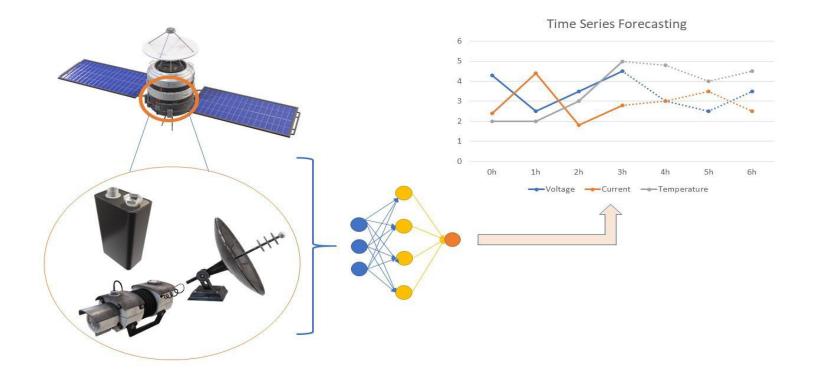
Resource Forecasting for Satellite Operations using Multivariate Time Series Data

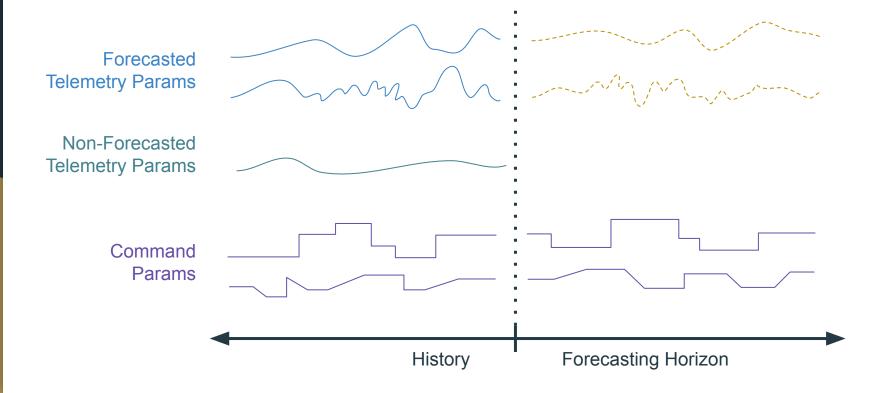
Data Innovation Lab

February 25th, 2021

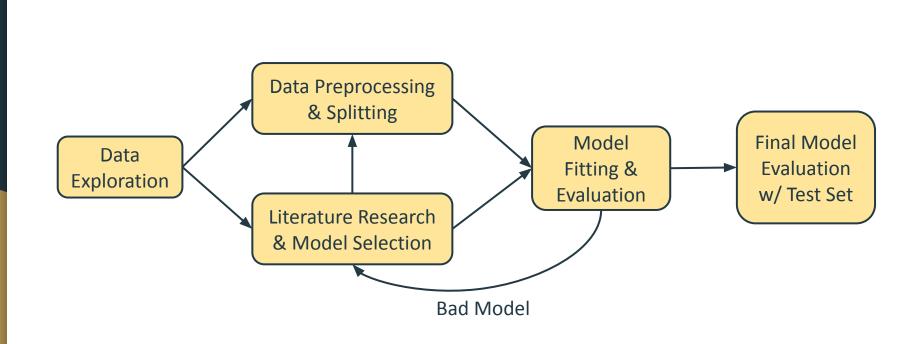
Problem Statement



Problem Statement



3



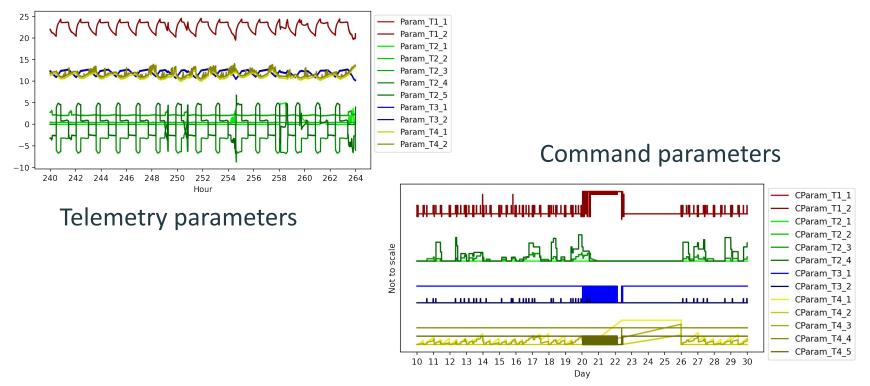
Process

4

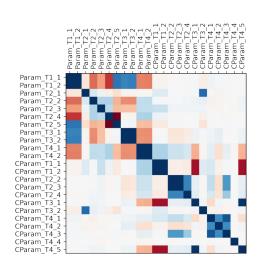
Outline

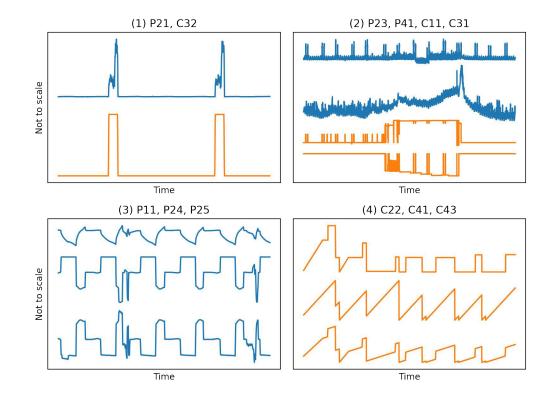
- 1. Problem Statement
- 2. Data Exploration
- 3. Forecasting Methods & Experiments
- 4. Future Research

Dataset



Interdependence

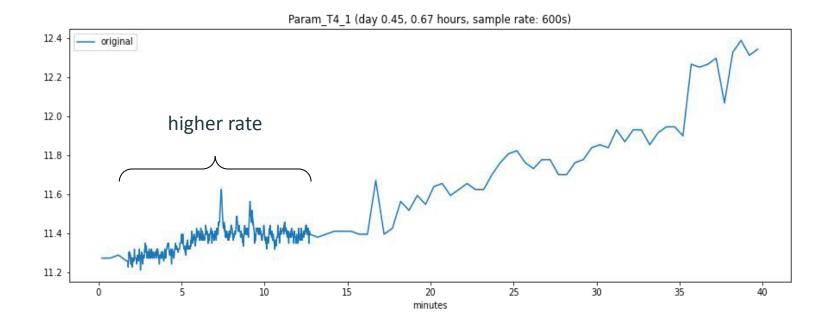




7

Data Preprocessing

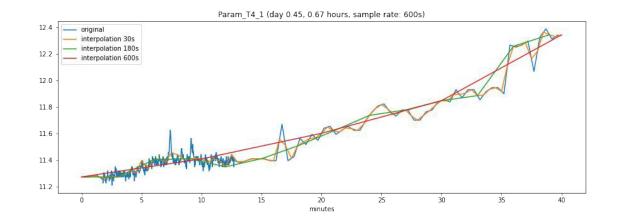
Constant Rate Resampling



Constant Rate Resampling

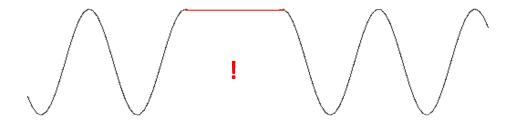
Solution: Resample to constant rates

- → Which sampling rate? Decision: different options (30 seconds, 3 minutes, 10 minutes)
- \rightarrow Interpolation to calculate resampled values



Gap Removal

Problem: Large gaps lead to inaccurate interpolation, which can hurt model performance



Solution: Remove time frames where one or more parameters have gaps \rightarrow What counts as a gap? Decision: 3 minutes between two samples

Data Split

- first 80% for training/validation, final 20% for testing
- forecasting horizon: 3 hours
- history size: 3 & 12 hours

Split with sliding windows:

Window 1	History			Forecast		
Window 2	History				Forecast	
Window 3		History				Forecast
		Time				

