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Abstract

A Digital Twin of an organization is a data-based model of assets or processes.
It enables users to analyze and optimize their product, service or process in a digital
instance. For example, a sophisticated model allows people to visualize products
performing used by actual people in real-time or address issues before they turn
into real-world problems. Therefore, it has become increasingly attractive for or-
ganizations to utilize this technique to achieve their business excellence. There
are various ways of implementing a Digital Twin. In this work, we present how
we build a Digital Twin model based on the existing process mining log of an IT
Service Management Process provided by Celonis. This model is developed using
Markov Processes to simulate cases based on the observations of the original sys-
tem. Furthermore, we investigate the number of cases and their throughput times
with Data Preprocessing, Kernel Density Estimation and Time Series Prediction
Methods. Based on our model, we try to answer some what-if questions come up
by our internal clients, including 'What if the first level automation rate is im-
proved?’ and "What if my number of tickets goes up or down?’. The company can
thus simulate the effects of possible improvements and facilitate the users’ decision
making.
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1 Motivation

Today, many organizations such as companies or even governments have a strong interest
in long term predictions of their organization’s development. To guarantee success, com-
panies must adapt fast to changes of their environment. In the oil industry for example,
the volatility of the main resource poses an omnipresent uncertainty on the companies
future and in the financial industry the consequences of financial crisis are hard to es-
timate in advance. Of course, solutions have been found which account for uncertainty
of external influences and get reasonable forecasts. Such forecasts, however, are usually
restricted to a set of specific key performance indicators and fail to capture the organi-
zation’s behavior in its entirety.

But how about a digital representation of our organization where we can fast forward
and see how the performance is influenced given different scenarios. One could just try all
possible scenarios in terms of tuples of company strategy and outer influences and select
a strategy which maximizes expected success in the models. This idea is usually referred
to as a Digital Twin. In the past, organizations’ structures have been too complex to
be fully understood with the techniques in place but with new emerging data processing
technologies such as Process Mining, our understanding of processes has made way for
the creation of such Digital Twins.

2 Process Mining at Celonis

The term Digitalization has influenced enterprises from all industrial sectors for many
years. Today, almost every process within a company leaves its footprints in the com-
pany’s digital environment. This "idle" data contains a lot of information concerning
problems and inefficiencies of processes. This sparked the development of a whole new
branch of companies which developed software to grasp this information.

Celonis for example, with its software Celonis Process Mining has been extremely
successful in this field. Since the foundation in 2011, Celonis has grown rapidly and
was even named the fastest growing German technology developing company. Less than
ten years after the foundation, Celonis runs offices all around the globe and works with
corporations of all kinds, many of them with strong global magnitude.

When an organization decides to use Celonis Process Mining for a process, the raw
data which is provided by the organization is structured in several objects, which will
serve as the data base, the so-called Data Model in the Celonis environment.

The main object is the Activity Table. 1t contains all recognized process flows from the
customers data which are referred to as cases. Each of these cases consists of a number
of activities which characterize the process flow. Attached to every activity, there is an
event time, representing the time of the start of the activity, a sorting and a category.
The sorting will determine the ordering of activities with exactly the same event time,
while the category can be used to indicate the executing department. To distinguish
different cases within the Activity Table, every case has its own case key.

Apart from the Activity Table, there can be several other tables. They store additional
information which enriches our very general knowledge from the Activity Table with
additional attributes.

With the Data Model in place, Celonis Process Mining offers a variety of elaborate
tools and key performance indicators (KPIs) to visualize and understand the data, a
so-called Analysis. In an Analysis it is easy to locate bottlenecks or inefficiencies within
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_CASE_KEY ACTIVITY_EN EVENTTIME CATEGORY_NAME _SORTING
201807010 Status: New 2018.7.2 3:08 Category 1 10
201807010 Status: Open 2018.7.2 3:14 Category 1 10
201807010 | Change assignee | 2018.7.2 3:14 Category 1 10
201807010 | Status: On Hold 2018.7.2 349 Category 1 10
201807010 Status: Open 2018.7.2 6:00 Category 1 10
201807010 Status: Closed 2018.7.2 12:06 Category 1 10
201807011 Create Ticket 2018.7.1 18:21 Category 2 10
201807011 | Change priority | 2018.7.1 18:21 Category 2 10
201807011 Status: Closed 2018.7.1 21:39 Category 2 10

Figure 1: Extract from an Activity Table

the process. On the one hand there are many standardized objects like an overview page,
process explorers (Figure 2), variant explorers and standard KPIs. On the other hand,
the Analysis is highly customizable with a large variety of tables, diagrams, charts and
an editor for the creation of custom KPIs.
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2.1 Incident Management at Celonis

For our project, Celonis provided us data from their internal incident management depart-
ment as sample data. The data describes the incident management process Happyfox at
Celonis. When support services are requested by a client of Celonis, it opens an incident
and determines the priority of the incident. Furthermore, it notifies the incident priority
and ticket number, which enables an accurate placement of subsequent queries within
the incident management system for the users. It uses commercially reasonable efforts
to respond to the incident within a negotiated initial response time and to subsequently
acknowledge the incident and provide a resolution. An incident resolution may consist
of a fix, workaround, service availability or any other solution that is deemed reasonable.
An incident is dropped and subsequently closed if the user has not responded within
five business days to an attempt to collect additional information required to resolve the
incident.

This data is structured as a Data Model as introduced in the section before. The
cases in the Activity Table represent each the treatment of an incident ticket. For an
example, please refer to Figure 1. The set of activities is

A = {"Change assignee’, ’"Change category’, 'Change priority’,
"Create Ticket’, "Status: Closed’, Status: New’,
"Status: On Hold’, "Status: Open’, "Status: Solved’}.

Apart from the activities and corresponding event times, the categories play an important
role for our purposes. They indicate the department where the activity is executed. Note
that the Activity Table only shows the category at the process end and we have to use
two other Tables to trace the category history back. Those tables are the Tickets Table
which contains additional information for the individual incident tickets and the Updates
Table which stores the change history of some attributes like the category.

3 Digital Twin Concept

So far we have talked primarily about process mining and how it is done at Celonis. Let
us turn now to a concept which is at the very center of this Project, the concept of a
Digital Twin.

Our understanding of a Digital Twin is that of a counterpart of a process in terms
of a digital model. However, it is not supposed to be an exact copy of the original
process. While it should behave similarly under the assumptions of the initial system,
it is nevertheless a dynamic object which adapts to changes of its environment. Such
a model is a powerful tool because it gives insights into the longtime future behavior
of a process conditioned on the setting around the process. This can be very useful for
predictions of the future performance of a process given different scenarios.

It can give valuable insights into what-if questions which most organizations would
like to answer. What happens if I increase or decrease certain resources within my
organization? What happens if demand for my product goes up or down?

We want to stress the importance of Process Mining for this concept. The funda-
mental understanding of the inner dynamics of a process are vital to create the desired
counterpart of the process and moreover indicate how it can gain independence from the
original process. Therefore, Process Mining can be seen as an enabler of Digital Twins.



4 Data Exploration

4.1 Input Description
4.1.1 Data Set

In this work, we build our Digital Twin model using the data set of Celonis Happyfox
ITSM. Happyfox is a software as a service (SaaS) support platform, they offer help desk
ticketing system for over 12,000 enterprises around the world. In our original data model,
there are three data tables which contains the information for each ticket. A ticket is
described as a single process consisting of different activities in sequence. The relevant
features about each ticket and each event are recorded in different tables. Finally, these
tables are mapped together using ticket ID. Given these data as input, the Celonis process
mining analysis tool allows us to visualize and analyze the I'TSM process performances.
The detailed description about each data table is demonstrated in the following part.
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Figure 3: Celonis Happyfox I'TSM Data Model. From left to right: activity table, case
table and update table. In case table and update table, only part of the features is listed.

The data model structure is presented in Figure 3. The table in the middle named
TICKETS is the case table in our work. The primary key of this data table is the field
called thelD. The IDs correspond to the ticket ID in the Celonis ITSM, and the values are
unique. In our data model, we have 12,404 entries in total recording the tickets generated
between 4th August 2017 and 17th July 2018.

There are 41 feature fields except for the ticket ID, and they are all listed in Figure 4.
These fields include the necessary information of each ticket, such as the subject and
attachments. Besides, the particular additional attributes, for example, category, assign-
ment, priority, status, and users, are also recorded in other columns. The exploratory
analysis results are presented in the next section.

The table on the left side is the activity table, _CEL_ITSM happyfoxr ACTIVITIES.
This table has 66,371 entries and contains the log of each activity during the ticket pro-
cessing. As it is shown in Figure 3, the foreign key, namely the case key, corresponds the
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Figure 4: Celonis Happyfox ITSM Data Model with All Features. The features for each
table are connected to the table names, respectively. Within each table, the features are
grouped by their categories. The primary keys are marked with underscore lines and the
foreign keys are marked in red. The users are anonymized and replaced with the yellow
table for pseudo users on the right

ticket ID in the case table. The field, ACTIVITY EN, is the activity name in English.
The typical activities that we have observed include “Create Ticket”, “Status: New”,
and “Status: Closed”. For each event (activity), the timestamp recorded when this event
happened in the system, and normally, the sequence of each activity in a process is deter-
mined by the event timestamp. If two events in a single process in the data set have the
same timestamp, then their sequence is set based on the attribute called _SORTING.
The column, category name, recorded the final category of each step. Moreover, this
information is relevant to the first level service in our what-if questions.

