con-
tained within the series. One of the most well-known statistical time series forecasting
methods is the Autoregressive Integrated Moving Average (ARIMA), which consists of
three main components. The autoregressive framework predicts the variable of inter-
est employing a linear combination of lagged values. The integrated part of an ARIMA
model removes non-stationarity by learning the derivative order needed such that the data
shows constant variancd'} Finally, the Moving Avarage scheme uses past forecast errors,
similarly to the autoregressive technique, for predicting the variable of interest.

Further modifications can be applied in order to suit the data better, e.g., for data that
is already stationary, the integrated part is not required, so an ARMA model is used.
For forecasting multivariate data, as in our project, an extension such as ARIMAX or
Regression with ARIMA errors is appropriate. Both methods employ features (covariates)
in order to help to improve the model fit. The two methodologies differ in the way the
exogenous variables are added into the model. The ARIMAX model simply adds the
covariates. A key disadvantage is the difficulty of interpreting its coefficients: they can
only be interpreted conditional on the value of previous values of the response variable. On
the other hand, a regression with ARIMA errors models a standard ARIMA over the data;
it tries to explain the forecasting errors in terms of the covariates. Intuitively speaking, its
objective is to capture the patterns that the lagged values could not find while predicting.
Here, the features’ parameters can be directly interpreted, like in regression modeling.
Lastly, we studied seasonality ARIMA models. This approach considers a seasonality
component over all the terms of the normal ARIMA model. The seasonal part of the
model consists of elements that are similar to the non-seasonal components of the model,
but involve backshifts of the seasonal period.

3.3.2 Exponential Smoothing

Exponential smoothing enhances the concept of autoregression by employing weighted
averages of past observations. The weights decay exponentially as the observation lags
increase. In other words: The more recent the observation, the higher its impact on
the forecast. The Holt-Winters method, an adaptation of the exponential smoothing
concept, is one of the most widely used forecasting methods. This technique captures
seasonality, building the forecast equation out of three smoothing equations for level, trend
and one seasonal component respectively, with its corresponding smoothing parameters.

LA time series is stationary if it does not depend on the time at which the series is observed. If trends
or seasonality exist, it is not stationary.

3 SURVEY OF FORECASTING METHODS 11

One drawback is that the method requires positive values. Thus, it is necessary to apply
a transformation, typically a Box-Cox or Yeo-Johnson transformation. The need for
transformation and the usage of an iterative forecasting process in this technique increase
the error when predicting over a long forecast horizon.

3.3.3 Spectral Analysis

Spectral analysis is used to detect cycles and trends in the data. This results in a measure
of the relative contribution of cycles in a band of frequencies. In other words, its objective
is to decompose a time series into simpler structures based on a frequencies decomposi-
tion framework. We looked into two decomposition methods: the Fourier and Wavelet
Transform. Since the Fourier Transform lacks a time frame interpretability, we focused
our studies on wavelets. A wavelet is a function that may be described as a localized
wavelike function. In contrast to the techniques explained in Section [3.3.1] and [3.3.2] a
stationarity assumption can be avoided. This is mainly because the wavelets are split in
a translation and a scale phase. The translation part refers to movements along the time
axis, while the scale refers to the spreading out of the wavelet. The idea is to perform
a multi-resolution decomposition procedure which consists of a high-pass and low-pass
filtering process. The high-pass filter allows high-signal frequencies corresponding to the
signal details to go through, while the low-pass filter allows low-signal frequencies and
hence a smoothed version of the signal to go through. In an iterative process, the low-
pass filter is applied over the information retained by the high-pass filter. This procedure
ends when the low-pass filter cannot find new patterns on the remaining part.

3.4 Hybrid Models

Hybrid models have become more and more prominent in the literature in the past few
years due to their ability to counter limitations of other existing approaches. Time series
usually consist of linear and nonlinear as well as stationary and non-stationary compo-
nents, which in many cases cannot accurately be characterized by just one model, but
rather requires a combination of at least two models [27]. Furthermore, pure machine
learning models are very sensitive to preprocessing and prone to overfitting, whereas pure
statistical models require the data to be stationary. Hybrid models combine statistical
methods with artificial neural networks to address these issues |12, and have been proven
to be more effective than individual models on a variety of data sets. In particular, they
demonstrate accurate performance even with little training data [12].

Hybrid models can be classified into three different groups of approaches. The preprocessing-
based hybrid approach incorporates the preprocessing step to the model itself, thereby re-
ducing the information loss due to preprocessing. The optimization-based hybrid approach
learns parameters of a model using metaheuristic algorithms. Finally, the component-
based hybrid approach combines multiple prediction models into one in a way that they
compensate for each other’s disadvantages [6].

For our project, the preprocessing-based as well as the component-based hybrid approach
turned out to be of greater interest. Four models with different characteristics, includ-
ing the widely used ARIMA-ANN architecture [16], methods based on a combination of

3 SURVEY OF FORECASTING METHODS 12

ordinary differential equations and RNNs [3, [19], as well as ES-RNN [23] were analyzed
further.

Approaches based on ordinary differential equations are well-suited for irregularly sampled
or sporadically-observed time series [3, [19]. Therefore, they seem well-suited for the
satellite data. However, as explained in Section [2.5] we decided to train all models on gap-
less, regularly resampled data. Thus, the models based on ordinary differential equations
are not optimal for our project, but are worth pursuing in future work.

3.4.1 Exponential Smoothing RNN

The Exponential Smoothing Recurrent Neural Network (ES-RNN) [24] uses Holt-Winters
exponential smoothing to capture seasonality, trend and level of the individual univariate
series. In a second step, the resulting series are fed into a stacked and dilated Long
Short Term Memory (LSTM) architecture to analyze the non-linear trend and to perform
cross-learning [23]. Although this method seems to be a promising hybrid approach for
our forecasting problem, adapting the underlying dilated RNN model to include known
future command parameters would be infeasible for the given time horizon and might
result in bad performance of the model.

Generally, pre-implemented hybrid models are built to specifically suit only one or very
few data sets and are difficult and time-consuming to adapt to fit our data. Furthermore,
changing the structure of the models for incorporating future command parameters might
violate the mathematical theory behind the models and thus might not only result in bad
performance, but also in poor interpretability. Hence, it is not possible to simply use
a pre-existing implementation, but it will rather be necessary to manually construct a
method.