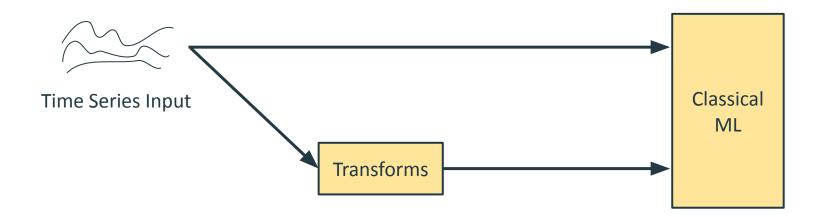
Outline

- 1. Problem Statement
- 2. Data Exploration
- 3. Forecasting Methods & Experiments
 - a. Classical Machine Learning
 - b. Classical Statistical Forecasting
 - c. Hybrid Methods
 - d. Deep Learning
 - e. Fuzzy Time Series Forecasting
- 4. Future Research

	Suitability	Implemen- tation	Tuning	Performance	Training data	Comp. Complexity	Explainability
Sequence-to-sequence architectur	1	1	0	0	-1	0	-2
Stacked architecture	-1	0	0	-1	0	1	-2
Vanilla CNN - Direct Approach	0	1	0	0	-1	0	-2
Vanilla LSTM/GRU - Direct Approa	1	1	0	0	-1	0	-2
Graph Neural Networks	0	1	0	0	-1	0	-2
Temporal Fusion Transformers	2	2	0,5	1	-1	0	0
Wavelet-Arima	1	0	1	2	0	-1	1
Exponential Smoothing	1	1	1	0	1	1	1
VAR	1	1	1	-1	1	1	2
ES-RNN	0	1	1	1	-1	0	-1
GRU-ODE-Bayes	-1	1	1	1	-1		-1
Latent ODE	-1	1	1	1	-1		-1
LSTM-Arima	1	0	0	0	-1	0	-1
Wavelet-Normalizing-Flow	0	0	1	0	2		-1
Pre-built feature-based traditional I	2	2	1	0	1	2	0
Feature-based NN applied directly	2	1	0		-1	0	-1
Pre-built feature-based ML model	2	1	0		1	1	0
Traditional Fuzzy Forecasting	1	2	-1	1	1	2	1
ANFIS	2	0	1	1	1	2	1

Classical Machine Learning

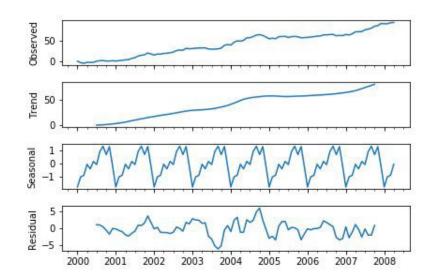
First Idea: Classical Machine Learning



Classical Statistical Forecasting

Classical Statistical Forecasting Methods

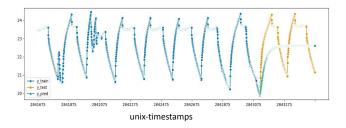
• Serves as a standard approach towards data modeling.



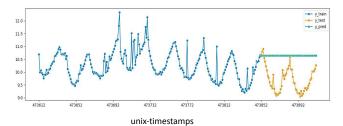
Key facts:

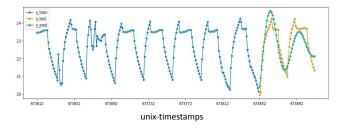
- + Interpretability
- + Low amount of data required
- Strict statistical assumptions
- Manually specifications, e.g., seasonality

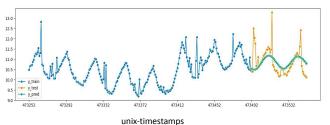
Baseline: AutoARIMA



T1_1, 30s, 12hr, 3hr, window 10







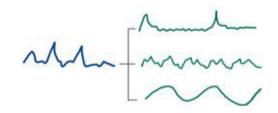
Hybrid Models

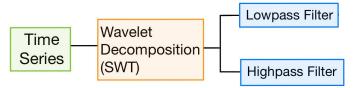
Hybrid Models Overview

- Combination of statistical methods with ANN architectures to overcome limitations of separate models
- Outperform many pure deep neural network architectures
- Pre-implemented models built to suit one/few specific datasets
 - \rightarrow not applicable for our purposes
 - \rightarrow create our own multi-step hybrid method