The table called UPDATES on the left side in Figure 1 records the updates about the
tickets. It has 58,295 update entries, and the primary key of this table is called update_id
(see Figure 4). Each entry contains information, such as the time when this update hap-
pens and which type of change it has made, and the entries are mapped with the case
table through the ticket IDs. The fields are grouped according to the type and listed in
Figure 4. The change types including changing assignee, category and due date.

The data are stored in the model mainly as string, number, Boolean and date time. There
are PQL functions(Process Query Language) in Celonis analysis tool and Celonis Python
API that allows us to transform and compute with this data.



4.1.2 ITSM Ticket Processing

As we have described in the last section, the processing of a ticket including several ac-
tivities and their timestamps and sorting values determine their sequence in the process.
The sequence is sorted ascending first by time, and if several events have the same times-
tamp, they will be sorted based on the sorting values.

Each ticket in the I'TSM system has its own process, and each type of process is called
variant. Different tickets can have different variants and some tickets can share a same
kind of process. In Celonis ITSM system, we name the variant, which happens most fre-
quently in our data set, as the happy path. By computing the difference of the timestamp
of the activity and its previous activity in each process, we get the throughput time of
each step. We name ts,. as the timestamp of a event and tSact previous as the timestamp
of the previous activity, the throughput time 73, can be expressed as

Ttp == tSact - tSaCtprevious (1)

Similarly, the total throughput time for each process is defined as

irtotalitp = tslastiact - tsfirstiact (2)

Where 145t act and tSiast ot are the timestamps of the first and the last activity in the
process.

In Figure 5, we show an example of the happy path in our original data set in Celonis
Process Explorer. The nodes between “Process Start” and “Process End” represent the
activities or events in this variant and their happening sequence are demonstrated by
the arrows. The time cost value in days of each step is presented on the connecting
arrows and the number of cases flowing through each node is presented under the names
of the activity. We can observe that in the happy path, the total throughput time
Tiotal tp = lday, and all the cases following happy path are closed cases, namely ending
with “Status Closed”. The total number of different variants in our Happyfox ITSM data
set is 1,850 and around 20% of our cases follow the happy path presented in Figure 3.

4.2 Anonymization of Data

The data which we deal with contains the name and user id of the person who created the
incident ticket. As this project’s content will be publicly accessible it was important to
make the data anonymous. For this purpose we implemented a anonymization function in
Python. The input is a table with two columns. They contain the actual user name and
user id. Note that user names as well as user ids might possibly appear twice. Two users
might have the same name for example. The pair of them however is always unique. Now
we create vectors with the same length as the just mentioned table which just contain
the numbers N U {0} in ascending order. We randomly shuffle both vectors separately
and join one as the pseudo id and one as the pseudo name to the table. For the pseudo
name we append the string 'name’ in front of the number. This will map our input table
to a table with four columns like in Figure 6.
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Figure 5: A variant example in the Celonis Process Explorer. (The node “Process Start”
and “Process End” are appended to each variant as a default.) The time unit can be
changed to hours, minutes or seconds easily in the explorer.
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300 Frederik Wenlkel 400  Frederik Wenkel 1 name2
1400 Frederik Wenkel |

Figure 6: Example of an application of the anonymization function

Note that different tuples of id and name are preserved, while duplicated tuples are
discarded. The table which is created as an output can be uploaded to Celonis Process
Mining to be joined to the Tickets Table using the original user information. Our obser-
vations indicate, that the discrepancy between the number of user names an user ids was
only caused by users having the same name. Therefore, it is sufficient to use the user id
as a key to map the table to our Data Model.

4.3 Exploratory Analysis

In this section, we presented part of our initial analysis which is relevant to constructing
our Digital Twin model.

4.3.1 Throughput Time Analysis

Total Throughput Time Distribution The total throughput time distribution of
all cases is presented in Figure 7a. We observed that it has spike at 0 day with a long
tail distribution. Intuitively, this distribution looks similar to a Poisson distribution or
exponential distribution. It will benefit our modelling process if we can parameterize the
distribution of total throughput time.

Therefore, we have tried to fit the distribution to some possible typical distribution. To
this end, we fit our data to different types of distributions with the model fitting function
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in SciPy Stats[5]. Then test whether the fitted distribution is the same as the original
distribution of our data. To test the goodness of fit of the distribution with respect to
the data, we apply Kolmogorov—Smirnov test (KS test). This test is based on a distance
between the empirical distribution function of the data and the cumulative distribution
function (CDF) of the reference distribution. In this test, the null hypothesis is two
distributions follow the same distribution. If the p-value is greater than 0.05, then the
null hypothesis holds.

The test results are listed in the following:

Distribution p-value s passed

Poisson Distribution 4.675e-10 no
Exponential Distribution 0.0 no
Birnbaum-Saunders 0.0 no

In the results, none of tests has passed. This suggests that we need to find some non-
parametric methods to simulate the throughput time.

To observe whether the total throughput time changes over time, we separate the dataset
into two which are cases created in 2017 and tickets created in 2018 respectively. It can
be observed that in the graph of 2018, there is a spike on throughput time 5 days, which
is consistent with the distribution of all cases. However, in 2017, this spike does not exist.
Therefore, we come to a conclusion that the total throughput time distribution changes
from 2017 to 2018 and the latest data distribution are more similar to the distribution of
the all cases.

This observation also indicates that the change of throughput time distribution of each
step can cause the change of total throughput time distribution. This is one of major
reasons why we choose non-parametric method to simulation the throughput time in this
work.

Outliers and Anomalies In our dataset, we observe some cases with total throughput
time up to more than 200 days. These outliers have been plotted in Figure 8. The median
is indicated by the red vertical line that runs down the center of the box. In the boxplot
above, the median is significantly close to 0 and the distribution is skewed right, while
the maximum total throughput time is 276 days. This observation indicates that there
are some anormal cases in our dataset and there can be some bottlenecks in the process
as well.

However, in the following sections, we introduce the Digital Twin model which empir-
ically simulates not only the normal cases but also some anormal cases. Therefore, we
will not filter out the outliers in our preprocessing part.

4.3.2 Category-based Analysis

In Celonis, there are 21 ticket categories in total. Their names and counts are listed
in Figure 9. We notice that in our dataset, only 5 categories are included, they are
ServiceDesk, Internal I'T, System Alert, Cloud Instances, and SalesForce. There portions
are plotted in Figure 10. Our Digital Twin model will simulate the case categories based
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Figure 9: Distribution of Categories (anonymized)

4.3.3 Ticket Number Analysis

A Time Series is said to be stationary if its statistical properties such as mean, variance
remain constant over time. But why is it so important? Most of the Time Series models
work on the assumption that the TS is stationary. Intuitively, we can say that if a Time
Series has a certain behavior over time, there is a very high probability that it will follow
the same in the future.

Stationarity is defined using a very strict criterion. However, for practical purposes

we can assume the series to be stationary if it has constant statistical properties over
time, i.e. the following:

13
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1. constant mean
2. constant variance
3. an autocovariance that does not depend on time.

More formally, we can check stationarity using the following:

1. Plotting Rolling Statistics: We can plot the moving average or moving variance
and see if it varies with time. By moving average(variance) we mean that at any instant
‘t’, we will take the average(variance) of the last year, i.e. last 12 months [4].

2. Dickey-Fuller Test: This is one of the statistical tests for checking stationarity.
Here the null hypothesis is that the time series is non-stationary. The test results com-
prise of a test statistic and some critical values for difference confidence levels. If the
‘Test Statistic’ is less than the ‘Critical Value’, we can reject the null hypothesis and say
that the series is stationary [4].

The data used to analyze the number of tickets is the count of tickets based on the
date of creation provided using Celonis API can be visualized in Figure 11.

Figure 12 shows the results using Plotting Rolling Statistics and Dickey-Fuller Test
gives insight that the series is not stationary. Note that the test statistic is more than
the critical value, hence we cannot reject the null hypothesis and say that the series is
non-stationary.

There are typically two major reasons behind non-stationary of data in Time Series:

1. Trend — varying mean over time.

2. Seasonality — variations at specific time-frames. For e.g. a tendency of increase

14
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Figure 11: Count of Tickets Based on Creation Date

or decrease in the number of tickets in certain months.

Our aim is to model or estimate the trend and seasonality in the series and reduce it
by applying transformations on count of tickets per creation date to get a stationary se-
ries. Then statistical forecasting techniques can be implemented. The final step would be
to convert the forecasted values into the original scale by applying trend and seasonality
constraints back. One of the ways to reduce trend can be transformation. We can apply
a transformation which penalizes higher values more than smaller values. Applying a
log-transform on our data leads to the Time Series shown in Figure 13.

Note that the series is more stationary than before and that the Test Statistic is less
than the Critical Value, hence we can reject the null hypothesis and say that the series is
non-stationary. This transformation technique was further used in Time Series Prediction
Methods stated in section 5.2.4.

