
TECHNICAL UNIVERSITY OF MUNICH

TUM Data Innovation Lab

Process Mining and Natural Language

Authors Claas Brüß, Eduardo Goulart Rocha
Gayatri Kudchadker, Manisha Singhal, Rachid Ellouze

Mentor M.Sc. David Becher, Celonis SE
Co-Mentor(s) M.Sc. Philippe Suennen (TUM), M.Sc. Oleh Melnyk (TUM)
Project Lead Dr. Ricardo Acevedo Cabra (Department of Mathematics)
Supervisor Prof. Dr. Massimo Fornasier (Department of Mathematics)

Jul 2019

1

Abstract

Process Mining is quickly emerging as one of the dominant trends in business intelligence
and compliance. By utilizing the digital footprints and event logs generated during com-
mercial operation, the actual inherent processes can be monitored, visualized and under-
stood enabling far more informed strategic decision making. Celonis SE is a Munich-based
company offering an analytical framework that aims to provide a process focused view
of business data stored in ERP systems such as SAP through intuitive visual dashboard
interfaces. The dashboards are customized or created from scratch by Celonis trained
analysts on the client side, offering a tailored and ergonomic way to inform management
decisions.

This approach has the advantage that only a few users (the analysts) need to go through
time-consuming training in analysis creation. But as a consequence, users of the platform
dependend on the Analyst to built their analyses. The goal of this project is to make
relevant insights even more accessible to decision makers by offering a range of Celonis
framework features through an user friendly natural language interface. In addition, un-
usual trends or changes in operation are highlighted to draw the attention of management
to problem areas of high importance.

The project is split into two parts: Firstly a chat-bot that can retrieve data to answer
natural language queries is built. Secondly, anomaly detection algorithms are applied to
specified data subsets to identify possible outliers causing bottlenecks in the process.

The assistant can also be used to take multiple actions within Celonis and to trigger
routines, making process mining more iterative.

CONTENTS 2

Contents

Abstract 1

1 Introduction 3
1.1 Cases, Activities and the Process Graph 3
1.2 Process Query Language . 4
1.3 Problem definition and goals of the project 5

2 Natural Language Assistant 6
2.1 Intent based Assistant . 6
2.2 Automated sequence to PQL . 7

2.2.1 CCG- Semantic Composionality . 7
2.3 Implementation . 8

2.3.1 Parsing Pipeline . 9
2.3.2 Features . 10

2.4 Results . 12

3 Anomaly Detection 13
3.1 Dataset . 13
3.2 Related Work . 14
3.3 Approaches and Issues . 14
3.4 Implemented Approach . 15
3.5 Results . 17
3.6 Future Work . 19

4 Summary 20

Bibliography 21

1 INTRODUCTION 3

1 Introduction

Today, nearly every process within modern companies is supported, controlled or docu-
mented by digital systems. Every digital operation produces valuable information in the
form of log files, that for decades were mostly used for debugging and recovery. Process
mining is the act of deriving insights from and improving processes through the aggrega-
tion and analysis of event log data. The Celonis framework offers a real time “snapshot”
of a company and can in turn be used to increase transparency and compliance as well as
to reduce cost by avoiding bottlenecks.

1.1 Cases, Activities and the Process Graph

For this project, the Purchase-to-Pay (P2P) model of an undisclosed example company
was considered. The Data Model specifies how the SAP standard tables, acting as
data sources, are connected through foreign keys. The data model for our particular
case is visualized in Figure 1. Like every analyses at Celonis, the Activity Table is
present (CEL P2P ACTIVITIES). This table always contains the Case ID denoted by
“ CASE KEY”, the Activity Label in this case “ACTIVITY EN” and a Timestamp
(“ EVENTTIME”).

Figure 1: Purchase-to-Pay Schema

In Process Mining, a case refers to an instance of a process. In the P2P example, this
corresponds to one Purchase Order Item. Individual stages in the process are called
Activities, with examples including “Create Purchase Order Item” or “Change Price”.
The timestamps are used to order the activities so that a graph displaying process paths
as shown in figure 2 can be built. This allows for further analysis of the data in order to
answer business questions such as “How many cases took more than 15 days to finish?”.

