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Interdependence

(1) P21, C32 (2) P23, P41, C11, C31
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Constant Rate Resampling

Param_T4_1 (day 0.45, 0.67 hours, sample rate: 600s)
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Constant Rate Resampling

Solution: Resample to constant rates
— Which sampling rate? Decision: different options (30 seconds, 3 minutes, 10 minutes)
— Interpolation to calculate resampled values

Param_T4_1 (day 0.45, 0.67 hours, sample rate: 600s)

12.4 1 — original

~— interpolation 30s
—— interpolation 180s
—— interpolation 600s
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Gap Removal

Problem: Large gaps lead to inaccurate interpolation, which can hurt model performance

Solution: Remove time frames where one or more parameters have gaps
— What counts as a gap? Decision: 3 minutes between two samples
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Data Split

e first 80% for training/validation, final 20% for testing

e forecasting horizon: 3 hours
® history size: 3 & 12 hours

Split with sliding windows:

Window 1 History Forecast

Window 2 History Forecast

Window 3 Forecast

>
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First Idea: Classical Machine Learning

Time Series Input Classical
ML

Transforms

16







Seasonal Trend Observed
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Classical Statistical Forecasting Methods

® Serves as a standard approach towards data modeling.
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Key facts:

+ Interpretability
+ Low amount of data required

- Strict statistical assumptions
- Manually specifications, e.g., seasonality

18




<
>
nd
<
O
+
>
<

Baseline

o=y train
—o- ytest

unix-timestamps

unix-timestamps

unix-timestamps

unix-timestamps







Hybrid Models Overview

Combination of statistical methods with ANN architectures to overcome limitations
of separate models

e Outperform many pure deep neural network architectures

® Pre-implemented models built to suit one/few specific datasets
— not applicable for our purposes
— create our own multi-step hybrid method

21




Wavelet Hybrid Method

Multi-step process:

Lowpass Filter
e Wavelet N
. Decomposition
Series S - -
(SWT) Highpass Filter
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Wavelet Hybrid Method
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Wavelet Hybrid Method

Multi-step process:

Lowpass Filter
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Wavelet + ARIMA & Wavelet + ANN

e First idea: Wavelets + ARIMA + Regressor to predict Wavelet coefficients

e Advanced approach: Wavelet + Multi-layer Perceptron
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Wavelet Results
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Wavelet Temporal Conditioned Norm. Flow

Probabilistic forecasting method:
Model learns (conditional) probability distribution of the time series

e (Capable of incorporating interaction effects

Univariate and multivariate models available
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Example Forecast Normalizing Flow
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—— observations
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Results: Wavelet Normalizing Flow
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lterative Methods

“Predict one step after the other”
— same model in each step
Yt+3
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Lim et al., 2020. Time Series Forecasting With Deep Learning: A Survey. 31




Direct Methods

“Predict all steps at once”
— Sequence-to-Sequence (Encoder-Decoder) architecture

[Encoder States )

History Forecast




Direct Methods — Extensions

Additional concepts that have been used in time series forecasting:

e Attention mechanisms
® (Quantile forecasts
e Graph Neural Networks

— Method of choice: Temporal Fusion Transformer (TFT)
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TFT: Forecast
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TFT: Explainability

Explainability feature: How important was each parameter?

Encoder variables importance
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Fuzzy Sets
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Rule #0

Rule #1
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Fuzzy meets Neural Networks: ANFIS
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Jang, 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference System. 39
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Model Comparison

Sampling ARIMA | Wav-ARIMA | TFT | ANFIS
30s 5.644 0:726 0.117 | 0.101
3h | 3h | 180s | 0.839 0.681 0.067 | 0.097
600s | 0.557 0.760 0.091 | 0.114
30s 0.799 0.662 0.123 -
12h | 3h | 180s 0.517 0.685 0.084 -
600s | 0.475 0.509 0.095 -

Evaluation metric: MSE on normalized data
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2)

3)

4)

Future Research

Temporal Fusion Transformer:
Optimize hyperparameters

Wavelet-ARIMA / Wavelet-ANN:
Try combining the wavelet transform with a more complex neural network architecture

Wavelet-Normalizing-Flow:
Explore direct performance of the temporal conditioned normalizing flow on the parameters

ANFIS:
Investigate effect of amount of rules on accuracy & try to make the model more scalable
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