4.4 Limitations

Out Digital Twin model depicts the I'TSM ticket processing and it allows us to test
changes before implementing them across the operations. This product should be able to
help to answer relevant what-if questions such as "what if we spread our team globally"
or "what if we automate the first level service'. Although the current dataset contains a
lot of different aspects relevant to the what-if questions, there are still some limitations
that we come across while building our model.

First, in this dataset, no automation data is recorded which makes it difficult to validate
the automation simulation results from our Digital Twin model. Secondly, the service
level of each event is not recorded directly in the data tables. To answer what-if question
like “What if I bring together 2 second levels”, we need more complete information.

15
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5 Simulation

5.1 General Approach

For modeling the Digital Twin of a process we envisioned two major characteristics of the
twin. On the one hand, it should behave similarly to the initial process. This attribute
could be described with the term "family resemblance'. On the other hand, we do not
wish to create an exact copy of the initial system. Instead, we want to be able to "raise"
the Digital Twin differently. This enables us to observe how the twin would develop under
slightly changed conditions.

In order to implement the just mentioned principles, we first track the behavior of the
initial system statistically. The Digital Twin will be set up as a simulation according to
these empirical observations so that we can ensure the "family resemblance'. Meanwhile,
we carefully choose the parameters of this simulation in a way such that they give us the
opportunity to influence certain habits of the twin.

The goal of a Digital Twin is often to investigate specific what-if scenarios. In this
case, the choice of parameters is very important because they must reflect the scenario
in a comprehensive way.

5.2 Methodology

In this section we want to introduce the main concepts which are used to create the
Digital Twin model.
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Results of Dickey-Fuller Test:

Test Statistic -4.284331
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#Lags Used 13.000000
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Critical Value (16%) -2.572668
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Figure 13: Count of Tickets Based on Creation Date

5.2.1 Case Simulation

We begin with the simulation of the activity flows of the cases. It is the core of the Digital
Twin model as most other attributes are simulated according to this simulation’s results.

Ordinary Markov Process The first approach was to model the activity flows by
a first order Markov Process. Considering a system consisting of a set of k states or
activities A = {ay,...,ax}, the probability to go from state x, to x,,; only depends on
the current state, i.e.

P (XnJrl = SL’nJrllXO = Zo, - .- ,Xn = l’n) =P (Xn+1 = l’nJrl’Xn = .’L'n) s

where x; € A for all i € [n + 1].
This model possesses a convenient representation in terms of a stochastic matrix
Pc kak)

ap as c. Q.

ay (P11 P12 --- Dik

Q2 | P21 P22 ...  DPok
. . . . = P.

ar \Prk1 Pk2 --- Pkk

Note that as a stochastic matrix, all elements are larger or equal than zero and the rows
sum up to one. In this matrix we store all transition probabilities between the states, i.e.

If the current state of the process is activity a;, the simulation will consider the j-th row
of the matrix for the transition probabilities to the next state. To randomize the choice
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of the next activity, we split the unit interval [0, 1] into k ordered intervals I;, i € [k],
each of the length of the probability to go to the state i, i.e.

0,1) = [to, ta] U (t1, t2) U -~ U (tg2, 1] U (te—1, ti]
= [O,tl] U (tl,tQ] u---u (tk_g,tk_l] U (tk—h 1] =L U---Uly,

such that (¢; — t,_1) = p;; for i € [k]. Now, we draw a uniformly on [0, 1] distributed
random number r and assign the next state of the process flow to the unique state ¢ with
r e ;.

To deduce the matrix in our model we consider all cases within the activity table of
the given Data Model and only look at the activity flow, Overall we look at 12404 cases
with in total 66371 activities. We extract the cases one by one and add one activity
"Start’ at the beginning and one activity 'End’ after the last activity. This conveniently
embeds the problem to find the probabilities to start or end in a certain state into the
algorithm which deduces the transition probabilities between the states. The transition

matrix is initialized as a quadratic matrix P € R%? of dimension d = |A| + 2 with
all entries being zero. Now, for every case, we observe every transition between two
activities ...xp%py1 ... where z; = @; and x4 = a;. In this case we add "+1" to the

corresponding matrix entry of this activity transition p;; — p;; +1. When this procedure
is completed for all activity transitions of all cases, P will contain the absolute count of
every transition between two activities. Note that the last row of the matrix is untouched
because the row represents the transitions starting at "End’ whereof there are of course
non. To avoid complications, we set the bottom right value of the matrix to one. The
final step is to divide every row by the sum of its entries. Now, the matrix contains the
transition probabilities between all pairs of activities.

If we have a look at the matrix in Figure 14 the first column and last row give us a
first sanity check. It signifies that we never go to the state ’Start’ and never leave the
state 'End’. If we want to observe the performance of this method, we want to know how
similar the cases are which are created with the algorithm. In order to do this, we just
create the same number of cases as we have in our input and compare the cases.

0.01 005 O 08 0 006 O 0 0 0
0.056 0.3 002 0.02 012 0 0.1 0.27 0.11 0.02
0.12 0.02 0.05 0.18 0.17 0.01 0.03 0.32 0.02 0.06
0.04 0.01 O 0 01 073 0.03 0.05 0.03 O
0.02 002 015 0 005 073 0 003 O 0
0 001 O 0 0 006 0 003 0 0.89
0.19 0.08 0.02 0.05 021 0 0.02 0.37 0.02 0.05
0.06 001 001 O 015 O 0 041 0.33 0.04
0.15 0.02 0.01 0.01 042 0.01 02 0 0.17 0.01
0 0 0 0 049 007 0 018 0 0.25
0 0 0 0 0 0 0 0 0 1

s
Il
cCcoocoocoocococococod

Figure 14: Matrix of Markov Process rounded on two digits

As a first indication we compare the average length of the cases and the absolute
activity frequencies. The average length of the real process and of the simulation (both
~ 7.35) lie near with a small relative error (<0.05%). The relative errors of the activity
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frequencies are below 3% for all activities. These low relative errors are reasonable because
this aspect of the input is obviously easily captured by this model.

A more insightful attribute to look at, is how often the most frequent variants from
the input appear in the simulation.

Most frequent variants | Input | Model Rel. error
1 2483 1087 56%

2 1551 1444 ™%

3 459 234 49 %

Table 1: Count of most frequent variants of model with Markov Process

As seen in Tabel 1 our model fails to reliably predict the main paths of the original
system. We try to reduce the input data for our next model (Model 2) and restrict it to
the 19 most common variants. The goal is to reduce the influence of outliers in the data.
Under this assumption we are considering 6915 cases with overall 28201 activities

Most frequent variants | Input | Model 2 Rel. error
1 2483 1665 33%

2 1551 1621 5%

3 459 158 66%

Table 2: Count of most frequent variants of Model 2

Unfortunately, this does not yield a significant improvement as we can see already in
Table 2. However, if we take the average over the relative errors of the variant frequency
of the three most frequent variants weighted with the total number of occurrences of the
variants in the input data, we see an improvement from 38% to 27%.

The best way to simulate the activity flow given our tools so far turns out to be by
splitting the input data into groups according to specific attributes and then individually
treating those groups. In order to do this, we group the cases from the input according
to their first activity. Then, we deduce the transition matrix for every such group. For
the simulation, we randomly determine the first activity of a case proportional to the
frequency in the input data and then simulate the case with its group’s Markov Process.

We performed this technique on both the complete and reduced input data and tested
it by simulating for every starting activity the number of cases which we have in the input
data. We refer to them as Model 3 with full input and Model 4 with reduced input. Both
are upgrades compared to the original simulation.

Most frequent variants | Input | Model 3 Rel. error | Model 4 Rel. error
1 2483 1380 50% 1859 25%
2 1551 1574 1% 1799 16%
3 459 261 44% 183 60%

Table 3: Count of most frequent variants of Model 3 and Model 4

This can be seen also if we look again at the average relative error of the variant fre-
quency for the three most frequent variants weighted with the total number of occurrences
in the input data. In Table 4, the error decreases from the top-left to the bottom-right.

19



That indicates, that both approaches which were stated above can improve the quality of
our simulation. The patterns in Tables 1 through 4 can be observed as well considering
more variants but we refer to the three most common variants for simplification.

Full Input Reduced Input
Markov Process 38% 27%
Markov Process with Grouping | 32% 25%

Table 4: Weighted average of relative error of counts of variants

It is important to note that using a first order Markov Process implies the assumption
that the assignment of the next state only depends on the current state. In fact, the
assignment of activities is also influenced by the state history and the position of the
activity within a process flow . While this problem could be improved by grouping cases
with specific characteristics and separately treating those groups as shown above, we
explored alternative approaches as well.

In the following, we will abbreviate P (X = x) as P(x).

Linear Additive Markov Process While searching for a simulation technique which
would address the dependence of the state assignment on the state history, we discovered
the Linear Addaptive Markov Process which is also referred to as LAMP. The idea is
taken from the paper [6] and we adapted the technique to fit our requirements.

