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Abstract

This report investigates the optimization of hot wall shapes in a channel flow simulation
to maximize the heat outflow, which is crucial in the aerospace and automotive industries
for efficient engine cooling and battery performance in electric vehicles. The optimization
utilizes a Smoothed Particle Hydrodynamics (SPH) solver and a Graph Network-based
Simulation (GNS) model. The SPH solver simulates fluid dynamics and heat transfer,
while the surrogate model, built on GNS, aims to provide stable gradients for optimization.
Gradient checkpointing and accumulation techniques are utilized to manage memory and
computational resources. While optimizing with the SPH solver, we compare optimization
with and without gradient accumulation, showing improvements in stability and efficiency
with the implementation of gradient accumulation. We observed that the simulation
converges to a specific type of shape with different initial conditions, which agrees with
theoretical analysis. Our results using the surrogate model can emulate the behavior of
the SPH solver to a certain extent, albeit with some limitations. Unlike the numerical
solver, the surrogate model condenses the equivalent of 100 SPH solver steps into each
surrogate model step, resulting in more stable gradients. We successfully executed the
surrogate simulation and computed the resulting loss.
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1 Introduction

The integration of Machine Learning with Computational Fluid Dynamics has evidently
seen great advances in recent years with the development of differential fluid mechanics
solvers such as PhiFlow [12] JAX-Fluids [4]. Design optimization is a key area where such
solvers can be utilized and where the availability of gradients is highly advantageous. To
expand the range of differentiable solvers, the implementation of a Smoothed Particle
Hydrodynamics (SPH) solver in JAX has been accomplished based on the formulation
presented in the work by [1].

In this project, we focus on optimizing the shape of the hot wall inside a channel flow sim-
ulation. This baseline scenario case holds relevance across a wide range of applications.
Effective management of heat diffusion and convection is critical in industries such as
aerospace and automotive, where it contributes to enhanced engine cooling and improved
battery performance in electric vehicles.

To optimize the hot wall shape of the fluid channel, we use either the SPH solver or its
respective surrogate model. For optimization we implement the methods used by [1] and
[2]. The key idea of SPH is to use a smoothing kernel and consequently calculate the
spatial derivatives only from interactions with neighboring particles. The experiments
from [2] conclude that Graph Neural Networks (GNNs) can now support gradient-based,
high-dimensional inverse design which demands high accuracy, well-behaved gradients,
long-term rollout stability, and generalization beyond the training data. Therefore, we
will not only use the SPH solver for the optimization but also a surrogate model as
explained further in 4, which is a graph network-based simulation [17]. This surrogate
model is trained on numerous simulations on a dataset of the SPH solver with different
shapes of the hot wall. In figure 1 you can see an overview of the general optimization
process.

Figure 1: Overview of the optimization process.

For optimization we employ the Adam optimizer [13]. We test our method with different
surface shapes selected as the initial condition of the degrees of freedom. We observed
that, with different initial conditions, the simulation converges to a specific type of shape.
The results also coincide with the theoretical analysis by [14]. We also observed that



2 PROBLEM DEFINITION 5

we obtained a more stable and accurate optimization with gradient accumulation. The
simulation of the trained surrogate model shows a decrease in evaluation and training
error while producing stable gradients.

In section 2, we introduce the numerical methods and inverse design optimization and
meticulously define the problem setup. Firstly, the optimization process and its results
with the SPH solver are presented in section 3. Then, an introduction to the surrogate
model and the process of optimization with it is presented in section 4. Finally, we con-
clude the project and give an outlook.

2 Problem Definition

2.1 Numerical Methods for Modeling Complex Dynamical Sys-
tems

Partial differential equations play an important role in describing the spatial and tem-
poral behavior of systems in engineering and physics. For simpler dynamical systems,
analytical solutions, if they exist, provide the most accurate solutions. However, most
dynamical systems are complex, and analytical solutions are often intractable or difficult
to compute. Therefore, popular numerical methods like finite elements or finite volumes
are essential to model such systems [20].

Broadly, numerical methods are classified into two primary approaches: Eulerian and
Lagrangian. Eulerian methods use grid-based or mesh-based methods. For example, in
our case of fluid flow, Eulerian methods use fixed grids or meshes to simulate fluid flow.
On the other hand, Lagrangian methods use particles or material points that move with
the local deformation of the continuum [21]. The difference between Eulerian and La-
grangian methods can be easily understood from Figure 2, which describes the Eulerian
and Lagrangian method of delivering a package from point A to point B.

SPH is a Lagrangian method, meaning that particles are not fixed in space but move
following the flow. The mesh-free characteristic of SPH renders it highly suitable for
modeling extremely dynamic and turbulent flows, such as tank sloshing, dam breaches,
nozzle flows, and similar scenarios [21]. SPH performs better when dealing with free sur-
face flows than in cases where the fluid is not entirely enclosed within the boundaries.
Also, the Lagrangian nature of SPH can automatically handle the interaction between
particles and boundaries, thus reducing efforts for preliminary work.