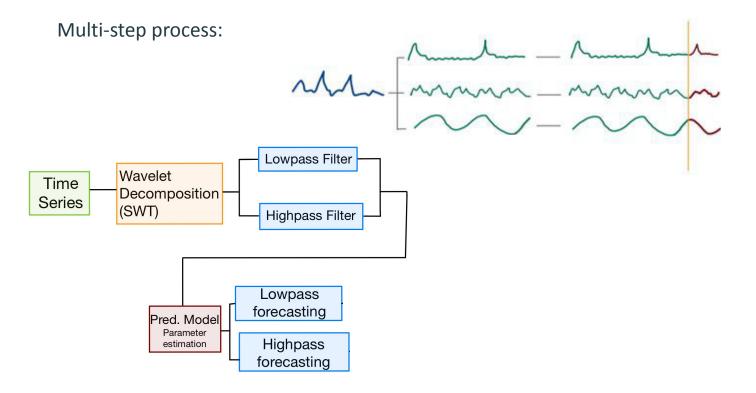
Wavelet Hybrid Method

Multi-step process:

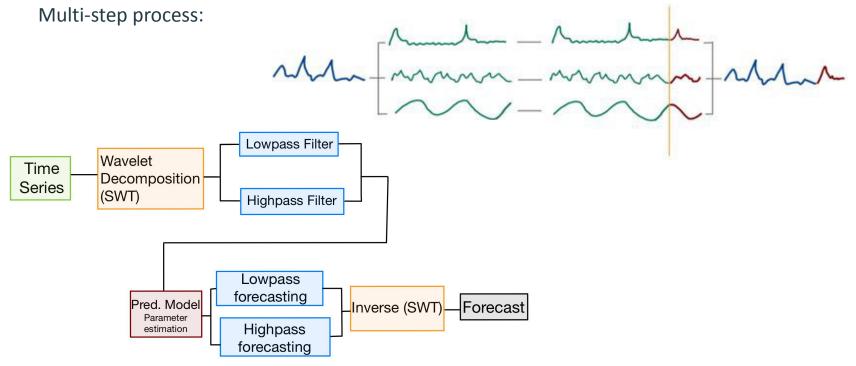




Wavelet Hybrid Method



Wavelet Hybrid Method

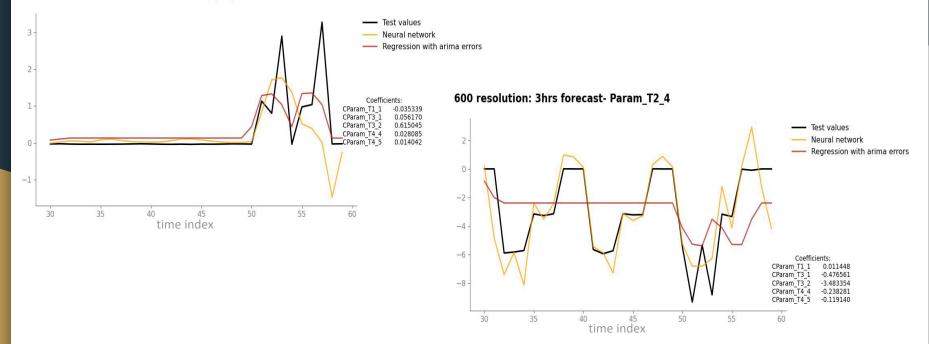


Wavelet + ARIMA & Wavelet + ANN

- First idea: Wavelets + ARIMA + Regressor to predict Wavelet coefficients
- Advanced approach: Wavelet + Multi-layer Perceptron

Wavelet Results

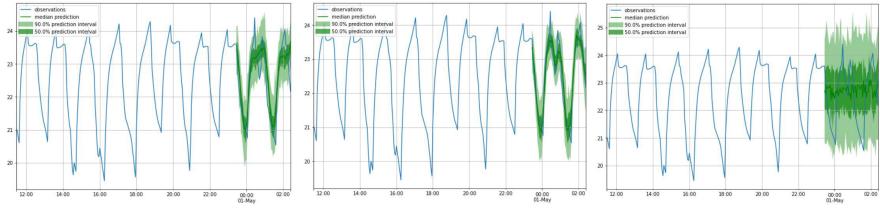
600 resolution: 3hrs forecast- Param_T2_1