Like in the ordinary Markov Process we use a stochastic matrix P to store the tran-
sition probabilities between the states. In vast contrast to the ordinary Markov Process
though, we will take into account the state history up to a memory of M € N and not
only consider the current state z,. In particular we include a stochastic vector w of
dimension M which expresses how much we value the history. With probability w;, we
proceed as if we were in state z,_;11 and determine the next state accordingly using P.

This procedure can be expressed as follows.

M
P ($n+1’$0, e 7$n) = sz‘ P (iCmax{n—z'H,o}, $n+1)
i=1

Note that the intuitive choice to couple this technique with the matrix of the ordinary
Markov process and add a reasonable w is not possible. Just consider two activities, which
in the initial system never occur after each other, but often with one activity in between.
For wy > 0, this activity transition would have a positive probability of occurrence in the
LAMP model which is of course undesirable.

In fact, the parameters w and P for LAMP have to be learned.

The paper [6, p. 415f] suggests to choose as loss function the negative log likelihood
of one single case. This would obviously cause strong overfitting on the inserted case.
Therefore, we use a batch of multiple cases for the loss function and sum over their
negative log likelihoods. For a batch of size B and cases ci,...,cg € AN with lengths
Lq,...,Lg € N, the loss function has the shape

B | Lg M
L<w,P,Cl,...,CB):—Z [ IOg <Zwi'P(xrknax{li,0}7xf)>] : (3)
=1 i=1

k=1

We remark that this function is individually convex in w and P. In the log we have an
affine function in w, P which is thus concave. If we couple the log(.) with the minus sign,
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we get a convex function. The concatenation of a convex function with an affine function
is convex again according to [2, p. 79]. The convexity follows because the sum of convex
functions is convex.

The individual convexity suggests to minimize the loss function alternatingly in w
and P. This task is quite laborious, due to the parameters being stochastic. Let us
observe the minimization in w. We fix P and the batch of cases c and get the constrained
optimization problem

argmin,, L (w, P,c) subject to w >0, ITw=1,

with T a one vector of dimension M. The matrix P can be treated analogously by
considering the rows separately and performing block descent as stated in [6, p. 416].

We used the Python package scpiy optimize [5] in order to find the solutions. The
optimization routine is set up as follows in Python. We hand a number of iterations,
batch size and the desired memory to a function which will perform the routine. This
function will internally call the function scipy.optimize.minimize. We will perform block
descent for every row of the matrix P separately, followed by a minimization with regard
to w. These operations happen on the same batch of activity flows. This concludes one
iteration and we will repeated this until the improvement of the iteration falls below a
threshold or the number of iterations is reached.

We want to mention, that the optimization usually improves over some iterations but
then tends to go to unfeasible solutions. The iteration will return to feasible solutions
but the loss goes back to values near the starting level. This phenomenon is more likely
the bigger the batch size is chosen. It leads to a trade off because we want batch sizes of
size 30 to 50 to have a good mix of process flows within the batch on the one hand. On
the other Hand, our algorithm exhibits more violations of the constraints then.

This problem could be improved by normalizing the terms of the sums in equation 3.
The loss function L becomes then

Ly,

L<w7P7 €1y - 7CB) == Z n Z fklog (Zw’ P (xﬁlax{livo}’xf)>] ’
=1

k=1 B

We decided however not to use this alternative approach primarily because the de-
duced activity simulations of two different pairs of parameters w, P could vary signifi-
cantly even if they were trained with the same training parameters (number of iterations,
batch size, memory).

A different way to receive w and P could potentially be found using the KKT condi-
tions and the water-filling problem [2, p.245f].

5.2.2 Category Simulation

The categories are assigned to every activity of a case using two functions. We model
the flow of categories again as a Markov Process and distribute the starting category
according to the distribution of first categories in the input. The first function assigns
a starting category to the first activity. The probability to pick a certain category is
proportional to the distributions of starting categories in the input. This category is
assigned to every activity until the activity ’Change category’ appears. Here we look at
the corresponding row of the transition matrix of the current activity and assign the new
one analogously to the simulation of the activity simulation.
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Similar considerations like before have to be done about the independence from the
category history. Due to time restrictions we were not able to incorporate those. The main
issue is, that cases are generally influenced by the underlying category. The throughput
times are affected and it also influences the flow of activities. According to our research
to improve the activity flow simulation, a sequential change of the simulation would be
the easiest way to combat the issue. Note that the current simulation structure is

"activities" — "first category" — "following categories".

We simulate all activities of a case first and then add the category information. Instead
we could proceed as follows:

"first category" — "activities 1" — "next category' — 'activities 2" — ...

Here we determine the starting category first according to the relative occurrence in
the input. Then, "activities 1" is a Markov Process which simulates the activities. It
is only trained with case information up to the first category change with underlying
first category and we stop if the simulation reaches the activity 'Change category’. Now,
the next category is determined with the Markov Process for categories, followed by
"activities 2". This is again a Markov Process for activities, which is trained with the
case information beginning with the activity 'Change category’ together with the new
assigned category. This ends when we reach a category change again and we go back to
the step "next category’.

The tools for this procedure are all implemented. Only the data must be separated
correctly. We remark that the complexity will grow. Our current model uses only to
transition matrices for the activity and category simulation. The new one requires far
more. For an input with n different categories we need 2n + 1 matrices.

5.2.3 Throughput Time Simulation

We will now discuss the algorithm that we used to simulate the throughput time between
arbitrary activities. We decided to mainly use throughput time from ’Status: New’ to
"Change assignee’. This is because 'Change assignee’ is the most frequent one among the
activities which are not on 'Happy Path’*. Thus we can acquire the enough number of
data to be divided into 'train’, 'validation’ and ’test’ set, as well as analyze the cases out
of Happy Path.

Kolmogorow-Smirnow-Test We would repeatedly apply Kolmogorow-Smirnow-Test
(KS-Test) to compare two distribution. Its null and alternative hypotheses are stated
below.

H()S Fx(ZE) = Fy(l’)
(The random variables X and Y have the same probability distribution)

Hli Fx(il}) # Fy(ﬂ?)
(The random variable X has a different probability distribution from Y)

Therefore, if we acquire p value higher than 0.05, we cannot reject Hy and make decision
that the given two data sets have same distribution.

'Recall that the path is the top frequent variant made up of sequential activities. They are ’Create
Ticket’, "Status: New’, ’Status: Open’, and ’Status: Closed’.
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Modeling by parametric way After data exploration, we recognized that throughput
time distribution in the business process typically has non-negative, skewed distribution.
We started from parametric method such as Poisson, Fxponential, Gamma and other
theoretical distribution in order to fit model to data. The first model has formed by
Poisson on the ground that it is general theoretical distribution to express the probability
of a given number of events occurring in a fixed interval of time. We generated random
numbers from Poisson distribution with A = X which is sampled mean time. Then
we apply KS-Test to compare the numbers with original data. Unfortunately, KS-Test
suggests 0.0 p-value which shows that we cannot describe throughput time with Poisson.
Futhermore, Exponential and Gamma give similar result. They are not matched to the
real distribution. The result has been suggested in Table 5 where X means the sample
mean, while S? does sample variance. 5\, é, l: are estimators of parameters for each . To
summarize, we are not able to adopt these parametric to simulate the throughput time
distributions, according to KS-Test.

Histogram of throughput time
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Figure 15: Throughput time from ’Status: New’ to ’Change assignee’ in hours.

Distribution KS-statistic p-value Parameter
Poisson 0.6768 0.0 =X
Exponential 0.4403 0.0 A=1/X
Gamma 0.9957 0.0 60=8%X, k=X/0

Table 5: KS-Test result with three parametric distribution.

Bins-method The results have shown that we need other methods to model the through-
put time. Therefore we did create naive way to mimic the distribution of histogram, called
‘Bins-method’. First, we separated the data into train(80%) and test set(20%). Second,
the train data set is splitted into 30 bins: {Bj, Bs, ..., B3o}. In detail, Bs has the biggest
3.33% data. Bsyg has next 3.33% and so on. Therefore By is the set of the minimal 3.34%
data. Next, we generate random number by Uni(min(B;), maz(B;)) within each bean.
And finally, apply KS-Test for the test set and the generated data. Thereby we have
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Bins-method vs Test data
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Figure 16: Simulation by Bins-method.p-value for KS-Test is 0.4575

succeeded to simulate the same distribution with the test set. On average, the KS-Test
between the distribution by Bins-method and the test-set outputs higher p-value than
0.05. The average p-value has been 0.438 after 1,000 rounds.

Introduction to Kernel Density Estimation (KDE) Bins-method is somehow a
naive way because it provides uniformly random numbers. This is a drawback because
uniform distribution does not describe outliers enough. Kernel Density Estimation(KDE)
is our alternative way to compensate this drawback. It is a non-parametric way to esti-
mate the probability density function(PDF) of a random variable.

A

o=z (U5

The above formula is called the Kernel estimator. Here h is the smoothing parame-
ter. In this paper, we call it a bandwidth. The function K is called the kernel, and it
controls the weight given to the observations X; at each point x based on their proximity.
Thus, we expect KDE would compensate the weak points of Bins-method and calculate
smooth PDF.