Deseasonalization techniques and exponential smoothing functions available in various
Python libraries cannot be automatized to our data, since we neither know the period-
icity beforehand nor do the time stamps of our data follow any common frequency, so
the available Python methods cannot detect the periodicity. Thus, building our own
model for deseasonalizing and detrending all different time series as the first step in the
preprocessing-based hybrid approach would require substantial efforts and is therefore
out of the scope of this project. Nevertheless, it seems worth pursuing a hybrid model
following the idea of the ES-RNN for future work.

3.4.2 Introduction to Wavelet Hybrid Models

Hybrid models based on a wavelet transformation are follow a multi-step process. In the
first step, the target time series is transformed to different high- and low-signal frequencies.
Next, each wavelet is forecast via an arbitrary estimation method before an inverse wavelet
transformation is performed to obtain the final forecast.

3.4.3 Wavelet-ARIMA

As discussed in Section we aim to augment a classic statistical method to improve
prediction performance. We decided on the ARIMA process in conjugation with the
wavelet transformation. The Wavelet-ARMA model is planned to be implemented via
the procedure shown in Figure

3 SURVEY OF FORECASTING METHODS 13

Lowpass Filter F

Time Wavelet
Series Decomposition
(DWT) . ’
Highpass Filter
I
Signal “Lowpass”
Arima forecasting
Parameter } Inverse DWT Forecast
estimation
Signal “Highpass”
forecasting

Figure 13: Wavelet-ARIMA model diagram

The traditional ARIMA model seems to be slightly superior in prediction to the basic
wavelet approach [5]. In order to improve our individual ARIMA predictions, we de-
cided to modify the traditional ARIMA model by including the command parameters as
exogenous variables. A regression model with ARMA errors is defined as follows [§]:

Y = Brop, + 1
e = Q1M—1 + ... + ¢p77t—p — btz — ... — eqzt—q + 2.

(1)

In our case, the y represents the split time series from the parameter of interest and
X ={zcp,,...,xcp,} the information matrix from the command parameters. We use an
ARIMA model to forecast the residuals 7, i.e., the information that the regression model
could not capture. The results can be directly interpreted: The regression coefficients have
their usual interpretation, as have the AR, I, MA of the ARIMA models. Finally, this
technique merges the individual forecasts via an inverse stationary wavelet transformation.

3.4.4 Advanced Wavelet Approaches

Instead of ARIMA, more advanced models can be used for prediction after applying the
wavelet decomposition. For instance, Wavelet-ANN [15] retains the wavelet approach
outlined in Section but replaces the ARIMA model in the forecasting step with
an artificial neural network, which is typically better at modeling non-linear relations.
While the proposed approach uses a simple neural network architecture, more complex
architectures are also feasible, providing an interesting field for further research.

3.4.5 Wavelet Temporal Conditioned Normalizing Flow

The second variant of a hybrid method based on wavelet transformation employs the tem-
poral conditioned normalizing flow described in Section for forecasting the respective
wavelets. We expect the temporal conditioned normalizing flow to be able to forecast the
separate frequencies as univariate targets conditioned on the multivariate command pa-
rameter space more accurately than the original more complicated time-series. A further

3 SURVEY OF FORECASTING METHODS 14

ce. @00.3inA/0.1inB

. en
' > nfere h @109inA/00in8
s = i fuzzy @o"
22 N \ass\cf‘\;‘“(inBTHEN @20.1inA/05inB =P /\/
E g o . ., N @ o .E‘ Crlsp
=] o @-10.1inA/02inB . b=
£ 0 —P @206inA/01inB Forecast memberships N forecast
.) >
- g - @-30.0inA/1.0inB Y=
U QJ
[/\/ (=]
s 2 Hi 22y ;
= . . . istory " inf
N % History time series . Neo ., Tere
i Y memberships a‘@hb.gge; Crisp

*A
Learnab - forecast

Figure 14: Hlustration of the fuzzy time series forecasting framework.

advantage of creating a hybrid model based on these two methods is the capability of the
temporal conditioned normalizing flow to learn a multivariate conditional distribution of
all wavelets conditioned on the command parameters, which allows for cross-learning.

3.5 Fuzzy Time Series Forecasting

Methods based on fuzzy logic are surprisingly popular in the literature. All of them are
more or less based on the same framework [21} [2], which is illustrated in Figure [14 In
this framework, a time series history to be forecast is first sampled at a fixed number of
time stamps. These samples are then fuzzified, that is, their memberships (between 0 and
1) in several (learnable) fuzzy sets over the value range of the time series are determined.
Next, a (learnable) fuzzy inference system (FIS) is applied, which either directly yields a
crisp forecast (Takagi & Sugeno rules) or memberships of the forecast samples in the fuzzy
sets (classic rules), which are then defuzzified in a second step. Note that because this
framework is in its core feature-based, the exogenous command parameters are supported
out of the box. A concrete implementation entails three choices:

e Choice of the fuzzy sets covering the data domain. This is called partitioning.
Typically, each variable of the time series is partitioned separately. The sets may be
chosen uniformly spread, but better performance can be achieved by either choosing
them cleverly (e.g., by prior clustering) or by optimizing them (e.g., by using genetic
algorithms, where the fitness of a partitioning is evaluated by learning and testing
a model with that partitioning). There are lots of techniques for this.

e Choice of the fuzzy logic rules that infer the consequents (forecast) from the an-
tecedents (history memberships). With classic rules, the consequents are fuzzy sets.
With Takagi & Sugeno rules, the consequents are linear combinations of the raw
time series data. There are various non-neural and various neural approaches for
this.

e If necessary, choice of a defuzzification technique to defuzzify the consequent mem-
berships into a crisp forecast. There are several methods for this, some of which are
more intuitive, while others are computationally cheaper. Some of them also yield
confidence intervals or even probability distributions instead of point estimates.

Even though the literature offers an abundance of methods for these three choices [21,
2], an experimental comparison is lacking, impeding model selection. In addition, many

3 SURVEY OF FORECASTING METHODS 15

methods may prove difficult to implement because of a lack of clear documentation. How-
ever, there is a python library (pyFTS [22]) that implements some of the non-neural meth-
ods which we assume to be the most popular ones. As a starting point, one could try
combinations of these pre-made methods and some easy-to-implement non-premade ones,
especially simple neural approaches. Then, one could dig deeper into the best performing
methods.