1 INTRODUCTION 4

Figure 2: Celonis Process Analytics

Celonis splits users in 3 roles:

• The Data Scientist is responsible for building the Data Models, managing imports
of data, installing and maintaining the software.

• The Analyst builds analysis sheets similar to figure 2, which are used by the Viewer.

• The Viewer is anyone that interacts with the analysis to answer business questions.

The idea behind this separation of roles is that viewers (usually decision makers) won’t
need any deep knowledge of the Celonis framework to analyze their processes. Instead,
they refer to analyses built by the Analysts. However, to access information which is not
directly displayed at the analysis, the viewer has to either dig further into the analysis, by
applying a set of filters or ask the analyst to edit the analysis and include a component
that displays it. Both alternatives are very time-consuming. Furthermore, the analysis
only displays the data. Making sense out of this data still is the task of the Viewer and
might not be simple due to the static design of analysis sheets. A flexible way of access-
ing data in Celonis is through its Process Query Language, which is discussed in the
following section.

1.2 Process Query Language

Celonis develops its own query engine, with its own query language, named Process
Query Language (PQL) . The syntax of PQL is closely related to the SQL standard,
but simpler and specialized for process related queries. In contrast to SQL, one doesn’t
need to define how tables are joined. Tables are joined implicitly from the selected columns
using the foreign keys relations specified in the data model. Another important difference
is that sub-queries are not supported in PQL.

1 INTRODUCTION 5

Listing 1 shows an example of a query in PQL which consists of a set of filters, a TABLE
statement, which might contain an aggregate or not, and clauses to limit and order the
data. Note that “LFA1”.“NAME1” and “EKPO”.“NETWR” are located on different
tables, but the framework is able to find the join path from one table to the other based
on the foreign keys defined in the Data Model. Furthermore, there is no “Group by”
clause. Instead, data is grouped implicitly based on the selected columns. Although PQL
is simpler than SQL, learning it still requires some time, specially for non-technical users.
Therefore, a solution consiliating the flexibility of PQL with the ease of use of the analysis
dashboards would be beneficial.

FILTER ‘‘EKPO’’.‘‘NETWR’’ > 10;

TABLE(SUM(‘‘EKPO’’.‘‘NETWR’’) AS COL1, ‘‘LFA1’’.‘‘NAME1’’ AS NAME)

LIMIT 10 ORDER BY NAME DESC

Listing 1: Example of PQL query which selects the top 10 vendors (“LFA1”.“NAME1”)
and the sum of their net order values (“EKPO”.“NETWR”) where “EKPO”.“NETWR”
is greater than 10, ordered by vendor name.

1.3 Problem definition and goals of the project

The goal of this project is to develop an intelligent assistant that automates various tasks
that usually fall under the responsibility of an analyst in Celonis. In addition, the assis-
tant should be able to suggest metrics to look at, such as anomalies and process aspects
with high improvement potential. It should also provide a user friendly and intuitive
interface that can provide access to the desired output without the need for the decision
maker to have any prior knowledge on how to use the front-end. This would take workload
of analysts and reduce the waiting time for decision makers with the anomaly detection
drawing attention to problematic patterns that no one might have previously considered.

The Natural Language Processing (NLP) Assistant and the anomaly detection approach
were developed in parallel and in close coordination to be finally combined into a singular
solution.

2 NATURAL LANGUAGE ASSISTANT 6

2 Natural Language Assistant

Recent advances in NLP have made chatbots a viable interface for humans to interact
with digital systems. Natural language interfaces are easy to use and require no previous
knowledge from the user. The goal of this part of the project is to add a natural language
interface that helps the user mine the process in a more intuitive way. Furthermore, a
chatbot might be a way of accessing data which is not directly displayed in the Analysis.

2.1 Intent based Assistant

The first approach we took was an intent-based approach. The Analyst can define a set
of intents which are triggered through utterances. Intents should be seen as an action
to be executed by the bot. When the user talks with the chatbot, it detects if the query
corresponds to one of the predefined intents and if yes, the bot executes the action asso-
ciated to it.