Figure 17 shows simulated PDF by KDE method. In this example, the kernel is
uniform function and bandwidth is 1. Among total throughput time data, 80% has been
randomly sampled for training and 20% for the test. The simulated distribution has
become much smoother compared to Bins-method in Figure 16, 17.

Kernel selection for Digital Twin The type of kernels and size of bandwidth is
important parameter for KDE. Which kernels and bandwidth should we choose? From
now, we would test each kernel and discuss selection of bandwidth for Digital Twin.
In order to implement this task, it is necessary to see how different Python packages
perform regarding KDE. Table 6 explains three types of packages in Python. When
testing kernels, Statsmodels is the best choice which offers 8 types of kernels. We can
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KDE vs Test data
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Figure 17: KDE for the throughput time

ignore the performance of bandwidth selection in that we will not use it. In other words,
we will select bandwidth according to KS-Test, and this somehow requires manual coding.

Here, we would test the performance of kernels by simulating same train and test
data. In a bid to implement this task, we need to generate random number. Unfortu-
nately, Statsmodels does not provide sampling function. Therefore we have coded random
number generator G(.) manually by inverse Cumulative Distribution Function(CDF') and
uniform function.

Fi'(z) : [0,1] = T{t,ts, ..., t,} where T is throughput time dataset.

G(z1,22) = Uni(Fy'(21), Fx'(22)) = s
where s is simulated throughput time and Uni(t;, i;) generates random number uniformly
within the interval [t;, ¢,]

This method has drawbacks. First, G(.) approximates true distribution by uniform
function. Secondly, it cannot generate random value greater than max(7")

‘ Available Kernels Bandwidth Selection Random Number Geration

Scipy One(Gaussian)  Scott and Silverman Available
Statsmodels. KDEUnivariate 8 Scott and Silverman Not available
Scikit-Learn 6 Not built-in Available

Table 6: Comparison of KDE in Python packages.

In a bid to know the best kernel for Digital Twin, We have tested the all 8 kernels
with default size of bandwidth, 1. For each kernel, we trained KDE model with train
data and generate 100 random data. Then we compare test-set and the simulated data by
KS-Test. After implementing this procedure 1,000 times, we calculated average P-value
as well as standard deviation. Table 7 describe this result. It seems that different kernels
lead little difference when they have default bandwidth, 1.

If we tilt the bandwidth, can we differentiate them? In table 7, Gaussian, uniform,
cosine2, and cosine kernels display the most highest p-value somehow. Next step is to
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Figure 19: 8 kernels in Statsmodels package

test them while tilting them(Figure 20). Note that Gaussian kernel has long tail, so it
is more likely to generate negative value. This happens especially when bandwidth is
higher than 0.1.

In order to take a closer look, we have quantified how many negative values occurred.
Table 8 means that Gaussian may generate negative time value when bandwidth is equal
to 1. In Digital Twin simulation, the range of grid search would be from 1 to le-4. In
this range, the difference among kernels is not observed, except Gaussian.

Then which kernel should be adopted? Recall that the Statsmodel package does not
have internal sampling method, so the function is made by hand. Therefore, to calculate
more accurate result, we have chosen uniform kernel on the ground that Sklearn package
include internal sampling function for this. Meanwhile, uniform kernel has a shortage
that it does not describe continuous PDF properly. However, we simulate time data with
specific unit such as hours, minutes or seconds. This means that actually original PDF
has discrete form. Therefore we have simulated throughput time by using uniform kernel
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Kernel function: gau
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Figure 20: KDE with tilted bandwidths

and SKlearn?.

Kernel gau cos2 coS triw biw tri epa uni

Average 0.66809 0.66366 0.66557 0.65411 0.64872 0.66313 0.65425 0.6621
Standard deviation 0.30096 0.30992 0.30718 0.31251 0.31709 0.30823 0.31093 0.30595

Table 7: Average and Standard deviation of P-value for KS-test

Tunning bandwidth for Digital Twin So far, we have researched what the optimal
kernel for throughput time simulation is. In this section, we would discuss to search
optimal bandwidth, the other important parameter for KDE. We start to tune from 0.1
as a default value for this parameter. This is because we have observed larger bandwidth
greater than 0.1 probably allows negative time value. There are three way of tuning.
First one is to implement KDE with constant bandwidth. Second method is grid search.
The last one is a grid search with cross validation.

Train & Validatino (80%) Test (20%)
Train (72%) I Validation (18%) Test (20%)

Figure 21: Design of dataset

Figure 21 reports how train, validation and test datasets are designed as well as compar-
ison of simulated data to test set.

2The uniform kernel is named as ’tophat’ in Sklearn package
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Kernel gau cos2 coS triw biw tri epa uni

10 0.147432 0.120265 0.136335 0.110505 0.10969 0.101762 0.118282 0.060792
1 0.002171 0 0 0 0 0 0 0
1.00E-01 0 0 0 0 0 0 0 0
1.00E-02 0 0 0 0 0 0 0 0
1.00E-03 0 0 0 0 0 0 0 0
1.00E-04 0 0 0 0 0 0 0 0

Table 8: Probability where KDE generates negative value

Basically KDE with constant bandwidth(0.1) work as follows:
1) Train: split data into train and test-set by the ratio of 80 to 20. Then separate
train set again by 80 to 20 to create validation set. Next, train distribution model with

KDE. This time, 'tophat’(equal to uniform) kernel was used.

2) Validation: internally validate the model and repeat to train until p-value becomes
higher than 0.25 in KS-Test. Generates random numbers with KDE.

3) Test : This step is not included in actual Digital Twin model, because test is only
available after final model has been made. KS-Test works again to evaluate the constant

bandwidth

We have repeated 1) - 3) and acquired p-value of 0.5608 on average in step 3). It takes
4.006 seconds to run this code.

Gridsearch method work by following three steps:
1) Train: This time keep changing size of bandwidth while training. Train and test
data are organized as same above. In other words, gridsearch strategy is to search one

bandwidth among {1,107%,1072,1073,10~*} which outputs the highest p-value.

2) Validation: implement KDE with the selected bandwidth. Repeat 1) and 2) stages
until p-value is higher than 0.25

3) Test (not in Digital Twin): Apply KS-Test for the simulated data and test set.

After running this procedure 1,000 rounds, the result has shown the mean of p-value
in step 3) is 0.5986, and the code takes 12.5433 seconds to run 1,000 times.

The final experiment has been implemented by gridsearch with cross-validation.

Train & Validatino (80%) Test (20%)
Cross.Validation Train (53.33%) . | Validation (26.67%)
| Validation (26.67%) [ Test (20%)

Validation (26.67%) |

Figure 22: Design of dataset to for cross validation
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1) Train: after dividing train and test set, we created three pairs of train and validation

set. See Figure 22. This time, we again picked the bandwidth among {1,107, 1072,1073,107*}.
On the other hand, the bandwidth gives the highest average p-value across the three data

set. As a result it requires timely expensive cost of computation. Train the KDE model
which has this p.

2) Validation: KS-Test for validation set and created number by KDE.
3) Test (not in Digital Twin): Apply KS-Test for the simulated data and test set.

Its average p-value in 3) step is 0.5804. It runs 21.5929 seconds for 1,000 round.

Bandwidth Running Times(1,000 rounds) Avg(p-value) Std(p-value)
0.1 (Constant) 4.0061 0.5608 0.3396
Gridsearch 12.5433 0.5986 0.3187
Cross-Validation 21.5929 0.5804 0.3241

Table 9: Comparison of ways to tune bandwidth. Std means standard deviation

Running time strongly and obviously depends on strategy of tuning parameter. In con-
trast, we can hardly differentiate the above three method with respect to p-value. Thus
we have experimented with smaller data and the result is mentioned in Table 10. The
given data set comes from throughput time from ’Change priority’ to 'Status: Solved’. It
has only 68 cases which dominates only 1% of the total. As we have observed so far, we
rarely tell the difference except running time.

At Model Training section, we deal with this issue again. We would compare the fi-
nal Digital Twin model while only changing three KDE methods. They do not show
statistical difference.

Dependency test In real world, throughput time between activities are not indepen-
dent. If sequential activities happen, they affect each other. Because we did not take this
factor into account in our model, we need to test the dependency. If we find dependency,
this means we cannot avoid error.

We have used Pearson’s chi-squared test. This is statistical test applied to sets of
categorical data to evaluate how likely it is that any observed difference between the sets
arose by chance[3]. By this test, we can assess Independence of variables. In this case,

Bandwidth Avg(p-value) Std(p-value)
0.1 (Constant) 0.3522 0.1989
Gridsearch 0.3680 0.2061
Cross-Validation 0.3594 0.2063

Table 10: Comparison of ways to tune bandwidth. Std means standard deviation
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0 ~ 1976

1976 ~3952

3952 ~ 5928

5928 ~ 7903

over 7903

174

36

53

214

65

Figure 23: Count of throughput time from ’Status: On Hold’ to "Status: Solved’

0 ~ 3982

3982 ~ 7963

7963 ~ 11945

11945 ~ 15926

over 15926

107

38

41

21

20

Figure 24: Count of sequential throughput time: "Status: Solved’ to 'Status: Closed’

we have following null and alternative hypotheses
Hy: there is no difference between the distributions.
Hy: there is a difference between the distributions

'no difference’ means the given distribution is consistent regardless of counter variable. If
rejected, then we can decide the variables affect each other, so they are dependent. The
test statistics Z is defined as

(O - E)

7 where O is Observed and E is Expected value.