3.5.1 ANFIS

Instead of considering each component of the framework separately, it is also possible
to design a neural network that mimics the whole framework end-to-end. This yields a
powerful neural network that is quite interpretable due to the fuzzy structure. The most
prominent of these methods is ANFIS, whose publication is one of the most cited ones in
fuzzy inference [9]. Most of the time, Takagi & Sugeno rules with a linear combination
consequent or a “pseudo”’-Gaussian consequent are used, since applying classical rules
and then defuzzifying has proven to not be worth the additional computational effort.
Each rule has its own fuzzy sets over the input, usually one for each scalar in the input;
the memberships of the input in those are AND-combined to yield the rule’s antecedent.
Training is often not done entirely with gradient descent, but with a both more efficient
and more effective hybrid combination of gradient descent for the fuzzy sets and another
method [10] for the rule consequents, such as least squares. All this is visually illustrated in
Section[£.5.1] Various extensions to ANFIS have been proposed, including straightforward
support for multivariate time series [25], CON-ANFIS, and using ANFIS as a downstream
ensemble combination approach.

All in all, ANFIS seems to be the most promising fuzzy time series forecasting approach.
Hence, we choose it as our primary fuzzy model.

3.6 Summary

Since this project aims at exploring various time series forecasting methods for the purpose
of resource forecasting under the special requirements of GSOC’s satellite fleet, we will
implement models from different data analysis fields. As a baseline method, we will
employ the popular ARIMA method described in Section [3.3.1] Our deep learning model
of choice will be the Temporal Fusion Transformer introduced in [3.2.1] Further, we
will analyze two approaches based on wavelet transformations, namely the statistical
method Wavelet-ARIMA explained in Section [3.4.3]and the hybrid Wavelet-Normalizing-
Flow described in Section The final implementation will be the fuzzy time series
forecasting approach ANFIS outlined in Section [3.5.1] Table [I] shows an overview of
the strengths and weaknesses of the advanced models we will investigate further. The
explanation of the categories along with a more detailed overview over all discussed models
can be found in Appendix A.

4 EXPERIMENTS 16

Model Suita- Imple- | Tuning | Perfor- | Training | Run- Explai-
bility ment. mance data time nability
TFT 2 2 0.5 1 -1 0 0
W-ARIMA 1 0 1 2 0 -1 1
W-NF 0 0 1 0 2 0 -1
ANFIS 2 0 1 1 1 2 1

Table 1: Qualitative assessment of selected forecasting methods. This is to be understood
as a subjective overview and not as a direct model-to-model comparison between models
of different categories. The models were rated on a scale from -2 to 2.

4 Experiments

4.1 Baseline ARIMA

ARIMA is a relatively simple model that makes a forecast based on the history of the
target parameter only. Therefore, it serves as a benchmark for other models: if another
model performs worse than this, we can discard it. As the standard ARIMA requires
manual configuration of hyperparameters, we use the AutoARIMA model from the sktime
Python framework [14], which automatically selects appropriate hyperparameters.

473432 473472 473512 473552 473592 473632 473672 473712

Figure 15: AutoARIMA prediction for Parameter T2-1 with 12 hours history size and a
resolution of 180s.

We observe that the model is able to capture periodic behavior, but fails to forecast sudden
changes, as shown in Figure [I5] In further experiments, we saw that ARIMA does not
perform well with a high resolution of 30 seconds, which suggests that the model gets
overwhelmed with both the amount of input data and the amount of time steps that have
to be predicted. It can capture the behaviour of the first few points and tries to follow
that trend but fails afterwards, resulting in a straight-line prediction. On the other hand,
when it is trained with 180 seconds resolution, it performs better since it can understand
the periodicity of the data.

Another observation is that the model is very sensitive to small changes, behaving vastly
differently depending on the exact time point at which the prediction starts. This be-
haviour is illustrated in figure [18]

4 EXPERIMENTS 17

Figure 16: Prediction of Parameter T1.1 Figure 17: Prediction of Parameter T1_1
on 30s resolution on 180s resolution

Figure 18: Two AutoARIMA predictions of Param_T4_1 with vastly different results

4.2 Temporal Fusion Transformer
4.2.1 Implementation and Training

For the Temporal Fusion Transformer (TFT), we use the existing implementation in the
python-forecasting package [1]. The package does not include native support of our
sliding window approach, so we extended it by a class that loads data based on a provided
list of window start indices.

As training the models is computationally expensive and can take several hours, we used
Linux virtual machines provided through the LRZ Compute Cloud for training.

4.2.2 Results

Loss: 0.031 —— observed

The power to be generalizable to various problems precicted
is one of the biggest strengths of neural networks, = A A Om
which can also be seen in the results of our forecast- . [| oo
ing task (see table[2). While there is some difference . \
in performance between different sampling configu- \| ‘; oo 2
rations, the network is able to adapt to and generate \ ‘ "
fairly accurate forecasts for all of them. Overall, the = v

model does not seem to profit from increasing the
history size from 3 hours to 12 hours, suggesting
that it may be able to learn accurate predictions Figure 19: Example prediction
with limited data. made by the TFT. The grey line
Figure displays one prediction for Param_T1.1 shows the attention, i.e., which im-
(with history size 3 hours, forecasting horizon 3 portance the model assigns to each
hours, and sampling rate 180 seconds) made by the step in the history. The shaded or-
model. We observe that it accurately predicts the ange areas display confidence inter-
general behavior of the parameter, but fails to pre- vals: the larger the area, the less
dict the severity of the spike at around time index confident the prediction.

40. We also see that the model is less certain of its

prediction at around that time.
Figures and show a key interpretability feature of the TFT: We can see which

—-60 —40 —20 0 20 40 60

4 EXPERIMENTS 18

variables were most important for the predictions of each model. The example shows the
variable importance for predicting Param_T1_1 with the configuration from above. We
can see that the past values of the variable itself were most impactful, but some of the
control parameters also have a strong impact. Such analyses help verify that the model
learns reasonable relationships.