2.2 Inverse Design Optimization

Automatically designing objects to exhibit a desired property, often called inverse design,
holds the potential to revolutionize various fields such as aerodynamics, material science,
optics, and robotics. Through learned generative models or policies, these approaches
can suggest potential design parameters specific to a particular objective. While these
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Figure 2: Comparison of the Eulerian (top) and Lagrangian approaches (bottom) [10].

techniques excel at solving specific tasks with greater efficiency compared to conventional
methods, they are not without their limitations. They rely on access to a dataset compris-
ing example designs and tasks for training and often struggle to adapt to tasks or designs
beyond this predefined scope. A category of learned physics simulators utilizing Graph
Neural Networks (GNNs) emerges as a promising solution to support inverse design [2].

We take inspiration from [2] for our design optimization task. In the paper, high dimen-
sional fluid manipulation experiments demonstrate that gradient-based optimization on
learned models can find high-quality designs over hundreds of time steps.

The idea proposed in [2] is implemented to suit the use case. The SPH solver is used as a
baseline, and a learned GNN is used to evaluate the comparisons. The idea of maximizing
the reward function is implemented, where the main goal is maximizing the heat outflow
(Q). Similar to the paper, we are interested in evaluating the gradient-based optimization
methods (e.g., we are using Adam instead of SGD), which require fewer function evalua-
tions and scale better to large design spaces than sampling-based techniques. Our design
parameters are denoted by ϕ, which are the degrees of freedom or the z-coordinates of
the particles. We employ a gradient-based reward function optimization by finding the
design parameters ϕ∗ that maximize the loss function ϕ∗ = argmax(Q). We use Adam
optimizer to find ϕ∗ by computing the gradient ∇ϕQ(ϕ). This involves backpropagating
gradients through the loss function.

Similar to [2], we evaluate the quality of the optimized design ϕ∗ using the ground truth
objective Q(ϕ∗).

2.3 Setup

The setup of our optimization is a channel with a hot wall at the bottom. The particles
pick up the heat and gain temperature as the fluid flows over this wall. The goal is to
optimize the wall shape to maximize the heat outflow between the inlet and outlet of the
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channel. The degrees of freedom for the design problem are given by the surface structure
on the flat plate. More precisely, the degrees of freedom ϕ are the z-co-ordinates of the
particles, representing the part of the channel, which is heated as seen in Figure 3, where
the position of the red particles is referred to as the hot wall. All SPH visualizations are
created using the open source software, ParaView [16] for which a brief introduction is
described in 6.

Figure 3: The vertical displacement of the red points on the bottom corresponds to the
degree of freedom ϕ. The blue points are the fluid particles, and the white points represent
the non-slip walls.

In the SPH solver, we need to run 2000 simulation steps for the optimization because
the information of our design parameter, the wall shape, has to be transferred to the
heat outflow, which is our design objective. This is also approximately the number of
steps the simulation needs to reach a steady state. The time steps are bounded by the
Courant-Friedrichs-Lewy (CFL) condition [9] and cannot be arbitrarily large otherwise,
the simulation becomes unstable. This can potentially lead to unstable gradients.

3 Optimization using SPH Solver

In this section, we introduce the optimization of the hot wall using the SPH solver. We
first discuss the intricacies of the solver, focusing on the smoothing kernel approximation,
the governing equations, and the numerical schemes used. We then give an outlook of the
loss function evaluation. We also introduce the techniques of gradient checkpointing and
gradient accumulation we implemented. Finally, we discuss the results we obtained.
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Figure 4: Simulation part of the optimization process in Figure 1 with the SPH solver.

3.1 Methodology

3.1.1 SPH Solver

SPH [1] is a technique that does not rely on grids and instead uses a smoothing kernel to
estimate field properties at various points (particles) and then moves these points based
on their local velocities. This method calculates spatial derivatives based on interactions
with nearby particles only, thanks to the smoothing effect. Typically, the smoothing ker-
nel has a limited range of influence to reduce the number of particle interactions, and it
approximates Dirac masses to ensure accurate space discretization.

Smoothing Kernel Approximation

In the particle model, the Dirac function turns the mass in space into a superposition of
multiple impulse functions. Thus, any scalar field function in space can be represented as
a convolution of the Dirac kernel and itself [15].

A(r) =

∫
A(r’)δ(r-r’)dr’ (1)

However, we cannot use the Dirac function for simulation because the Dirac function is
a generalized function and cannot be used to perform a numerical integration. We can
define a continuous kernel function to approximate the process of the Dirac function so
that the field can be numerically integrated in a continuous space. Hence, we use a quintic
spline kernel in our project. This is a compactly supported kernel, and at each position,
neighboring particles contribute to the interpolated quantities at each position.

The interpolated value of a function A at position r is given by [7]

A(r) =
∑
b

mb
Ab

ρb
W (r− rb, h). (2)

Then the gradient of A is obtained by taking the differential of the interpolated formula
[7],

∇A(r) =
∑
b

mb
Ab

ρb
∇W (r− rb, h) (3)

The SPH solver offers convenience by eliminating the necessity for individual function
values for each particle. Instead, it allows for direct calculation. For instance, when
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determining mass density, we can approximate density using the mass and kernel function
[7]

ρa =
∑
b

ρbWab, (4)

where we can see that our density estimate only relies on discrete mass and kernel function.

Governing Equations and Numerical Schemes

In our project, the equations of motion, as well as the temperature are integrated in time
with an explicit Euler scheme:

vn+1
a = vn

a +∆t

(
dvn

a

dt

)
(5)

rn+1
a = rna +∆tvn

a (6)

T n+1
a = T n

a +∆t

(
dT n

a

dt

)
(7)

Then it remains to give an SPH momentum equation to compute dv
dt

and an SPH energy
equation to compute dT

dt
in each time step.