Z=Yx"=%

In this section, we test the dependency of two kinds of throughput time. One is
time from ’'Status: On hold’ to ’Status: Solved’. The other one is time from ’Status:
Solved’” to 'Status: Closed’. This is because they are bottle of the given process. As a
result, they have high throughput time so that the data satisfies Chi-squared assumption.
Details about the assumptions are followed later.

In order to apply this method, we need to change our time data as nominal(categorical)
form. We have generated 5 bins at interval of d = max(T') /5. Here T is a dataset without
top 10% values. For example,

data in [0, d) belongs to the first bin
data in [d, 2d) belong to the second bin
data in [2d, 3d) belong to the second bin
data in [3d, 4d) belong to the ninth bin
data greater than 4d belong to tenth bin

Refer to (Figure 23 and 24). In the figures, we used minutes as time unit in order to
split time in detail.

Next, we count sequential throughput time. With contingency matrix, we have ex-
pressed count for the sequential activities. For instance, if there is on case which takes
1,000 minutes from 'Status: On Hold’ to ’Status Solved’ and takes 3,000 minutes from
"Status: Solved’ to 'Status: Closed’, then it we add count (1, 1). See Figure25. Even
without Chi-squared test, we can directly see the dependency in the Figure. In other
words, one variable happens more frequently when count of the other goes up. We ap-
plied Chi-squared test in R and acquired a almost zero p-value(Table 11).

Pearson’s Chi-squared test requires to satisfy following assumptions|7].
clusion, check whether they have been all fulfilled.

Before con-
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Status: On Hold' to 'Status: Solved'

T 0 ~ 1976 | 1976 ~ 3952 | 3952 ~ 5928 | 5928 ~ 7903 | over 7903
o

O 0 ~ 3982 170 32 12 1 1
B

§ 3982 ~ 7963 1 1 38 85 1
°

. 7963 ~ 11945 1 1 1 89 1
Q

>

3 11945 ~ 15926 1 1 1 18 1
p

= over 15926 1 1 1 21 61

Figure 25: Contingency matrix: frequency of throughput time from ’Status: On Hold’ to
"Status: Solved’ to "Status: Closed’

Pearson’s Chi-squared test

2 Degree of freedom p-value

849.23 16 2.2e-16

Table 11: Chi-squared test result by ’stats’ package in R

1) The data in the cells should be frequencies: we have generated contingency matrix
whose elements represent count(frequency).

2) The levels (or categories) of the variables are mutually exclusive: it is holds because
each variable has unique counter value.

3) Each subject may contribute data to one and only one cell in the .

4) The study groups must be independent. This means that a different test must be
used if the two groups are related: this assumption is satisfied because each cases are
independent in activity tables.

5) There are 2 variables, and both are measured as categories, usually at the nominal
level: we have splitted data and create nominal values.

6) The value of the cell expecteds should be 5 or more in at least 80% of the cells, and
no cell should have an expected of less than one: this is why we selected the bottle neck
process. Currently every expected value is higher than 1 and 88% elements of contingency
matrix are bigger than 5. See the matrix in Figure 26.

Therefore, all the assumptions hold.

Status: On Hold' to 'Status: Solved'
0 ~ 1976 | 1976 ~ 3952 | 3952 ~ 5928 | 5928 ~ 7903 | over 7903

0 ~ 3982 69.34317 | 14.34686347 | 21.12177122 | 85.28413284 | 25.904059

3982 ~ 7963 | 40.45018 | 8.36900369 | 12.32103321 | 49.74907749 | 15.110701

7963 ~ 11945 | 29.85609 | 6.177121771 | 9.094095941 | 36.7195572 | 11.153137

11945 ~ 15926 | 7.062731 | 1461254613 | 2.151291513 | 8.686346863 | 2.6383764

Status: Solved' to 'Status: Closed'

over 15926 27.28782 | 5.645756458 | 8.311808118 | 33.56088561 | 10.193727

Figure 26: Expected Contingency matrix: 80% of the contingency matrix should have
expectations more than 5 for Pearson’s Chi-squred

To summarize, we adopt actual data and test if the throughput time violates our
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independence assumption. According to y2-Test, there are dependency. Furthermore,
our data satisfied required assumptions for the test. As a result, there might be inevitable
error, because our current model is built on independence assumption.

5.2.4 Time Series Prediction Methods : Number of Cases Prediction

Understanding the Problem Statement

To predict the number of tickets at a specific date so as to simulate the data for a
given date in our model, we have used Time Series approach to generate the predictions.
Dataset comprises of 11 months of data (Oct 2017-July 2018) and using this data we
have to forecast the number of cases or tickets depending on the time span of prediction
period stated.

Characteristics of Time Series

The analysis of experimental data that have been observed at different points in time
leads to new and unique problems in statistical modeling and inference. The obvious cor-
relation introduced by the sampling of adjacent points in time can severely restrict the
applicability of the many conventional statistical methods traditionally dependent on the
assumption that these adjacent observations are independent and identically distributed.
The systematic approach by which one goes about answering the mathematical and sta-
tistical questions posed by these time correlations is commonly referred to as time series
analysis. The impact of time series analysis on scientific applications can be observed
in diverse fields. For example, many familiar time series occur in the field of economics,
where we are continually exposed to daily stock market quotations or monthly unemploy-
ment figures. In medicine, blood pressure measurements traced over time could be useful
for evaluating drugs used in treating hypertension.

Time Series Statistical Models

The primary objective of time series analysis is to develop mathematical models that
provide plausible descriptions for sample data. In order to provide a statistical setting
for describing the character of data that seemingly fluctuate in a random fashion over
time, we assume a time series can be defined as a collection of random variables indexed
according to the order they are obtained in time. For example, we may consider a time
series as a sequence of random variables, x1, x2, x3, . . ., where the random variable
x1 denotes the value taken by the series at the first time point, the variable x2 denotes
the value for the second time period, x3 denotes the value for the third time period, and
so on. In general, a collection of random variables, xt, indexed by t is referred to as a
stochastic process. In this text, t will typically be discrete and vary over the integers t
=0, 1, 2, ..., or some subset of the integers. The observed values of a stochastic process
are referred to as a realization of the stochastic process.

Method 1: Naive Approach

Many a times we are provided with a dataset, which is stable throughout its time period.
If we want to forecast the number of tickets for the next day, we can simply take the last
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day value and estimate the same value for the next day. Such forecasting technique which
assumes that the next expected point is equal to the last observed point is called Naive
Method.

Ghtl=u
Method 2: Simple Average

When we are provided with a data which might vary by a small margin throughout
its time period, but the average at each time period remains constant. In such a case we
can forecast the number of tickets of the next day somewhere like the average of all the
past days. Such forecasting technique which forecasts the expected value equal to the
average of all previously observed points is called Simple Average technique.

N 1<
U +1=— Z Yi
i
Method 3: Moving Average

In order to use the previous stated simple average method, we must use the mean of
all the previous data but using all the previous data is usually not the right approach.
For example, using the tickets of the initial period would highly affect the forecast for the
next period. Therefore, as an improvement over simple average, we will take the average
of the tickets for last few time periods only. Clearly, the reasoning here is that only the
recent values matter. Such forecasting technique which uses window of time period for
calculating the average is called Moving Average technique. Calculation of the moving
average involves what is sometimes called a “sliding window” of size n.

Using a simple moving average model, we forecast the next values in a time series based
on the average of a fixed finite number ‘p’ of the previous values. Thus, for all i >p

R 1
Y = 5(3/1;1 +Yico + Yirs -+ Yiop)

An advancement over Moving average method is Weighted moving average method. In
the Moving average method as seen above, we equally weigh the past ‘p’ observations.
But we might encounter situations where each of the observation from the past ‘p’ im-
pacts the forecast in a different way. Such a technique which weighs the past observations
differently is called Weighted Moving Average technique.

A weighted moving average is a moving average where within the sliding window values
are given different weights,so that more recent points matter more. Instead of selecting a
window size, it requires a list of weights (which should add up to 1). For example, if we
choose [0.40, 0.25, 0.20, 0.15] as weights, we would be giving 40%, 25%, 20% and 15% to
the last 4 points respectively [8].

1
Y = §(w1y¢—1 + WalYi—o + WaYits - + WpYi—p)

Method 4: Simple Exponential Smoothing
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We can observe that both Simple average and Weighted moving average are completely
opposite. We would need something between these two extremes approaches which con-
sider all the data while weighing the data points differently. For example, it may be
sensible to attach larger weights to more recent observations than to observations from
the distant past. The technique which works on this principle is called Simple exponential
smoothing.

Forecasts are calculated using weighted averages where the weights decrease exponen-
tially as observations come from further in the past, the smallest weights are associated
with the oldest observations:

Do = aye + ol — )y + ol —a)y o+ ...

where 0 < a < 1 is the smoothing parameter.