Encoder variables importance Decoder variables importance

Param_T1 1 CParam_T1_1

CParam_T1_2 CParam_T4_1

relative_time_idx CParam_T3_2

CParam_T1_1 CParam_T1_2

o] 2 4 6 8 10 12 14 16
Importance in %

Importance in %
Figure 20: Example of learned encoder Figure 21: Example of learned decoder
variable importance. variable importance.

4.2.3 Future Work

Hyperparameter tuning is an important step when training neural networks. In our case,
the default parameters were sufficient to demonstrate the potential of the model for the
forecasting task. Due to this, there was no need to spend extended efforts trying to
maximize prediction performance. However, we would expect the model to perform even
better with carefully selected hyperparameters.

Another important consideration when training neural networks is the amount of data
required. We have not tested model performance for different amounts of data, using the
whole provided time range for every experiment. It is worth investigating how much data
is required to generate predictions of acceptable accuracy. One possible way of obtaining
more training batches without having to wait until more data is generated would be to
reduce the amount of time by which the sliding window is moved. Moving the window
by 9 minutes instead of 3 hours, for instance, would increase the number of batches by a
factor of 20. It may be worth assessing this trade-off between increasing the number of
training batches and increasing redundancy in the training data.

4.3 Wavelet-ARIMA and Wavelet-ANN

The wavelet approach decomposes each of the time series generated from the parameters
{T1, ..., T,} into a time-frequency space. This enables us to identify the different structures
that compose the time series, i.e., frequencies. As the whole forecast is based on this step,
we require the wavelet transform to capture the key characteristics of our data. We
address this challenge by testing decompositions based on different resolutions. In this
way, we were able to identify the specter in which the Wavelet performs better on our
data. For the implementation, we employed the Stationary Wavelet Transform of the
Python wavelet transform module PyWavelets [11]. We applied the models not only
to the different sampling rates explained in Section 2.5 but also to different forecast
horizons: 3 hours, 6 hours, and 12 hours. This allows us to gain a better understanding
of the limitations of this approach.

4 EXPERIMENTS 19

600 resolution: 3hrs forecast- Param_T2_1

—— Test values
31 Neural network
- Regression with arima errors

Coefficients:

14 CParam T1 1 -0.035339
CParam T3.1 0.056170
CParam T3.2 0.615045
CParam T4 4 0.028085

01 CParam_T4_5 0.014042

30 35 40 45 50 55 60
Figure 22: Example prediction of parameter T2_1 using a wavelet approach.

600 resolution: 3hrs forecast- Param_T2_4

—— Test values
24 Neural network
—— Regression with arima errors

04

—4] U—/

=61 Coefficients:
CParam_T1.1 0.011448
CParam_T3_1 -0.476561

-8 4 CParam_T3_2 -3.483354
CParam_T4 4 -0.238281
CParam_T4_5 -0.119140

40 45 50 55

30 35 60

Figure 23: Example prediction of parameter T2 4 using a wavelet approach.

4.3.1 Regression With ARIMA Errors

The main motivation behind combining the Wavelet Decomposition with an ARIMA-
based model is to boost the performance of the basic ARIMA approach. We expect the
ARIMA model to be able to explain the characteristics of the target parameter that the
regression model alone cannot capture. In combination, this should improve prediction
performance. However, while the prediction seemed to be less prone to extreme errors,
the regression with ARIMA errors modeling only showed a minor improvement on some
parameters and resolutions compared to the baseline model (see Table . It is possible
that the ARIMA model is just too simplistic to leverage the additional insights embedded
in the wavelets. Exploring the combination of the wavelet transformation with more
powerful prediction methods may be a worthwhile endeavor.

4.3.2 ANN

Due to the underwhelming results of the Wavelet-ARIMA approach, we additionally ran
some small experiments using the Wavelet-ANN architecture. Indeed, we observe that
this seems to have the potential to be better at forecasting non-regular behavior (see
Figure , although it is still prone to severe prediction errors, as shown in Figure .

4 EXPERIMENTS 20

4.3.3 Next steps

The Wavelet decomposition allows our models to identify behavioral patterns. However,
producing accurate forecasts from these intermediate results proved to be a challenging
task. In small-scale tests, we could see that a hybrid neural-network model such as
Wavelet-ANN may be able to improve on the statistical ARIMA prediction. This approach
could be investigated further. Expanding on this, the simple ANN could be replaced with
a more complex architecture to generate a prediction in conjunction with the Wavelet
transformation. A comparison between this combined approach and the purely neural-
network-based forecasts may provide interesting insights.

4.4 Wavelet Normalizing Flow

For the implementation of a hybrid model consisting of a wavelet transform and a tem-
poral conditioned normalizing flow, we employ the Python libraries PyWavelets [11] as
described in Section [4.3]and the “PyTorch probabilistic time series forecasting framework”
PyTorchTS [17]. We focus on the DeepAR package for forecasting the univariate wavelets
and the TempFlow package for estimating the multivariate distribution of all wavelets
conditioned on the command parameters. The estimators learn density parameters of a
given distribution by maximizing the log-likelihood of the fed time series at every time
step [18].

Since PyTorchTS is not supported by a Microsoft Windows operating system, we need to
implement the model on a Virtual Machine simulating a Linux distribution.

4.4.1 Implementation

We implement two different versions of the hybrid Wavelet Normalizing Flow model. Both
models apply a stationary wavelet transformation to the parameter of interest. For the
univariate model, multiple DeepAREstimators are trained, such that each wavelet can
be forecast as a univariate time series based on the multivariate command parameters.
The multivariate variant only employs one TempFlowEstimator modelling the conditional
multivariate distribution of all wavelets on the command parameters. The final prediction
of the parameter of interest is obtained via an inverse wavelet transform of the median
forecasts of the separate wavelets.

Although the estimators already perform acceptable on forecasting the wavelets based
on their unconditional distributions, adding multiple command parameters to the model
easily confuses the estimators. Hence, the influence of the command parameters on the
respective wavelets needs to be analyzed prior to adding further covariates to the models.
Figures[24] [25] 26| depict the effect of including different quantities of command parameters
in the DeepAREstimators.

