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Data Preprocessinĺ
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Constant Rate Resamplinĺ
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Constant Rate Resamplinĺ

Solution: Resample to constant rates

→ Which sampling rate? Decision: different options (30 seconds, 3 minutes, 10 minutes)

→ Interpolation to calculate resampled values
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Gap RemoǏal

Problem: Large gaps lead to inaccurate interpolation, which can hurt model performance
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!

Solution: Remove time frames where one or more parameters have gaps

→ What counts as a gap? Decision: 3 minutes between two samples



Data Split
● first 80% for training/validation, final 20% for testing

● forecasting horizon: 3 hours

● history size: 3 & 12 hours

Split with sliding windows:
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Window 3 History Forecast
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Classical Machine Learninĺ
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First Idea: Classical Machine Learninĺ
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Classical Statistical 
Forecastinĺ
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Key facts:

+ Interpretability

+ Low amount of data required

-  Strict statistical assumptions

- Manually specifications, e.g., seasonality

Classical Statistical Forecastinĺ Methods
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● Serves as a standard approach towards data modeling.



Baseline: AutoARIMA
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T1_1, 30s, 12hr, 3hr, window 10 T1_1, 180s, 12hr, 3hr, window 10

T4_1, 180s, 12hr, 3hr, window 4T4_1, 180s, 12hr, 3hr, window 10

unix-timestamps
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Hǖbrid Models
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Hǖbrid Models OǏerǏieǐ

● Combination of statistical methods with ANN architectures to overcome limitations 

of  separate models

● Outperform many pure deep neural network architectures

● Pre-implemented models built to suit one/few specific datasets

→ not applicable for our purposes

→ create our own multi-step hybrid method
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Multi-step process:

WaǏelet Hǖbrid Method
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Multi-step process:

WaǏelet Hǖbrid Method
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Multi-step process:

WaǏelet Hǖbrid Method



WaǏelet + ARIMA  &  WaǏelet + ANN

● First idea: Wavelets + ARIMA + Regressor to predict Wavelet coefficients

● Advanced approach: Wavelet + Multi-layer Perceptron
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WaǏelet Results
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WaǏelet Temporal Conditioned Norm. Floǐ

● Probabilistic forecasting method:

Model learns (conditional) probability distribution of the time series 

● Capable of incorporating interaction effects 

● Univariate and multivariate models available
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EǕample Forecast Normalizinĺ Floǐ
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Results: WaǏelet Normalizinĺ Floǐ
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Example forecast:
univariate wavelet
normalizing flow

Example forecast:
multivariate wavelet

normalizing flow
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Deep Learninĺ
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˯˭Lim et al., 2020. Time Series Forecasting With Deep Learning: A Survey.

History Forecast

IteratiǏe Methods

“Predict one step after the other”

→ same model in each step



Direct Methods

“Predict all steps at once”

→ Sequence-to-Sequence (Encoder-Decoder) architecture
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History Forecast

Predictions



Direct Methods – EǕtensions

Additional concepts that have been used in time series forecasting:

● Attention mechanisms

● Quantile forecasts

● Graph Neural Networks

→ Method of choice: Temporal Fusion Transformer (TFT)
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TFT: Forecast

˯˰



TFT: EǕplainabilitǖ

Explainability feature: How important was each parameter?
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Fuzzǖ Time Series 
Forecastinĺ
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Fuzzǖ Sets
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Fuzzy Sets

˭.Ord. Suĺeno Fuzzǖ TS Forecast.
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Linear 
Regression 

Weights

0.1
Normalized
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Fuzzǖ meets Neural Netǐorks: ANFIS

˯˵Jang, 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference System.



Sample Forecasts
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Model Comparison

˰˭



˰ˮ

Model Comparison

Evaluation metric: MSE on normalized data
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Future Research

1) Temporal Fusion Transformer:
Optimize hyperparameters

2) Wavelet-ARIMA / Wavelet-ANN:
Try combining the wavelet transform with a more complex neural network architecture

3) Wavelet-Normalizing-Flow:
Explore direct performance of the temporal conditioned normalizing flow on the parameters

4) ANFIS:
Investigate effect of amount of rules on accuracy & try to make the model more scalable
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