The one-step-ahead forecast for time t+1, is a weighted average of all the observations in
the series 1, ...,y;. The rate at which the weights decrease is controlled by the parame-
ter a. The expected value § is the sum of two products: ay,; and (1 — «)g, 4

Hence, it can also be written as:

U1t = ¥y + (1- Oé)Qt|t—1

Essentially, we achieve a weighted moving average with two weights: o and 1 — .. Since
1 — a multiplied by the previous expected value §; — 1 makes the expression recursive, this
method is called Exponential. The forecast at time t+41 is equal to a weighted average
between the most recent observation y; and the most recent forecast |t — 1 [8].

Method 5: Double Exponential Smoothing or Holt’s Linear Trend method

Sometimes the models stated above don’t work well on data with high variations. If
we use any of the above methods, it will not consider this trend. Here, trend is the
general pattern of tickets that we observe over a period.

Although each one of these methods can be applied to the trend as well. E.g. the
Naive method would assume that trend between last two points is going to stay the
same, or we could average all slopes between all points to get an average trend, use a
moving trend average or apply exponential smoothing. But we need a method that can
map the trend accurately without any assumptions. Such a method that considers the
trend of the dataset is called Holt’s Linear Trend method.

Series decomposition will help us as we obtain two components: intercept (i.e. level) 1
and slope (i.e. trend) b. We have learnt to predict intercept (or expected series value)
with our previous methods; now, we will apply the same exponential smoothing to the
trend by assuming that the future direction of the time series changes depends on the
previous weighted changes. As a result, we get the following set of functions:

Level l; = ays + (1 — a)(li—1 + by—1)
Trend bt = ﬁ(lt - ltfl) + (1 — 6)bt71
Forecast g, + 1|t = 1, + by
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The first one describes the intercept, which, as before, depends on the current value
of the series. The second term is now split into previous values of the level and of the
trend. The second function describes the trend, which depends on the level changes at
the current step and on the previous value of the trend. In this case, the [ coefficient is
a weight for exponential smoothing. The final prediction is the sum of the model values
of the intercept and trend [8].

Method 6: Triple Exponential Smoothing or Holt Winter’s Method

The idea is to add a third component - seasonality. This means that we should not
use this method if our time series is not expected to have seasonality. Seasonal compo-
nents in the model will explain repeated variations around intercept and trend, and it
will be specified by the length of the season, in other words by the period after which
the variations repeat. For each observation in the season, there is a separate component;
for example, if the length of the season is 7 days (a weekly seasonality), we will have 7
seasonal components, one for each day of the week.

The Holt-Winters seasonal method comprises the forecast equation and three smoothing
equations — one for the level [;, one for trend b; and one for the seasonal component
denoted by s;, with smoothing parameters «, § and 7.

Level l; = a(yy — Si—s) + (1 — @) (l—1 + bi—1)
Trend by = 6(l; — l;—1) + (1 — B)by—4
Seasonality Sy = (v — l) + (1 —7)Si—s
Forecast 4y +k = l; + Spypis
where s is the length of the seasonal cycle, for 0 <a <1, 0<g<land 0 <y < 1.

The intercept now depends on the current value of the series minus any corresponding
seasonal component. Trend remains unchanged, and the seasonal component depends
on the current value of the series minus the intercept and on the previous value of the
component. Also note that the component is smoothed through all the available seasons;
for example, if we have a Monday component, then it will only be averaged with other
Mondays. Now that we have the seasonal component, we can predict not just one or two
steps ahead but an arbitrary k future step ahead [8].

Method 7: ARIMA

It stands for Autoregressive Integrated Moving average. While exponential smoothing
models were based on a description of trend and seasonality in the data, ARIMA mod-
els aim to describe the correlations in the data with each other. An improvement over
ARIMA is Seasonal ARIMA. It considers the seasonality of dataset just like Holt Winter’s
method [8].

Forecast Quality Metrics: Imply how to measure the quality of our predictions

Our predictions have been tested using the following metric:
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Root mean squared error (RMSE): It is the square root of the average of squared
differences between prediction and actual observation.

1 & .
RMSE = J > (v —95)
7j=1
Since the errors are squared before they are averaged, the RMSE gives a relatively
high weight to large errors. This means the RMSE should be more useful when large
errors are particularly undesirable.

Display of Plots based on Methods stated above - Data has been aggregated on a daily
basis to explain the different methods. The plots can be visualized in Figure 27, Figure
28, Figure 29, Figure 30, Figure 31 and Figure 32.
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Figure 27: Naive Approach- Creation Date Vs Count of Tickets
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Figure 28: Moving Average - Creation Date Vs Count of Tickets
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Figure 29: Simple Exponential Smoothing - Creation Date Vs Count of Tickets
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Figure 30: Double Exponential Smoothing - Creation Date Vs Count of Tickets
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Figure 31: Holt Winter - Creation Date Vs Count of Tickets
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Figure 32: ARIMA - Creation Date Vs Count of Tickets
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5.3 Model Training
5.3.1 Different KDE Methods

We have discussed three different methods to select bandwidth in the section of through-
put time. Even though we did recognize that there is little difference among them regard-
ing simulating throughput time, we should measure final Digital Twin models. This is
because Digital Twin is built on combination of mathematical models including Marcov-
chain or Time-series modeling. Thus correlation might occur and affect the final model
while training. We have trained 10 Digital Twin models per each KDE methods(constant
bandwidth, grid search, additional cross validation). Thus we have trained total 30 mod-
els. All of them are made by same train set. Time range of the train data is from
’2018-01-01" to '2018-02-28". By using Analysis of Variance (ANOVA), we test if their
outputs are significantly different. Data for the test is introduced in table 12 and 13.
Each element in the tables represents total average throughput time from "Process start’
to "Process End’.

Method model 1 model 2 model 3 model 4 model 5 model 6 model 7 model 8 model 9 model 10 model 11 model 12 model 13 model 14 model 15

bandwidth = 0.1 118 133 146 131 109 122 119 131 131 121 138 122 120 105 121
gridsearch 142 142 112 120 114 129 142 126 131 125 124 121 135 122 137
cross validation 109 116 116 125 126 116 117 152 110 122 116 119 129 118 101

Table 12: Throughput time from "Process start to End’. Model 1 - 15

Method model 16 model 17 model 18 model 19 model 20 model 21  model 22 model 23 model 24 model 25 model 26 model 27 model 28 model 29 model 30
bandwidth = 0.1 122 141 139 119 139 115 116 129 133 130 124 139 121 115 119
gridsearch 153 115 116 130 115 128 140 111 120 127 111 120 128 154 130
cross validation 133 125 139 99 125 112 118 125 144 134 109 107 131 141 150

Table 13: Throughput time from "Process start to End’. Model 15 - 30

Before we actually implement ANOVA, two assumptions should be satisfied: Inde-
pendence of observations, Normality, Equality (or "homogeneity") of variances[1] [9]

Independence of observations All Digital Twins are created independently. When-
ever Digital Twin model is created, Markov chain, KDE method and Time-series model
work independently.

Normality Data within the group should have normal distribution. In our data, type
of method defines a group. Therefore, we applied KS-Test.

Hy: Data in a group has same distribution with N (X, S?).
H,: Data in a group does not have the N(X,S?) distribution.
Test results of three group are suggested at Table 14. Regarding all groups, we can-

not reject Hy due to higher p-value than 0.05. As a result, we have decided normality
assumption holds

Equality of variances It is important for each group have same distribution. This is
due to the point that ANOVA compares between-group variation to within-group vari-
ation. For this purpose, we have used Levene test. Our null and alternative hypothesis
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Method p—value

bandwidth = 0.1  0.3267
gridsearch 0.7408
cross validation 0.05485

Table 14: KS-Test result for three methods of time simulation

are explained below:
Hy:0? =03 =03
H, : 0} # o} for at least one group pair i, j

By lawstat package in R, we directly tested. The p-value shows that we cannot reject
Hy. Thus, Fquality of variances also holds.

Test Statistic p—value
0.83067 0.4392

Table 15: Levene test result

ANOVA At last, we applied ANOVA. The result allows us to decide that three methods
actually do not make difference considering total throughput time. Based on this analysis,
we finish our comparison of Digital Twins from distinct throughput time simulation. Last
but not least, we recommend use constant bandwidth(0.1) as it is most fast one.

F-value p—value
0.839 0.362

Table 16: ANOVA by stats package in R

5.3.2 Time Series Model

Final Results In Table 17, we can see the comparison between different methods of
Time Series applied to the data set containing creation dates of tickets and their counts.
We can see the best result is generated using Holt Winter’s Method, also known as Triple
Exponential Smoothing, based on the RMSE value generated. The model was able to
successfully approximate the initial time series, capturing the daily seasonality, overall
downwards trend, and even some anomalies. The model deviations captured reacts quite
sharply to changes in the structure of the series but then quickly returns the deviation to
the normal values, essentially "forgetting" the past. This feature of the model allows us
to quickly build anomaly detection systems, even for noisy series data, without spending
too much time and money on preparing the data and training the model.
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‘ Model ‘ RMSE Value

Naive Approach 34.51
Simple Average 19.18
Moving Average 20.02
Simple Exponential Smoothing 31.08
Double Exponential Smoothing 20.59
Holt Winter’s / Triple Exponential Smoothing 12.15
ARIMA 22.56

Table 17: Comparison Table of various Methods with RMSE Values

5.3.3 Model Validation

Ensemble Model As we present in the exploratory analysis section, the distribution
of throughput time significantly changed from 2017 to 2018, and the one generated in
2018 is closer to the distribution of all cases. Hence, we tend to use more information
from recent data. To predict the activity chains, throughput time and the number of
cases more accurately, we use training dataset which covers more historical data for case
number prediction and uses more recent data for training the Markov process model in-
cluding the KDE part.