4.4.2 Results and Future Work

Training and hyperparameter tuning of the two models could not be finalized due to un-
foreseen complications in the implementation process and an in-depth investigation of the
hybrid ES-RNN model prior to the implementation of normalizing flows. These steps are
therefore left for future work. In addition, we suggest to apply a method to identify which

4 EXPERIMENTS 21

MMMMMMMMMMMMMM

Figure 24: Distribution of Figure 25: Conditional dis- Figure 26: Conditional dis-
parameter T1_1. tribution of param. T1_1 on tribution of parameter T1_1
few command parameters. on all command parameters.

covariates are best suited for predicting a certain target parameter. This could be done
by performing a regression predicting the target parameter using the command parame-
ters, and defining that those commands whose coefficients exceed a certain threshold are
included in the model.

In comparison to the univariate approach, the multivariate Wavelet-Normalizing-Flow
shows better forecasts in a significantly shorter training time, even without hyperparam-
eter optimization. This suggests that the multivariate approach should be the preferred
option in future applications. Both variations of a Wavelet Normalizing Flow create worse
forecasts with increasing prediction length. Observing a low accuracy of the forecast of
high frequency wavelets and considering the better performance of the DeepAREstimator
directly applied to the parameter of interest than the performance of the proposed hybrid
framework, we conclude that the hybrid wavelet normalizing flow might not be the model
of choice for our purposes. However, a temporal conditioned normalizing flow directly ap-
plied to the target time series without a prior wavelet transform seems to be a promising
alternative.

4.5 ANFIS

Using a fuzzy time series forecasting method like ANFIS first requires us to fill in some
deliberate holes in the design:

e The structure of the learnable antecedent membership functions over the input
time series. For each continuous input value, we decide on using one (per rule)
independent 1-dimensional Gaussian membership function. For each categorical
input value, we use one (per rule) membership function that assigns some learnable
membership to each category. The overall membership of an input in the antecedent
fuzzy set of a rule is obtained by multiplying the membership function outputs for
that rule of each input valud?

2Say that we use: 3 rules; 30 steps of history; a 20 steps big forecasting horizon; 15 continuous
input parameters known during the history; 5 continuous input parameters known during the forecasting
horizon; and 2 categorical input parameters known during both the history and the forecasting horizon and
take 7 respectively 9 categories. Our model then has 3-(30-15+20-5) independent Gaussian membership
functions (one for each rule and continuous input value) and 3-((30+20)-(7+9)) independent categorical
membership functions (one for each rule and categorical input value).

4 EXPERIMENTS 22

e The structure of the learnable inference rules. We use Takagi & Sugeno rules with
a linear combination consequent.

e How to represent the forecast in the ANFIS model. We decide on creating a model
that individually predicts each time point for each target parameter over the entire
forecasting horizon at once’}

Further details regarding the model structure can be inferred from the well-documented
ANFIS implementation that we wrote specifically for our use case.

Note that ANFIS is not a deep neural network architecture, but rather a shallow one.
This makes it quite interpretable as discussed in Section [£.5.1 However, shallow networks
tend to require more weights to achieve the same performance compared to deep networks.
Even worse, as ANIFS is a feature-based model mostly ignoring the temporal structure, it
is bound to scale poorly with increasing input and output size. For example, the number
of weights grows quadratically with the sampling rate s.

4.5.1 Interpretability

Due to their structure, ANFIS models are quite interpretable, which we illustrate through
the univariate forecasting toy example depicted in Figure[27. We have trained two ANFIS
models on this task. Model A was trained using only stochastic gradient descent (SGD),
while model B used the hybrid learning scheme.

In Figures 28 and 29, we visualize the learned 1-dimensional Gaussian membership func-
tions for each rule and history time point; they are stacked horizontally. You can see
which shape a history time series must have in order to reach high membership in the
fuzzy set of each rule. In Figures 30| and we visualize the weights of the linear Takagi

3Say we have a 20 step forecasting horizon and forecast 5 params. Our model then has 20 - 5 outputs.

0 5 10 15 20 25 30 35

Figure 27: Forecasting toy example.
Rule #0 Rule #1 Rule #2 Rule #3 Rule #0 Rule #1 Rule #2 Rule #3

-20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10
History time History time History time History time History time History time History time History time

Figure 28: Membership functions learned Figure 29: Membership functions learned
using only gradient descent. (A) using the hybrid learning scheme. (B)

Rule #0 Rule #1 Rule #2 Rule #3 5 © Rule #0 Rule #1 Rule #2 Rule #3
2 -

- 0.2 S

2L L A e 2 14 1 1
gg = g .||n. F r Jf l"d” 0.0 g‘é 00
i g s L ey £ ol 1 1 -02

-20 -10 -20 -10 -20 -10 -20 -10 § -20 -10 -20 -10 -20 -10 -20 -10
History time History time History time History time History time History time History time History time

Figure 30: Matching rule consequents. (A) Figure 31: Matching rule consequents. (B)

4 EXPERIMENTS 23

& Sugeno rule consequents, which are just regression weights over the input values. Note
that the plots (almost) completely characterize the two models. All learnable parameters
(apart from the consequent bias) are visualized.

We can now visually follow what happens when forecasting a time series. First, its
membership in each rule’s antecedent fuzzy set is computed. The vector of memberships
is then Li-normalized. Next, each rule’s consequent is computed by running the regression.
Finally, the consequents are multiplied with the normalized memberships and summed
up to yield the final forecast.

Interpreting the plots gives an interesting insight. Because pure SGD training is not
as effective, it leads to a more inefficient model (A) that matches specific shapes of the
history series and uses different weights depending on the matched shape. The hybrid-
trained model (B) on the other hand discovers after only one epoch that a single rule
without any antecedent structure is already sufficient to represent the data, which means
that in this case, ANFIS mostly degrades to a linear regression model. The non-hybrid
training was unable to discover this. However, note that the fast hybrid training got stuck
after one epoch, while the slow pure gradient descent training managed to achieve a lower
validation loss in the end.