To compute discretized momentum equation, we start with the inter-particle-averaged
shear viscosity (harmonic mean) given by [1],

η̃ij =
2ηiηj

ηi + ηj + ϵ
(8)

and the density-weighted pressure (weighted arithmetic mean) is given by [1],

p̃ij =
ρjpi + ρipj
ρi + ρj

. (9)

The discretized momentum equation is given by [1],

dvi

dt
=

∑
j

(
mi

ρi

)2

+
(

mj

ρj

)2

mi(dij + ϵ)
(−p̃ijrij + η̃ijvij)∇Wij (10)

where rij = ri − rj and vij = vi − vj. The SPH energy equation below ensures that the
heat flux is automatically continuous across material interfaces [8].

dUa

dt
=

∑
b

4mb

ρaρb

kakb
ka + kb

Tab
rab∇aWab

r2ab + η2
(11)
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3.1.2 Loss Function

The loss function is a crucial metric that quantifies a model’s performance by measuring
the cost of its predictions. It plays a central role in guiding the model’s training process.
To optimize the model’s parameters and improve its accuracy, the gradient of the loss
function is computed, making it necessary for the loss function to be differentiable. This
gradient guides optimization algorithms in adjusting the model’s parameters to minimize
errors. To find the best parameters for a particular task, we minimize an appropriate
loss function specifically defined for that task. In the context of optimizing the hot wall’s
shape, our loss function assesses heat flow within the channel. This involves evaluating
heat outflow in the system and using it to calculate the loss.

Heat Outflow Formulation

Various formulations exist to define the heat outflow (Q) in a channel. We evaluate
Q using the formula in 12. We calculate the heat flow for each particle i and evaluate the
total heat outflow via a summation over n particles. We use an interpolator to evaluate
the corresponding quantities at target points. The interpolator function takes the state
of an SPH simulation and interpolates a specific property to a set of target points on
the mesh grid. It uses the current state of the system and target points to interpolate
values for temperature (T), density (ρ), and the x-component of velocity (ux). These
interpolated values are then used to compute the heat outflow:

Q =
n∑

i=1

ρiuxi
∆Ti (12)

where,
ρ is the density of the particles.
ux is the velocity of the particles in the x-direction.
∆T is the change in temperature.

Loss Function

An iterative process simulates the system’s dynamics over time, allowing for the accumu-
lation of heat outflow effects. Within the loss function, a loop runs for a fixed number of
iterations/steps, during which the system’s state and neighbor relationships are updated.
This represents the evolution of the system. Additionally, a smoothing factor is applied
to the hot wall. By smoothing the parameters, we can reduce the generation of local
optima. The algorithm used in our code to evaluate the loss function is shown in 1.

3.1.3 Gradient Checkpointing and Gradient Accumulation

In the loss function, heat outflow is computed by simulating for 2000 steps with the SPH
solver and the heat flow value is obtained at the last step. We also need to compute the
gradient of the loss by backpropagation. This part requires significant memory and com-
putation resources. To reduce required memory, two memory-saving methods, gradient
checkpointing and gradient accumulation are used.
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Algorithm 1 Loss function evaluation

1. Determine the initial position r of particles based on a predefined 2D wall shape
2. Update initial position r using 6
4. Update the state of the system using a time evolution function as in 4 5 7, resulting
in the final state of the system.
5. Define a set of target points r target.
6. Interpolate the properties (u,ρ,T) at r target and calculate Q using Equation 12.
7. Derive a smoothed loss function: (Smoothing factor) ∗ (hwi+1)

2 − (hwi)
2.

10. Calculate the total loss.

Gradient Checkpointing

For a basic feed-forward neural network comprising of n layers, the computation graph
used to derive gradients appears as follows:

Figure 5: Computing of gradient without checkpointing.

The nodes marked with ‘f’ in Figure 5 correspond to the activations of neural network lay-
ers. Throughout the forward pass, these nodes are sequentially evaluated. Nodes labeled
‘b’ represent the gradient of the loss concerning activations and parameters of these layers.
During the backward pass, these nodes are assessed in reverse order. Results obtained for
the ‘f’ nodes are essential for computing the ‘b’ nodes; thus, all ‘f’ nodes are retained in
memory following the forward pass. An ‘f’ node can only be erased from memory once
backpropagation has advanced enough to compute all dependencies or children of that
‘f’ node. Consequently, the memory required by simple backpropagation grows linearly
with the number of neural net layers, n. The order in which these nodes are computed is
illustrated below, with purple shaded circles as seen in Figure 6 indicating which nodes
need to be stored in memory at any given time.

Simple backpropagation, as described above, is optimal in terms of computation since it
evaluates each node only once. However, by allowing nodes to be recomputed, significant
memory savings are possible [6]. For instance, we could simply recalculate every node
from the forward pass whenever required. The order of execution and the associated
memory usage would then appear as seen in 6:
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Figure 6: Computing of gradient with checkpointing.