Intent recognition is a widely researched area in NLP and has reached maturity to a point
where it’s offered as a service. This makes world class Intent Recognition algorithms
available to everyone. For this project, Google’s Dialogflow was chosen as it offers a REST
API to create new intents, making it more flexible. In Google Dialogflow, intents are cre-
ated by providing a corresponding set of utterances to trigger the intent and parameters
to be extracted. Domain-Specific Entity-types can also be defined by the user. Figure 3
shows the interface to add new intents and entities.

After adding a few intents, it became clear that an intent-based approach is too limited
for 2 main reasons:

1. With too many intents, the algorithm which is usually based on measuring the
similarity of example utterances and user’s input, is unable to properly differentiate
between intents. This is particularly true since the vocabulary used is rather limited,
so two slightly different phrases might trigger two completely different intents. As
an example, consider the utterances “sum of net order value is larger than 10” and
“sum where net order value is larger than 10”. Both differ by a single word and
have different meaning, but since the only difference is in stop words, the bot might
not understand the difference between them.

2. Maintaining the bot might be too complicated since the analyst would have to come
up with all possible queries a viewer would ask. This creates a problem since we
want the viewer to be able to answer questions which weren’t previously defined by
the analyst.

Due to the limitations of intent recognition, we decided to only use intents for triggering
sequences of actions which can’t be solved using a simple PQL query. For instance, to
trigger an anomaly detection algorithm or some daily summary of the data. For questions
like “How many cases do I have?”, which resolve to a PQL query, we automatically build
the query from the text.

2 NATURAL LANGUAGE ASSISTANT 7

(a) Providing set of utterances that trigger “anomalyIntent”. “R30” and “Frozen
Foods” are user defined entities

(b) Defining “Vendor” entity

Figure 3: Google Dialogflow’s interface to create new intents.

2.2 Automated sequence to PQL

Automated sequence to PQL is related to the task of Semantic parsing, which is a widely
researched field in NLP. While there has been a lot of progress in the area, it hasn’t
reached a state where it can be considered as a solved problem. The challenge, as in all
NLP tasks, lies in parsing an extremely ambiguous and context-free language to a formal
language. Below we present a common approach to semantic parsing which served as an
inspiration to our approach.

2.2.1 CCG- Semantic Composionality

The basic building blocks of Combinatory Categorial Grammars (CCG) [1] are
the so called categories, which are composed of a syntactic and a semantic part. The
syntactic part is composed of primitive symbols such as NP, ADJ and S and combination
operators (\and /). The semantic part is a lambda DCS expression [2], which captures

2 NATURAL LANGUAGE ASSISTANT 8

the action being expressed by the category. Lexical entries map a word or phrase to
a category. The set of all lexical entries form a lexicon, as displayed in Figure 4a. The
algorithm uses the lexicon to match words and phrases with their categories and apply a
set of combination rules on the categories to derive the final form, as displayed in figure 4b.

Usually, at each step multiple combination rules can be applied, resulting in an expo-
nential number of possible parsings. The algorithm must be able to select the correct
parsing from all the possibilities. Artzi and Zettlemoyer [3] describes a weakly supervised
algorithm to learn an heuristic to pick the best parsing from a set of alternatives by using
some annotated data (pairs of utterances and the query answer) and an execution engine
that evaluates the generated lambda expression. This has the advantage that one doesn’t
need to write the equivalent lambda expression for each query. However, defining the
grammar still requires expert knowledge and is time consuming, which is the main reason
why we didn’t use CCGs in our project.

Instead, we can exploit PQL’s simplicity in our favor. As mentioned before, PQL doesn’t
have join statements and sub-queries. Besides, the select statement for a chatbot can only
have an aggregation function, since it is not reasonable to return full tables back to the
Bot. The task reduces then to extracting the filters, the column and the aggregate that
the user is interested at. In the next chapter, we present our implementation of semantic
parsing.

CCG ` NP : CCG

is ` (S\NP)/ADJ : λf.λx.f(x)

fun ` ADJ : λx.fun(x)

(a) CCG Lexicons

CCG is fun
NP S\NP/ADJ ADJ
CCG λf.λx.f(x) λx.fun(x)

S\NP
λx.fun(x)

S
fun(CCG)

(b) Parsing with CCG, adapted from ref()

Figure 4: Parsing with CCG. Left and Right arrows are combination rules. Other rules
are possible. Adapted from [4]

2.3 Implementation

The implementation relies on spaCy, a free, open-source Python NLP library which offers
tokenization, named entity recognition and rule based matching functionalities out of the
box. The assistant interacts with Celonis through its Python API.