4.5.2 Training, Results, and Future Work

While training various ANFIS models, we gained the following insights:

e All training data has to be on the same scale, ideally z-normalized. Otherwise, the
scale of the gradients for the antecedent membership functions becomes unstable.

e If possible, the training data should not contain extreme outliers. They have an
overproportionally large impact on the Ly loss. Even worse, they can make the rule
consequent gradients very large, while the antecedent gradients stay comparatively
small. If this happens and one does not compensate for it, the antecedents stay
mostly constant during training, so ANFIS degenerates to linear regression.

e Training performs best when the Gaussian antecedent membership functions are
initialized as seen in Figure 29) Other schemes have proven inferior.

e During training, the validation loss sometimes jumps up unexpectedly; however,
this is no reason for concern. Usually, after some time, the validation loss will drop
back down to somewhere even below the validation loss before the jump. Of course,
if the validation loss continues to go up for some time, the training can be stopped,
as the model is most likely overfitting in that case.

e Our ANFIS models trained best with a learning rate (LR) of 1073 for the antecedent
membership functions and 10~* for the consequents. If a lower LR is used for the
antecedents, they stay constant during training, and so ANFIS degenerates to linear
regression. Note that the required ratio between the two LRs can vary, so it is key
to always confirm that training actually moves the membership functions after a
couple of epochs. After convergence, dropping the LR once by a factor of 10 can
also slightly improve the validation loss.

4 EXPERIMENTS 24

e Hybrid learning is a double-edged sword. Employing it directly after initialization
immediately reduces the loss drastically, but often puts the model into a position
where it has little incentive to adjust the antecedent membership functions. When
we instead apply it once after gradient descent-only training has converged, the
validation loss increases. However, when we then continue with gradient-descent
training, we often converge to a model with a lower validation loss than the first
converged model. In summary, hybrid learning can be helpful to “unstuck” the
training.

e While we could train most ANFIS models on our own computers, for the biggest
one (sampling rate of 30s), we had to turn to a more powerful server that provides
the amount of RAM required for computing the gradients of that model. This is
due to the surprisingly quick parameter explosion.

e Increasing the number of rules from 16 to 32 did not substantially improve perfor-
mance. If we visualize the antecedents and consequents, we observe that the model
seems to mostly ignore the added ones. Maybe bigger numbers of rules could im-
prove performance? Maybe smaller numbers could have a regularizing effect and
thereby improve performance? These are still open questions.

The remaining details of the training procedure can once again be inferred from our code.

4.6 Model Comparison

We compare the different methods based on the scaled mean squared error (MSE) evalua-
tion metric. We prefer it over other metrics for its simplicity and widespread adoption as a
universal regression evaluation measure. By focusing on the parameters T1_1, T2_1, T2 4,
T3_1, and T4_1 representing voltage, two different currents, battery status and temper-
ature, we ensure to include one parameter of every inter-correlated group of parameters
as investigated in our correlation analysis in Section [2.3.2] The final score depicted in
Table [2|is given by the average MSE over the parameters after manual adjustment of the
scale of each time series variable. More detailed results on the performance of all models
on the five parameters separately can be found in Table |3/ in Appendix B.

| Sampling [ARIMA | TFT | Wav-ARIMA | ANFIS |

30s | 5.644 | 0.117 0.726 0.101
3h | 3h | 180s | 0.839 | 0.067 0.681 0.097
600s | 0.557 | 0.091 0.760 0.114
30s | 0.799 | 0.123 0.662 -
12h | 3h | 180s | 0.517 | 0.084 0.685 -
600s | 0.475 | 0.095 0.509 -

Table 2: Scaled mean squared error achieved by the models on various samplings of the
test data averaged over the parameters T1.1, T2 1, T2 4, T3_1, and T4_1. A sampling is
identified by a history size, a forecasting horizon, and a sampling rate.

5 CONCLUSION 25

5 Conclusion

We presented a general overview of traditional statistical and modern machine learning
methods for multivariate time series forecasting using both past observations and known
future covariates. Especially well-suited methods based on a wavelet transformation, fuzzy
logic and a deep neural network with attention mechanisms were analyzed further. The
performance of the models was evaluated based on the mean squared error metric against
a baseline error achieved by an ARIMA method.

Our results show a very strong and robust overall performance of the Temporal Fusion
Transformer. Against our expectations, the Wavelet-ARIMA does not clearly outperform
the benchmark ARIMA model, although it seems to be less prone to extreme errors.
The performance of the fuzzy method ANFIS is almost comparable with the performance
of the Temporal Fusion Transformer. For a sampling rate of 30 seconds, ANFIS even
outperforms the deep neural network architecture on average.

Nevertheless, we regard the Temporal Fusion Transformer as the most suitable method
for the purpose of resource forecasting for satellites, also considering the poor scalability
of ANFIS for longer forecasting horizons and a larger number of input parameters.
Since the error achieved by the Temporal Fusion Transformer does not significantly de-
crease for increasing history size, we suggest to employ the model on a three hour history
size as an optimization tool for resource forecasting of GSOC’s satellites. Extending the
forecast horizon to a longer time frame as well as hyperparameter optimization of the
Temporal Fusion Transformer and the Temporal Conditioned Normalizing Flow is left for
future work.

Bibliography

[1] J. Beitner. PyTorch Forecasting. 2020. URL: https://github.com/jdb78/pytorch-
forecasting.

[2] M. Bose and K. Mali. “Designing fuzzy time series forecasting models: A survey”.
In: International Journal of Approzimate Reasoning 111 (2019), pp. 78-99.

3] E. De Brouwer et al. “GRU-ODE-Bayes: Continuous modeling of sporadically-
observed time series”. In: Proceedings of Advances in Neural Information Processing
Systems (NeurIPS). 2019, pp. 7377-7388.

[4] C. Fan et al. “Multi-Horizon Time Series Forecasting with Temporal Attention
Learning”. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery € Data Mining. 2019, pp. 2527-2535.

[5] A. Fonseca Lemus. “Wavelet analysis on financial time series”. PhD thesis. Univer-
sidad del Rosario, 2018.

[6] Z. Hajirahimi and M. Khashei. “Hybrid structures in time series modeling and
forecasting: A review”. In: Engineering Applications of Artificial Intelligence 86
(2019), pp. 83-106.

[7] H. Hewamalage, C. Bergmeir, and K. Bandara. “Recurrent Neural Networks for
Time Series Forecasting: Current Status and Future Directions”. In: International
Journal of Forecasting 37.1 (2021), pp. 388-427.

[8] R.J.Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice. OTexts.com,
Heathmont, Victoria, 2014.

9] J.-S.R.Jang. “ANFIS: Adaptive-Network-Based Fuzzy Inference System”. In: IEEE
Transactions on Systems, Man and Cybernetics 23.3 (1993), pp. 665—685.