We build three models whose training data timespans are different from each other. Af-
ter validation, we observe that these models tend to perform better in different aspects.
Therefore, we use an ensemble model in our work to simulate the Digital Twin. The
prediction of the ensemble model is the average of the three models we trained.

The training data and parameters settings which are chosen based on their performance
in the last section are presented in the table below. In the table, the values represent the
timespan of the training data. For example, “2 months” means we use cases generated
since two months ago until the starting date of prediction. “All” means all the data in
since 2017-08-04 until the starting date of prediction.

Model Markov KDE Holtwinter
Process (band- (Period=7
width=0.1) | days)

Model 1 | 2 months 2 months All
Model 2 | 2 months 2 months 4 months
Model 3 | 1 month 1 month 4 months

As we introduce in the previous section, we have data which are generated from August
2017 to July 2018, we validate our model by comparing the accuracy of predictions for May
and June. We also compared long—term and short-term predictions, namely predicting
the following week and the following month. The results indicate that the one-month
prediction achieves better accuracy, therefore, we would suggest using our Digital Twin
model for predicting performance in the following month.

In Figure 33, we list all the validation results. The red ones are the best two results in
each column and the bold results are the most accurate results in each column. As it is
shown in the tables, before ensemble, different models tend to perform better in different
columns. And the ensemble model out-perform the other ones in general.
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Cases per S e Avg Total TP Trimmed Avg Total TP Seipals e
Day Time Time
Celonis Data 16 105 116 Hours 81 Hours 1100
Model 1 11 75 134 Hours 94 Hours 864
Model 2 12 71 103 Hours 72 Hours 841
Model 3 13 83 95 Hours 69 Hours 820
Ensemble 12 76 111 Hours 78 Hours 842

(a) Simulated Values Comparison (Prediction for May 2018)

Cases per Events per Day Avg Total TP Trimmed Avg Total TP
Day Time Time
Rel. Errorl 31.25% 28.57% 15.52% 16.05%
Rel. Error2 25% 32.38% 11.20% 11.11%
Rel. Error3 18.75% 20.95% 18.10% 14.81%
Rel. Error Ensemble 25% 27.62% 4.31% 3.7%

(b) Simulated Values Validation (Prediction for May 2018)

Cases per Sveis par By Avg Tota\ TP Trimmed Avg Total TP Sl Sz
Day Time Time
Celonis Data 31 173 85 Hours 66 Hours 1432
Model 1 17 109 122 Hours 88 Hours 1240
Model 2 19 120 121 Hours 87 Hours 1645
Model 3 20 125 109 Hours 78 Hours 1645
Ensemble 19 118 117 Hours 84 Hours 1510

(c) Simulated Values Comparison (Prediction for June 2018)

CasDe;yper Events per Day Ang'Ii'r%t:I TP TrimmedTiAr;/]i Total TP
Rel. Errorl 45.16% 36.99% 43.53% 33.33%
Rel. Error2 38.71% 30.64% 42.35% 31.82%
Rel. Error3 36.67% 27.75% 28.24% 18.18%
Rel. Error Ensemble 38.71% 31.79% 37.65% 27.27%

(d) Simulated Values Validation (Prediction for June 2018)

Figure 33: Model Validation Results
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6 Application of the Digital Twin Model

Digital Twin model depicts the business operating model. Many organizations are using
it to coordinate the critical interdependencies between people, processes and IT within
complex digital business transformations. It provides enterprises with the following ben-
efits to achieve business excellence:

1. Make the companies more manageable and more adaptive to change

2. Design and implement digital business transformation roadmaps

3. Test changes before implementing them across the operations

By tuning the parameters and changing the input to the Digital Twin model, users can
exploit the potential opportunities, for example improving their working efficiency while
reducing the required resources. In the following sections, we present two what-if ques-
tions that we can answer given the current dataset.

6.1 What if the first level service is automated?

In the first application case, we demonstrate how our model can predict what will hap-
pen if the first level service in the I'TSM process is automated. In the Celonis I'T service
process, the first-level service can be defined as the actions that are processed by the IT
Service Desk, which is recorded in the category attribute in our dataset.

To simulate what Celonis can benefit from the automation of the first level service, we
reduce the relevant throughput time to zero and run the model to simulate the changes
that could happen in May 2018. In the table in Figure 34, we can observe a significant re-

Cases per Events per Day Avg Total TP Trimmed Avg Total TP Sample Size Standafd Dev.
Day Time Time TP Time

Celonis Data 16 105 116 Hours 81 Hours 1100 9.08
Model 1 15 95 39 Hours 19 Hours 864 5.23
Model 2 14 98 36 Hours 15 Hours 820 5.49
Model 3 17 107 35 Hours 19 Hours 820 5.05
Ensemble 15 100 37 Hours 18 Hours 835

Percentage of Change -6.25% -4.76% -68.10% -78.75%% -24.09%

Figure 34: Simulation Result for First Level Automation

duction in throughput time after applying automation to first level service, which means
that in May 2018, if we automate the first level service, the average total throughput
time would have likely been reduced by around 68%. However, the case numbers are not
influenced. This could be caused by our independent assumption that the throughput
time and the number of cases or events are not dependent on each other.

Potential improvement The number of events or cases processed every day should
be dependent on how the colleagues at the I'T Service Desk allocate their working hours.
Since the first level service is automatically finished, the colleagues could spend more
time working on other activities. To build a more sophisticated model, we need to add
these additional relevant features and reflect their correlations in the structure.
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6.2 What if the number of cases increase or decrease?

Naive prediction With Digital Twin, we can simulate more or less cases. We expect
to see what happen if the number of cases variate. Unfortunately, our model depends on
independence assumption. This means that even if the number of ticket increases, there
would be no change for activity frequency and throughput time distribution. Therefore,
we introduce outlook of the given what if questions, and suggest potential improvement
based on current achievement.

Naive approach Keeping in mind the limitation, we have simulated the what-if ques-
tion. Currently we are able to observe how the cases per day, events per day and frequency
between activities change. Their change is exactly proportional to the ratio of increase
or decrease. Refer to Table 18. For more advanced analysis rather naive, we need to
upgrade our model.

Change of ticket number —50% —20% 0% +20% +50% +100%
Cases per day 3 4 4 5 6 9
Events per day 18 26 29 32 39 93
Frequency of 'Status: New’ to 'Change assignee’ 38 27 35 42 57 78

Table 18: Naive analysis: what if the number of ticket increase or decrease

Potential improvement As displayed in figure 35, the number of cases per day and
average throughput time is correlated. We tried to apply their relation to for the time
simulation, but did not implement. We have observed there is a possibility of regression
model. We actually built the simple model, but decided it does not have enough accuracy
for Digital Twin. We leave it as potential improvement in the future.

Process Start' to 'Process end' Status: New' to 'Change Assignee’

i . 300
. 280

260

T 240

' _ 'iA‘\V\r’[\ \//\;\ / ‘\A. \</

0 1 0 ¥
2018-01 2018-02 2018-01 2018-02

AVG T Time ~ Case Count AVG T Time » Case Count

Figure 35: Data observation: dark line refers case count, and light one is average through-
put time
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7 Discussion and Conclusion

To summarize, we have discussed and created a Digital Twin model. First, we introduced
concepts of process mining and Digital Twin. Next, we described the Happyfox ITSM
Data Model and how it organized. After exploring the data, we give a more in-depth
description of each techniques we have applied. It is built grounded on three simula-
tions: the sequence of activities, throughput times and the number of tickets, under the
independent assumptions. After training the model with our preprocessed dataset, we
validate the simulation results which suggest that the Digital Twin model can be applied
to a one-month prediction. By changing the input or tuning the parameter in the Dig-
ital Twin model, we answer several what-if questions which can help enterprises exploit
potential opportunities for improvement. We hope that the virtual twin helps companies
to simulate and predict challenges of business.

8 Outlook

Based on the Digital Twin model we have built so far, we suggest some outlook for future
work.

The first point of outlook is about independence assumption. In this work, we assume
that the activity sequence and throughput time simulation do not depend on the number
of the ticket. To build a more sophisticated model, we introduced possible methods such
as LAMP. We also suggested how throughput time simulation and the number of the
tickets or events per day might influence each other.

Secondly, we can solve more what-if questions once there is more relevant data available.
For example, we can then answer questions such as "What if I come up with an FAQ?" and
"Would a chatbot help me?" What’s more, the automation application can also provide
a 24/7 IT service. These techniques can help with giving suggestions to frequently asked
questions, so the customers get the response immediately. The potential improvement of
the business operating model can then be observed using the output of the company’s
Digital Twin.
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