By employing this strategy [6], the memory necessary to compute gradients in our graph
remains constant with respect to the number of neural network layers, n, which is memory-
optimal. However, it is worth noting that the number of node evaluations now scales with
n2, compared to the previous linear scaling of n: each of the n nodes is recomputed ap-
proximately n times. Consequently, the computation graph becomes substantially slower
to evaluate for deep networks, rendering this method impractical for deep learning. To
achieve a balance between memory and computation, a strategy allowing nodes to be re-
computed, but not excessively, is required. The approach adopted here involves marking
a subset of the neural net activations as checkpoint nodes.

Gradient computation with checkpointing

1. We set two checkpoints, bubble 7 and bubble 3 on the first row of the graph.

2. The forward propagation has been completed and the backpropagation begins as
seen in Figure 7, i.e., the backpropagation starts from bubble 1 in the lower row.

3. We come to bubble 2 in the lower row, which relies on bubble 3 above to calcu-
late (recall that the backward propagation calculation requires the output of the
forward calculation). Bubble 3 is the checkpoint, which exists in memory, so the
backpropagation is performed normally.

4. We come to bubble 4 in the lower row, which relies on bubble 5 on the top to
calculate. Bubble 5 is not a checkpoint, not in memory, and needs to be recalculated
by the checkpoint in front of it, that is, from bubble 7. Calculate a new checkpoint,
and delete the original bubble 5 on the top row because it is no longer needed.

5. The new bubble 4 below is calculated to continue the backward calculation.

Figure 7: The process of gradient checkpointing.

Gradient Accumulation
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If the memory requested by the model exceeds the actual RAM size of the device, an Out
of Memory error is reported. This can also happen when many gradients need to be stored
for backpropagation, which is the case in our project. One solution is to use gradient ac-
cumulation, in which the gradients are aggregated or summed together in mini-batches
before updating the model parameters as seen in 8.
Gradient accumulation, as described [11], involves accumulating gradient values com-
puted multiple times and then updating the parameters collectively. In scenarios with
large datasets, such as ours, where numerous gradients are involved, insufficient memory
necessitates dividing it into multiple smaller mini-batches. The gradients computed re-
peatedly are accumulated, after which the parameters are updated. In short, extending
the training time in exchange for being able to track many gradients.

When using global batch training, the parameter update formula is:

Vt = Vt−1 − learning rate× gradient. (13)

When using gradient accumulation the parameter update formula becomes:

Vt = Vt−1 − learning rate×
∑
i

gradienti. (14)

Figure 8: Gradient accumulation.

3.2 Results

We performed optimization using the SPH solver. The overview of the approach can be
seen in Figure 4. In the training process, we first draw the displacement from a uniform
distribution from -0.01 to 0.01. Then the hyperparameters are set as seen in table 1:
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Table 1: Table of hyperparameters.

Hyperparameter Value
Learning rate 2e-2
Smoothing factor 5e-2
Simulation steps 2000
Batch size 200
Epochs 10

The heat outflow and hot wall shape are recorded in each Adam optimization step, and
plots of them are as follows:

Case 1: Optimization with the flat initialization

The process of optimization is presented in Figure 17 and a simulation of the heat outflow
with and without gradient accumulation is presented in Figure 9.

Figure 9: Simulation of the negative heat outflow with and without gradient accumulation.

From the result, we can see that we obtain a more stationary and accurate optimization
with gradient accumulation. In our experiment, the time spent without gradient accumu-
lation is 467.57 s. However, the time spent with gradient accumulation is 1034.42s. This
is observed because although intermediate values are saved, more intermediate steps are
generated in gradient accumulation. In the following cases, we will only do experiments
and show the result with gradient accumulation because the convergence behavior with
gradient accumulation is better.

Case 2: Optimization with a randomized initialization
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The process of optimization with a randomized initialization is presented in Figure 18. It
shows an oscillation in the beginning steps and then convergence to a “W”-like shape.

Case 3: Optimization with a monotonically increasing initialization

The process of optimization with a monotonically increasing initialization is presented
by Figure19. In this case, the heat outflow still decreases with an oscillation during the
optimization, and the result of the wall shape is that there is a higher inclination on the
right side of the hot wall compared to the left.

Case 4: Optimization with sine function initialization

The process of optimization with a sine function initialization is presented in Figure 20.
The graph of the heat outflow simulation presents that the convergence is not as good as
that in other cases. From the plotted intermediate and final hot wall, we can see that the
shape still remains a sine shape between the two ends, and the amplitude is becoming
smaller. From these results, we can conclude that the initialization of the hot wall shape
has a big effect on the resulting optimized shape and that our optimization is limited to
some degree.

Lastly, a comparison of heat outflow simulation during the optimization process with
different initializations is shown in Figure 10. During the initial optimization stages,

Figure 10: Simulation of heat outflow with different initializations.

simulations exhibit a monotonically decreasing trend when initialized with a flat configu-
ration. However, in cases with alternative initializations, oscillations occur initially. This
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discrepancy may arise from significant variations in vertical displacement across different
points, leading to the smoothed loss function becoming influential and competing with the
heat outflow component of the loss function. The parameter ϕ targeted for optimization
converges to a shape resembling the letter “W” across various scenarios.

For all our initialization cases, we achieved approximately double the heat outflow of our
channel, as seen in figure 10, which is commendable. Especially as we have very different
initial shapes and also because the resulting shapes do not all look similar.