[10] D. Karaboga and E. Kaya. “Adaptive network based fuzzy inference system (AN-

FIS) training approaches: a comprehensive survey”. In: Artificial Intelligence Review
52.4 (2019), pp. 2263-2293.

[11] G. R. Lee et al. PyWavelets: A Python package for wavelet analysis. 2019.

[12] B. Lim and S. Zohren. “Time Series Forecasting With Deep Learning: A Survey”.
In: (2020). arXiv: 2004.13408 [stat.ML].

[13] B. Lim et al. Temporal Fusion Transformers for Interpretable Multi-Horizon Time
Series Forecasting. 2020. arXiv: 1912.09363 [stat.ML].

[14] M. Loning et al. sktime: A Unified Interface for Machine Learning with Time Series.
2019. arXiv: 11909.07872 [cs.LG].

[15] A. H. Nury, K. Hasan, and M. J. B. Alam. “Comparative study of wavelet-ARIMA
and wavelet-ANN models for temperature time series data in northeastern Bangladesh”.
In: Journal of King Saud University - Science 29.1 (2017), pp. 47-61.

[16] A. R. S. Parmezan, V. M. A. Souza, and G. E. A. P. A. Batista. “Evaluation of
statistical and machine learning models for time series prediction: Identifying the

state-of-the-art and the best conditions for the use of each model”. In: Information
Sciences 484 (2019), pp. 302-337.

26

https://github.com/jdb78/pytorch-forecasting
https://github.com/jdb78/pytorch-forecasting
http://arxiv.org/abs/2004.13408
http://arxiv.org/abs/1912.09363
http://arxiv.org/abs/1909.07872

[17]
[18]

[19]

[20]
[21]
[22]

23]

[24]

[25]

[26]

[27]

K. Rasul. PyTorchTS: PyTorch Probabilistic Time Series forecasting. 2020. URL:
https://github.com/zalandoresearch/pytorch-ts.

K. Rasul et al. “Multi-variate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows”. In: (2020). arXiv: 2002.06103 [cs.LG].

Y. Rubanova, R. T. Q. Chen, and D. K. Duvenaud. “Latent ODEs for Irregularly-
Sampled Time Series”. In: Advances in Neural Information Processing Systems 32
(2019), pp. 5320-5330.

S. Shih, F. Sun, and H.-Y. Lee. “Temporal pattern attention for multivariate time
series forecasting”. In: Machine Learning 108.8 (2019), pp. 1421-1441.

P. C. L. Silva. “Scalable Models for Probabilistic Forecasting with Fuzzy Time
Series”. PhD thesis. 2019.

P. C. L. Silva et al. pyFTS: Fuzzy Time Series for Python. 2018. URL: https :
//github.com/PYFTS/pyFTS.

S. Smyl. “A hybrid method of Exponential Smoothing and Recurrent Neural Net-
works for time series forecasting”. In: International Journal of Forecasting 36.1
(2020), pp. 75-85.

S. Smyl, J. Ranganathan, and A. Pasqua. M/ Forecasting Competition: Introduc-
ing a New Hybrid ES-RNN Model. 2018. URL: https://eng . uber . com/m4 -
forecasting-competition/|

A. Vlasenko et al. “A Novel Neuro-Fuzzy Model for Multivariate Time-Series Pre-
diction”. In: Data 3.4 (2018), p. 62.

Z. Wu et al. “Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks”. In: Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery € Data Mining. 2020, pp. 753-763.

W. Xu et al. “A hybrid modelling method for time series forecasting based on a
linear regression model and deep learning”. In: Applied Intelligence 49.8 (2019),
pp. 3002-3015.

27

https://github.com/zalandoresearch/pytorch-ts
http://arxiv.org/abs/2002.06103
https://github.com/PYFTS/pyFTS
https://github.com/PYFTS/pyFTS
https://eng.uber.com/m4-forecasting-competition/
https://eng.uber.com/m4-forecasting-competition/

i

SIANV

—
I

—

surysenaro] Azzng o1ssey)

O AN | AN

o

MO -SUIZI[RULIO N[-}O[OARAA

HdO ejer]

— [
|1

soAe-HAO-NTD

NNHY-SH

o

VINTHV-INLS'T

—
I

AN DO || | [D[|

VINTHV-19[PABM

dVA

| D || [| |

surgjoowrg reruauodxyy

9
o

Iourrojsuel], uorsn ~duwaq,

s1oN [emma) ydern)

NUD/INLST BIIUeA

O|l— o || |—|—|— |l

NND ®B[[TUBA

—
|

9IN}0TDIR PIXORIS

91n309)1ydIe bos-03-bog

JON [eINON Poseq-oInyes

TN OIsSe[) + SuLIojsuel],

0

AN OO | OO (OO |

0

— OO0 IO IO OO

N[|| D[||| | DO [| DD

AN AN AN |

TIN OISSe[)) poseq-aInyes

“30ge S
Um o[qesaadiajur

Areqord ¢+

AuMO‘mO 2uwos
yrim orqereadiajur
Amreqorn 1+

o1qissod
suoryeur[dxo
Teoo] poo8 £1191d 0
'9[qIssO
(uorjorpaad o3uls e
Jo suorjeue[dxe ‘'9°1)
suoryeue(dxa [ed0]
9jeINDOE JeYMOWOS T—

‘SurygLue
Surpuejsiepun
I9A0 JO Aem ON g—

SUBDUI [RUINIXS BIA
a[qeurerdxe 91 SI [[oM
MOH jo[qerardiajur
ATyusreyur [opour
oY} St [[oM MOH

Aypiqeurerdxy

*(spuooas)
ooururroyrod jseq

*(sognurwa
majy) eourwIojrod
ysifeO

*(sognurwr 09-0T) 901
® [[138 1] ‘B[qISea]
‘ST I0J o[qIsesaj
JIoyjeym ainsu)