Wavelet Temporal Conditioned Norm. Flow

- Probabilistic forecasting method: Model learns (conditional) probability distribution of the time series
- Capable of incorporating interaction effects
- Univariate and multivariate models available

Example Forecast Normalizing Flow



Unconditioned forecast

Forecast conditioned on few command parameters

Forecast conditioned on all command parameters

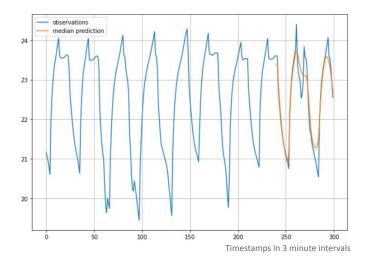
Results: Wavelet Normalizing Flow

observations

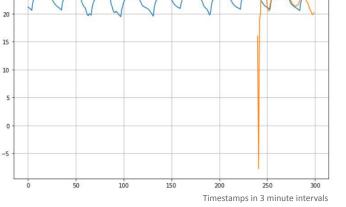
25

5

median prediction



Example forecast: multivariate wavelet normalizing flow

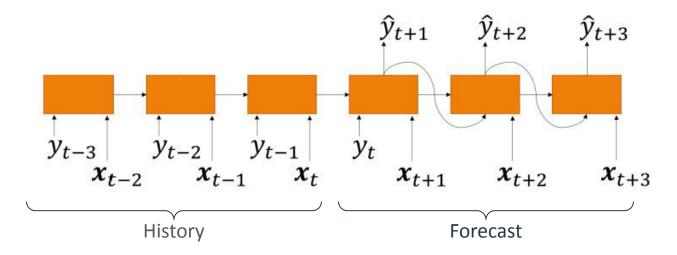


Example forecast: univariate wavelet normalizing flow

Deep Learning

Iterative Methods

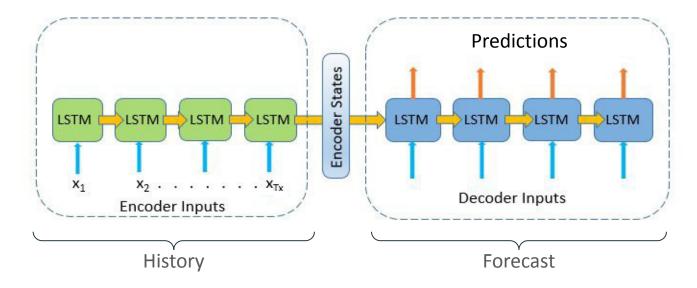
"Predict one step after the other" \rightarrow same model in each step



Direct Methods

"Predict all steps at once"

 \rightarrow Sequence-to-Sequence (Encoder-Decoder) architecture

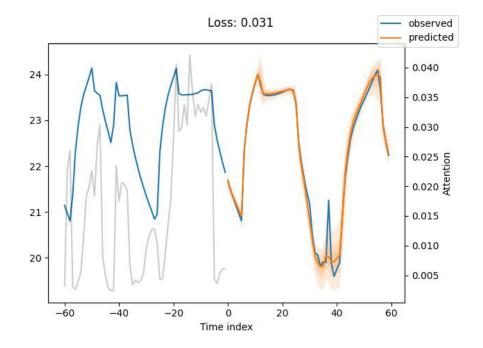


Direct Methods – Extensions

Additional concepts that have been used in time series forecasting:

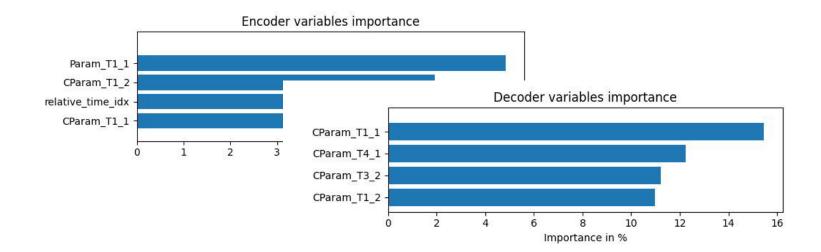
- Attention mechanisms
- Quantile forecasts
- Graph Neural Networks
- \rightarrow Method of choice: Temporal Fusion Transformer (TFT)

TFT: Forecast



TFT: Explainability

Explainability feature: How important was each parameter?