The theoretical best shape for such a problem was outlined in [14] and matches with the
W shape we observed although not with the results from the sine function and the lin-
early increasing function. The simulation with flat and randomized initialization reaches
the theoretically optimized surface shape. Considering that the simulated graph with
flat initialization is much more stationary, we conclude that the flat wall gives the best
optimization.

4 Optimization using Surrogate Model

We not only used the SPH solver to optimize the hot wall, but we also trained a surrogate
model of the SPH solver to potentially obtain more stable gradients for the optimization
process. In this chapter, we first discuss the theoretical background of the surrogate
model, then explain how we generated the training data for the surrogate model and how
we trained our model using it. The resulting model is then verified and analyzed. Finally,
the process of optimization with the surrogate model is outlined.

4.1 Surrogate Model of the SPH solver

4.1.1 Graph Network-based Simulator

Our work focuses specifically on thermal and fluid flow physics while providing a machine
learning model applicable to the Lagrangian method. Lagrangian machine learning has
evolved to the point that now we are able to leverage graph-networks (GN) formalism,
improving the network architecture and achieving great performance on control tasks.
The work is an extension of the implementation of the Lagrangian method by [21] to fluid
systems to predict thermal data along with dynamic motion data.

Before understanding the Graph Network-based simulator(GNS), we would like to for-
malize the learning problem. The task at hand is the autoregressive prediction of the
next state of a Lagrangian flow field. SPH involves particles moving in tandem with local
flow velocities, embodying a genuine Lagrangian approach. Lagrangian Machine Learn-
ing has evolved thus allowing us to leverage graph-based representations like Interaction
Networks and hierarchical versions, especially through graph networks (GN) [20].

GNNs were chosen for Lagrangian machine learning due to their innate suitability for
point cloud data, facilitating the representation of relational information between nodes
and local neighborhood interactions. The GNS model, a popular surrogate model, utilizes
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an encoder-processor-decoder architecture. GNS has shown effectiveness in 2D and 3D
particle systems modeling, especially with generalized cases created by adding Gaussian
noise to data [21].

4.1.2 Training Data Acquisition from Numerical Simulation

To train the surrogate model of numerical simulation, sufficient training data must be
available. In our case, we use the SPH solver to generate training data. Initialization
with a different boundary condition, different ways of defining this boundary condition,
and constraints imposed on it are discussed below.

Hot wall Shape Adjustment

The original SPH implementation, which was based on [1] did not allow custom initial-
ization of the hot wall boundary. We have modified the code to enable the shape of the
hot wall boundary to be changed. One possibility we explored is to change the tags of
particles, which consist of the moving fluid particles, the hot wall, and the non-slip wall,
according to the shape of the hot wall. However, this results in a different total num-
ber of fluid particles. JAX [5] is a functional numerical computing library and needs to
know the size of the data set, i.e. the number of particles, beforehand. To exploit the
full computational potential of JAX, we found a way to keep the number of all particles
constant for different wall shapes. The solution is to change the position of the fluid
particles according to the hot wall offset. Specifically, for a positive hot wall offset, the
channel becomes thinner, and the same number of fluid particles are distributed over a
shorter line, as can be seen in figure 11a. This results in an initial configuration that is
not physical. Fluid particles have less density when moving faster in smaller enclosures,
which is the opposite of what happens with this initialization. However, after the first
few frames, the numerical simulation reaches a physically meaningful state, see figure 11b.
Therefore, the first 200-300 steps of the SPH simulation are not used to train the GNS
model.

(a) (b)

Figure 11: Example of initializing the hot wall with a sine function. The blue particles
are the fluid particles, the white particles represent the non-slip, and the red particles
represent the hot wall. In a) the particle position directly after initialization is shown,
and in b) the fluid particles are shown after the fluid particles are properly distributed.
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Definition of the Hot Wall Shape

There are multiple methods for defining the configuration of the hot wall. One approach
involves choosing from a predefined set of 10 distinct functions. These functions have been
specifically designed to cover a variety of patterns, primarily aligning with trigonometric
forms in line with Fourier series principles. The first two functions ensure a consistent
hot wall, one with no offset and the other with a maximum offset. Following that, there
are seven functions that incorporate variations of sine and cosine waves at different fre-
quencies, in addition to one linear function.

To enhance flexibility in defining the hot wall, an additional method has been incorpo-
rated. This method enables direct manipulation of the hot wall array within the codebase
itself or by passing the array as a script parameter. Moreover, recognizing the necessity
for an ample amount of training data, an automated generation of diverse hot wall shapes
was implemented. Specifically, we employ a uniform distribution to determine each point
along the hot wall randomly. Consequently, the various points are entirely independent
of one another.

Constraints on the Hot Wall Shape

A constraint is imposed on the offset to ensure minimal interference of the hot wall shape
with fluid flow. This constraint defines maximum and minimum values for the offset.
Another potential issue, particularly with a pseudo-randomly generated hot wall, is an
excessive fluctuation that might challenge the SPH solver. As detailed in 3.1.1, the SPH
solver requires a radius of 3 particles in each direction. This stipulation ensures that the
transition between consecutive particles defining the hot wall is limited by the size of two
particles.