‘ST 10} o[qIseaj

jou Apprugeq

joe) uoryorpaad

se [[om se 3uruieiy
op Suo| moH

WITIUNY

z+

‘019311 A(8urstadans
saxmmbey g+

‘qguowaarmbax
ysideo 1+

301
' [[11s I0q ‘O[qIses] 0

‘a[qIseay
Jayjeym aansup) 1—

‘sn ,HO.« Dﬁn:mﬁw.«
jou Aeyugeq g—

JA1essedau SI wvyep
Surureiy yonuw Moy

rI)Rp JUIUIRI],

‘egep xo[duwoo jsouwr
97} UO USAD JUS[[9DXS
ST @0URWIOJID T+

“e)Rp
xo[dwOd U0 UdAd
souewroyrod poon) T+

s
103 jiom K[reryuejod
P[nod ‘ysrex0 0
“ejRp
orduis jyeymouwios
uo syiom A[uQ [—

‘epep ojdurs jsowr
oY} uo s)yIom A[uQ g—

‘oIaymoaumros
pojiodaur st
Jey] J[NSDI 9s9q O
asooy) jeorjoead ut
uasoad [epouw ay3} ST

9OURULIOLID

‘poambaux
Surungy ou A[[enjirp

‘a[qissod yoaiess
9SIOU0D 2§ DIjRWOINY

‘Suruny
Surmunsuos-ouIrg
Io renuewr saamboyy

‘Surmunsuod-awIy
A1oA nq ‘o[qIses

‘uoryein8yuod poos
® puy o3 a[qiseajuy

JA1essedou aq [[Im
(seanjoejIydre NN
¢:3'9) syred juarayip
Jo 1no Suryojims

Jo siogjowrerediod Ay
Jo Surunj) yonuw mop

surung,

‘a[qerrear
‘ydwr asn-oj-Apeay g+

‘Aressooou
SUOT}EDYIPOUW dUWIOS
‘o[qerreae ‘(dwy 1+

("1dwr eousIsjer
10 syred o[qerreae
Jo osneoaq ‘'3'9)
a[qeop 7y Aressooou
yoreids woay ‘(dwy

‘pIey 2g AIessedou
yogeros woay ‘[duy 1—

‘sn 10§ orqrssoduur
parepisuod ‘[dwy g—

uoryejusta[du]

‘oseo [eloads Ino
10} j10ddns ur-3mng

‘premiojjySreass
SI UOI)eZIWOISN))

‘papeau
UOTYRZIW0SND
wnIpayy

‘SurSuajreyd
Aqrengooequr

ST Y2IYm ‘poposu
uorjezIWO)sNd AARdH

e e
a[qesn jou yoeoxddy

juozrioy 8ur}sesaioy
o) Sunnp a[qe[rear
Sureq siojowrered
purBWIUIOD

oYy 03 a[qesdepy

Aqiqeimg

z+

T+

[PPOIN "dsex yoeoxddy

uoryenjear] yoeoaddy uorjejusweduwy-ord — Yy Xipuaddy

Appendix B — Breakdown of the MSE Results

’ Sampling ‘ Param ‘ ARIMA ‘ TET ‘ Wav-ARIMA ‘ ANFIS ‘

Ti1 | 5.831 |0.100 0.990 0.108
T2.1 | 2.992 | 0.023 0.514 0.046
3h | 3h | 30s | T24 | 1.159 | 0.204 1.071 0.175
T31 | 17.709 | 0.088 0.860 0.095
T41 | 0531 | 0.167 0.192 0.084
Ti1 | 0.995]| 0.059 0.922 0.101
T2.1 | 0.938 |0.024 0.620 0.049
3h | 3h|180s | T24 | 0.758 | 0.125 0.857 0.168
T31 | 1.246 | 0.041 0.813 0.085
T41 | 0257 | 0.089 0.192 0.083
Ti1 | 0.921 | 0.087 1.078 0.120
T2.1 | 0260 |0.034 0.142 0.056
3h | 3h | 600s | T24 | 0.739 | 0.162 1.018 0.185
T31 | 0670 |0.078 0.593 0.118
T41 | 0.197 | 0.092 0.969 0.092
Ti1 | 1.098 | 0.077 1.205 -
T2.1 | 0.392 | 0.024 0.144 -
12h | 3h | 30s | T2.4 | 0.710 | 0.265 1.11 -
T31 | 1513 | 0.087 0.624 -
T4A1 | 0271 |0.163 0.216 -
Ti1 | 0.774 | 0.061 1.36 -
T2.1 | 0.340 | 0.024 0.170 -
12h | 3h | 180s | T2.4 | 0.681 | 0.193 1.171 -
T31 | 0577 | 0.050 0.591 -
T41 | 0214 | 0.090 0.129 -
T11 | 0.790 | 0.087 0.964 -
T2.1 | 0.196 | 0.028 0.240 -
12h | 3h | 600s | T2.4 | 0.658 | 0.182 0.350 -
T31 | 0.538 | 0.085 0.783 -
T41 | 0.195 | 0.092 0.208 -

Table 3: Scaled mean squared error per parameter on various samplings of the test data.
A sampling is identified by a history size, a forecasting horizon, and a sampling rate (in
that order). “TFT” is short for “Temporal Fusion Transformer”.

	Abstract
	Introduction
	Problem Definition and Goals of the Project
	Approach

	Data Exploration
	Data Set
	Individual Parameter Behavior
	Parameter Interdependence
	Principal Component Analysis
	Pearson Correlation
	Auto-Correlation and Cross-Correlation

	Data Sampling
	Overview
	Sampling Rates

	Data Preparation

	Survey of Forecasting Methods
	Classic Machine Learning With Prior Data Transformation
	Deep Learning
	Advanced Seq2Seq Architectures
	Probabilistic Time Series Forecasting

	Classical Statistical Forecasting
	Autoregressive Models
	Exponential Smoothing
	Spectral Analysis

	Hybrid Models
	Exponential Smoothing RNN
	Introduction to Wavelet Hybrid Models
	Wavelet-ARIMA
	Advanced Wavelet Approaches
	Wavelet Temporal Conditioned Normalizing Flow

	Fuzzy Time Series Forecasting
	ANFIS

	Summary

	Experiments
	Baseline ARIMA
	Temporal Fusion Transformer
	Implementation and Training
	Results
	Future Work

	Wavelet-ARIMA and Wavelet-ANN
	Regression With ARIMA Errors
	ANN
	Next steps

	Wavelet Normalizing Flow
	Implementation
	Results and Future Work

	ANFIS
	Interpretability
	Training, Results, and Future Work

	Model Comparison

	Conclusion
	Bibliography
	Appendix A – Pre-Implementation Approach Evaluation
	Appendix B – Breakdown of the MSE Results