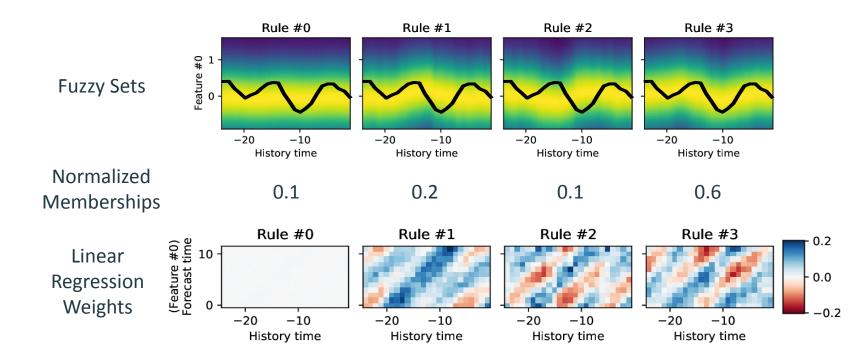


Fuzzy Time Series Forecasting

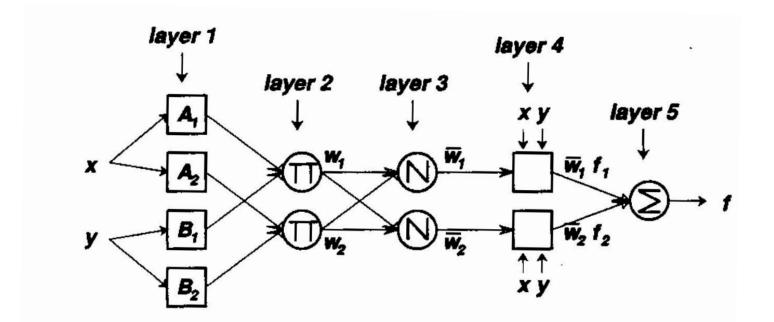
Fuzzy Sets



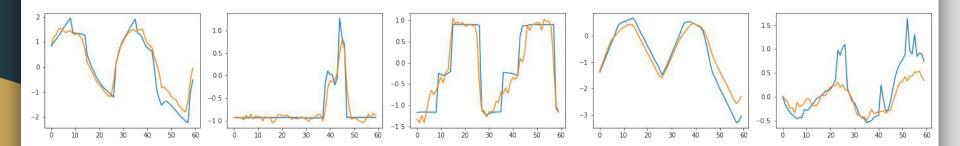
1.Ord. Sugeno Fuzzy TS Forecast.



Fuzzy meets Neural Networks: ANFIS



Sample Forecasts



Model Comparison

Model Comparison

Sampling		ARIMA	Wav-ARIMA	TFT	ANFIS	
3h	3h	30s	5.644	0.726	0.117	0.101
		180s	0.839	0.681	0.067	0.097
		600s	0.557	0.760	0.091	0.114
12h	3h	30s	0.799	0.662	0.123	-
		180s	0.517	0.685	0.084	-
		600s	0.475	0.509	0.095	-

Evaluation metric: MSE on normalized data

Outline

- 1. Problem Statement
- 2. Data Exploration
- 3. Forecasting Methods & Experiments
- 4. Future Research

Future Research

- 1) Temporal Fusion Transformer: Optimize hyperparameters
- Wavelet-ARIMA / Wavelet-ANN:Try combining the wavelet transform with a more complex neural network architecture

3) Wavelet-Normalizing-Flow:

Explore direct performance of the temporal conditioned normalizing flow on the parameters

4) ANFIS:

Investigate effect of amount of rules on accuracy & try to make the model more scalable