Composition of the Training Data

• Dataset generated for training: Comparing our scenario to [21], our case is similar
to 2D TGV case. In our case, we have different shapes of the hot wall (i.e., initial
conditions or trajectory count) and a trajectory length that includes data from the
steady-state simulation. Basing our scenario similar to 2D TGV, we decided on
having around 200 trajectory counts, i.e., train = 100, valid = 50, test = 50 and a
trajectory length of 147.

Table 2: Datasets overview: Trajectory Count is used to split into training, validation,
and testing datasets.

Dataset Particle Number Trajectory Length Trajectory Count ∆t× 10−3 ∆x× 10−3 L×H

2D TGV 2500 126 100/50/50 40 20 1× 1
2D HT 950 147 100/50/50 40 20 1× 0.38

• Data pre-processing: This process includes the computation of important statistical
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metrics like mean and standard deviation for parameters including position, velocity,
acceleration, temperature, and temperature difference. Thus, the raw data obtained
from the SPH solver is transformed into structured sets for train, valid, test datasets.
These datasets are in H5 file formats. This approach ensures the integrity and
richness of the dataset, allowing ease in modeling and analysis.

4.1.3 GNS Surrogate Modelling with LagrangeBench

In our SPH study comprising thermal and fluid dynamics, the machine learning task
involves predicting future positions and temperatures of fluid. To perform the machine
learning task, we utilize the popular package of LagrangeBench [19] available for predic-
tions of position for fluid and extend it to predict temperatures as well [21]. This problem
formulation requires leveraging an input of some number of initial trajectories, denoted
as input-seq-length(typically set to 6) to predict subsequent time steps, denoted by extra-
seq-length (default value set to 20). In short, we use the initial 6 trajectories to predict
the positions and temperatures of the next 20 steps.

As in Lagrangian methodology, fluid particles are considered individually, we employ the
Euler integrator function or equations of motion as in 15 to extrapolate motion dynam-
ics for position predictions. This entails using GNS architecture, which utilizes velocity,
boundary information, and forces as node features and relative distance and displacement
as edge features to predict accelerations. Subsequently, these predicted accelerations are
utilized to compute the particle’s position, and a comparison is drawn to ground truth
values to compute training and validation losses.

v =
dx

dt
and a =

dv

dt
=

d2x

dt2
. (15)

Similarly, the task extends to predicting temperatures within SPH. Here, the network
utilizes velocities and temperature difference magnitudes as node features and, again, rel-
ative distance and displacement as edge features to predict the temperature differences.
Mirroring the methodology used for position predictions, we utilize the fundamental heat
equation as in 16 to compute the effects of advection and diffusion on temperature itera-
tively using predicted velocities and temperature differences.

∂T

∂t
+ (u · ∇)T = α∇2T. (16)

We chose mean square error(MSE) as in 17 to test the performance of the model. While
training the model, we used a combined MSE loss. On the other hand, we observed
separate validation losses during validation to provide us with results of position and
temperatures.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (17)
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4.1.4 Results

For training the data, we use our train data set, which comprises 100 distinct trajectories,
each spanning a trajectory length of 147 discrete time steps. Drawing inspiration from
the seminal work of [21], we begin calibrating our hyperparameters for the training case
similar to 2D TGV simulations. The following are the important hyperparameters set:

• Learning rate: Started at 10e-4, decay rate as 0.1 and final learning rate as 10e-6

• Number of MLP layers: 2

• Latent Dimension: 128

• Standard deviation for additive noise: 0.0003.

We set the maximum steps of training iterations to 500000, where we meticulously log
training error at every 1000th step. Simultaneously, we evaluate the evolution of validation
loss at every 10000th step. This methodology lets us discern the optimal duration required
to train our model effectively all while avoiding the chances of overfitting the data. From
the intricate analysis presented in Figure 12, Figure 13, and Figure 14, we extrapolate
the duration for training. Our twofold objective of mitigating the risk of overfitting while
attaining the most favorable validation loss ensures the selection of the surrogate model.

Figure 12: Training loss curve for maximum steps = 500000.

4.2 Analysis and Visualization of Test Data

Following the training phase, we utilized the best model to infer the test dataset. This
allows the visualization of results in ParaView. Notably, the simulated trajectory derived
from the predicted results exhibits a commendable semblance to ground truth within the
initial temporal frames (0-15). However, an appreciable disparity between predicted and
ground truth trajectories emerged during subsequent time frames(15-25). This discrep-
ancy required a comprehensive exploration of various factors. This can be seen from the
comparison of predicted and ground truth trajectory images in Figure 25 from 6
Among the considerations, foremost, was the phenomenon of fluid re-circulation for simu-
lation and its effects on prediction values. An important factor in temperature prediction
is the methodology used to compute temperature from GNS-predicted accelerations and
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Figure 13: Position validation loss to determine the number of maximum steps using
MSE, MSE1, MSE5, MSE10 at 1, 5, 10, and 20th steps.

Figure 14: Temperature validation loss to determine the number of maximum steps using
MSE, MSE1, MSE5, MSE10 at 1, 5, 10, and 20th steps.
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temperature differences. We see the effect on validation loss using different weights for
advection and diffusion.

Hence, further work in the form of utilizing other features for prediction in the GNS
network or a better methodology to compute temperatures will allow us to simulate the
behavior of fluid in a much better way.

4.3 Analysis of Hyperparameters

We further analyze the effects of hyperparameters like latent dimension and standard ad-
ditive noise used in our model. Figure 21 and 22 show hyperparameter changes’ effects on
position and validation losses. The effect of additive noise is much more evident or easy
to compare when it comes to position validation loss compared to temperature validation
loss, which can be observed from Figure 21 and Figure 22 in 6. But we can compare the
effects of standard deviation for additive noise using a combined validation as shown in
Figure 15a. The change in the loss is less when the standard deviation for additive noise
is very low (e.g., std-dev: 0.00003), while when it is increased to, say, 0.3, we see a sudden
increase in loss for both position and temperature. The changes are much more evident
in position loss than temperature loss for low noise values.

Also, we observed the effects of latent dimension changes on the loss. For a low value of
a latent dimension, i.e., 32 in our case, we get a higher loss initially than when we have
higher values like 128 and 256, as seen in Figure 15b. Additionally, we observe that the
loss in each case (changes in latent dimension values) converges to comparable values. It
is just the maximum number of steps that are required for changes. This is evident from
Figures 23 and 24 in 6. After comparing the models with test data, we decided on using
latent dimension 128 for our model.

4.4 Optimization using the Surrogate Model

Integrating the surrogate model into the optimization process involves several steps. Fig-
ure 16 provides an overview of these steps essential for using the surrogate model within
our optimization framework.

Initially, the SPH solver simulation must run for about 300 steps to ensure that equi-
librium is reached. This is particularly important given the absence of this non-physical
initialization step in our training data. This preliminary step is essential for traditional
SPH optimization and the surrogate model approach. Subsequently, additional simulation
steps are performed to generate sufficient data for initialization. This data is then stored
in a VTK file and processed similarly to the surrogate model training data. Specifically,
the H5 files from the rollouts are merged into a single H5 file to form a comprehensive
dictionary. The simulation is ready to run with this prepared H5 file and the trained
surrogate model. Notably, only 20 simulation steps are required for the surrogate model,
which is equivalent to 2000 SPH simulation steps.
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(a) Effect of additive noise on test data

(b) Effect of latent dimension on test data

Figure 15: Effect of hyperparameters: standard deviation of additive noise and latent
dimension on test data.

Figure 16: Simulation part of the optimization process for the surrogate model.
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Once the inference is complete, the results are saved and processed further to ensure
compatibility with the existing loss calculation from the optimization code. While these
preparatory steps have been completed, problems remain with the gradients and the op-
timization process.

In theory, with this processed data, we should be able to calculate the loss function
and execute the optimization. Our attempts were unsuccessful as we encountered an
error that we were unable to interpret at this juncture.

5 Conclusions

Summary of Results

In this project, we implemented two methods to optimize the shape of a hot wall in a fluid
channel. The main objective is to obtain an optimal shape of the hot wall to maximize the
heat outflow. One method covered the implementation using a Smoothed Particle Hydro-
dynamics (SPH) solver using methods put forward by [2] and [1]. The second approach
involves training a surrogate model of the SPH solver to obtain more stable gradients for
the optimization process.

Regarding optimization with the SPH solver, we performed the optimization with four
different initialization cases: with a flat, randomized, monotonically increasing, and using
a sine function. We can conclude that a similar surface shape is obtained with varying
initialization cases, and it presents a convergence in optimization steps. However, the
time steps are bound by CFL number, which binds the stability of the simulation, con-
sequently leading to unstable gradients. We used gradient checkpointing and gradient
accumulation to manage memory and computational resources. Results were compared
with and without gradient accumulation. The optimization with gradient accumulation
shows improvements in stability and accuracy.

The idea of this project was, as suggested by [2], this project’s idea was to use a surrogate
model of the numerical solver in addition to the numerical solver to have more stable
gradients. This surrogate model is a Graph Network-based Simulator (GNS) trained on
numerical simulations of the SPH solver with different hot wall shapes. Only every 100th

frame of the rollout is used for the training to ensure easier backpropagation of gradi-
ents. During training, the surrogate model shows the reduction of training and validation
loss with the number of steps as expected from a machine learning model. However,
there are still some discrepancies between the trained model and the ground truth. This
will probably require more feature engineering and trying out other models. Integrat-
ing the surrogate model into the optimization process involves several steps. While we
have successfully completed replacing the SPH solver with the surrogate model in our
implementation, we have encountered some mistakes in the gradient optimization that,
unfortunately, we have not been able to resolve.
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Future Work

Regarding optimization with the SPH solver, further experiments can be conducted. One
potential area for extending the project involves applying the methodologies outlined in
this report to other domains or expanding its scope to three-dimensional simulations.

Regarding the surrogate model, there are a few ways the model could be enhanced. Firstly,
more hyperparameter training of the GNS and other integrate functions(function name
is as used in code) can be adapted for the rollout. Another idea is to replace the trained
temperature modeling with an analytical expression similar to the one in the SPH solver.
This would make the inference more stable. Also, instead of using a standard GNS model,
better GNNs like E(n)-equivariant Graph Neural Networks (EGNNs) [21] or Steerable
E(n)-equivariant Graph Neural Networks (SEGNNs) with Historical Attribute Embed-
ding (HAE) [20].

The optimization procedure utilizing the surrogate model is currently experiencing debug-
ging challenges and demands a more diagnostic approach for resolution. Because of time
limitations, we directed our attention to other matters, leaving the task for future investi-
gation and continuation from where we left off. Additionally, we can enhance optimization
outcomes by modifying the GNS network within the surrogate model.
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6 Appendices

The Optimization of the Hot Wall Shape with Different Initial-
izations

This part of the appendix shows the different results of the hot wall shape optimization
process. They all start with a different initial hot wall shape, which is then updated during
the optimization process. For each case, the initial state, an intermediate state, and the
final state are shown. All figures depict the temperature fields of an SPH simulation after
3 seconds, and the deep red dots at the bottom of the figures represent the shape of the
hot wall.

(a) Intermediate optimized hot wall shape.

(b) Final optimized hot wall shape.

Figure 17: The optimization of the Hot Wall with a flat initialization.

28



(a) A randomized initialization of the hot wall
shape.

(b) Intermediate step of the optimized hot wall
shape.

(c) Final optimized hot wall shape.

Figure 18: The optimization of the hot wall with a randomized initialization.
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(a) Hot wall initialization with linearly increas-
ing function.

(b) Intermediate step of the optimization.

(c) Final optimized hot wall.

Figure 19: The optimization of the hot wall with a randomized initialization.
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(a) The initial hot wall shape, which is a sine
function.

(b) Intermediate optimized hot wall.

(c) Final optimized hot wall.

Figure 20: The optimization of the hot wall with a sine function initialization.
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Effects of Noise Perturbations

To generalize the data and overcome difficulties with low data density regions, we add
some Gaussian noise or apply noise perturbations at varying scales [18].

S =
n

σ1, . . . , σL

{
σ1

σ2

= . . . =
σL−1

σL

> 1 for i = 1, . . . , L− 1

}
(18)

We later perturb the data by adding a Gaussian noise.

x̃ = x+ σiϵi, where ϵi ∼ N (0, 1). (19)

We vary the standard deviation of noise addition by multiplying it by multiples of 10, i.e.,
from 0.00003 to 0.3, and observe the validation losses for position and temperature and
their effects.

(a) Timestep 1. (b) Timestep 5.

(c) Timestep 10. (d) Timestep 20.

Figure 21: Effect of change in standard deviation for additive noise on position validation
loss.
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(a) Timestep 1. (b) Timestep 5.

(c) Timestep 10. (d) Timestep 20.

Figure 22: Effect of change in standard deviation for additive noise on temperature vali-
dation loss.
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Effects of Latent Dimension

The latent dimension is pivotal in Graph Neural Networks (GNNs), particularly in models
like Graph Network-based Simulators (GNS). It determines the representation capacity
of the network and directly influences its ability to capture and encode essential features
from the input data. In the context of GNS, a higher latent dimension allows for a more
expressive feature space, enabling the model to learn intricate relationships and patterns
within the graph structure.

Mathematically, the latent dimension d is often incorporated into the formulation of GNS
models through the dimensionality of the hidden layers. For instance, in a typical GNN
layer, the hidden representation hv for node v can be computed as seen in 20

hv = σ

 ∑
u∈N (v)

f(hu, hv, euv)

 (20)

where σ is the activation function, f is the message passing function, hu and hv are the
hidden representations of nodes u and v, respectively, and euv is the edge attribute be-
tween nodes u and v [22].

The latent dimension d is implicitly incorporated into the dimensionality of the hidden
representations hv. Specifically, the dimension of hv is typically determined by the latent
dimension d. For example, if d is chosen to be 128, then each hv would be a vector of size
128, capturing the latent features of the corresponding node v. This latent dimensionality
influences the expressive power of the GNN model, as a higher d allows for richer feature
representations that can potentially capture more complex relationships and patterns in
the graph data.

To analyze the effects of latent dimensions on validation loss of position and temper-
ature, we consider four values of latent dimensions, namely, 32, 64, 128, and 256.
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(a) Timestep 1. (b) Timestep 5.

(c) Timestep 10. (d) Timestep 20.

Figure 23: Effect of change in latent dimension on position validation loss.
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(a) Timestep 1. (b) Timestep 5.

(c) Timestep 10. (d) Timestep 20.

Figure 24: Effect of change in latent dimension on temperature validation loss.
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Predicted and Ground Truth trajectories in ParaView

ParaView is an open-source visualization tool widely used in scientific computing and
engineering disciplines to analyze and visualize large-scale datasets. Developed by Kit-
ware Inc., ParaView offers a varied suite of features custom-made to meet the needs of
researchers, engineers, and data scientists working with complex numerical simulations
and experimental data.

With its intuitive graphical user interface (GUI) and powerful rendering capabilities, Par-
aView enables users to interactively explore and analyze data from diverse sources, includ-
ing Computational Fluid d Dynamics (CFD), Finite Element Analysis (FEA), Molecular
Dynamics (MD), and more. ParaView supports a wide range of data formats, including
VTK, HDF5, Exodus, and others, allowing seamless and aesthetic visualization for SPH
solver [16].

ParaView allows users to visualize key parameters such as positions, velocity fields, and
temperature profiles, allowing for an in-depth understanding of the underlying fluid dy-
namics simulated by the SPH solver [3].
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(a) Frame 5. (b) Frame 10.

(c) Frame 15. (d) Frame 20.

(e) Frame 25.

Figure 25: Comparison of predicted (top) and ground truth (bottom) trajectories in
ParaView.
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