The assistant is designed to be model-independent and to work with as few external con-
figurations as possible. Once the assistant connects to a Celonis Data Model, it can get
all Key Performance Indicators (KPIs) which were configured for that analysis. Further-
more, Celonis provides a mapping file, that maps the technical name of the columns to
human readable names. The bot uses information in this file to detect the columns in

2 NATURAL LANGUAGE ASSISTANT 9

a query. This also ensures that the assistant is always up to date with the analysis. If
new columns are added to the Data Model or if new KPIs are added to an analysis, the
assistant can automatically add it to it’s capabilities.

2.3.1 Parsing Pipeline

Our approach relies on spaCy’s rule based Matcher [5]. One can define entities, lemmas
and patterns. The Matcher passes through the text and searches for pattern matches.
Pattern matches are emitted to the query object, which can also handle ambiguity. Figure
5 depicts the different steps of the pipeline for the query “The average throughput time
for vendor SCT Inc.”.

As already mentioned, the role of the parser is to map a sentence to a PQL query. For
this, the following steps are performed:

1. Tokenization; first the text is segmented into words and punctuations. Tokeniza-
tion is based on several rules that are language specific. For instance the points in
the word “U.K.” are part of the word and not for ending a sentence.

2. Text cleaning and lemmatization; here stop words such as “the”, “by” or “so”
are removed. Furthermore, words are replaced by their lemmas. For example, “is”,
“are”, “were” are replaced with “be”. Some stop words were kept if they have some
special meaning, for instance ‘A’, which denotes a user type in SAP’s P2P schema.

3. Named Entity Recognition; in this step, relevant entities are extracted from
the input text. We distinguish between five different entities. The entities are the
following (i) AGGREGATOR, (ii) COLUMN , (iii) KPI, (iv) OPERATOR, (v)
TABLE ENTRY . Note that we distinguish between columns with string entries
and columns with numerical entries. The same applies for operators, we distinguish
between numerical operators such as“equals” or “greater than” and logical operators
such as “and” or “or”.

4. Rule based matching; on top of the extracted entities we define a set of rules
that help to parse the query. A rule is a pattern that consists of a sequence of
entities, lemmas, POS tag, exact text, etc. Every time a rule is matched in the
input text, a callback function is called. For better understanding, consider the rule
“[COLUMN , OPERATOR, NUMBER]” and the input text “Average through-
put time where the net order value is larger than 10”. The Matcher will match
the rule with the text “net order value is larger than 10” and call the appropriate
callback function.

5. Building the Query Object; as already mentioned, when some patterns are
matched, callbacks that modify the Query Object are triggered. The Query Objects
can also work to handle context, resolve ambiguities or do some post-processing.
Introducing it, facilitates the generation of the PQL query and embedding the result
in a text.

6. Building the PQL query; after constructing the Query Object, building the query
becomes easy, in which the syntax of PQL is taken into consideration.

2 NATURAL LANGUAGE ASSISTANT 10

Input

Tokenization

Cleaning
Lemmatization

Entity
Recognition

Rule matching

Query Object

PQL Query

The average throughput time of vendor SCT Inc.

[the, average, throughput time, of, vendor, SCT Inc.]

[AGGREGATOR, KPI, STR COLUMN, TABLE ENTRY]

Two rules matched:

[AGGREGATOR, KPI] and [STR COLUMN, TABLE ENTRY]

[average, throughput time, vendor, SCT Inc.]

{aggregator = average, kpi = throughput time, column = None

filters = [[column=vendor, operator=IN, value=SCT Inc.]]

’FILTER ”LFA1”.”NAME1” IN (’SCT Inc.’);

TABLE(AVG(KPI(’Throughput Time in Days’)) AS COL1) LIMIT 1

Figure 5: Step by step parsing of sentence “The average throughput time for vendor SCT
Inc.” illustrating the parsing pipeline

2.3.2 Features

The assistant supports the following features:

• Speech recognition; using Google-API [6], the assistant is able to translate speech
to text.

• Charts; alongside with the chat-bot, the assistant provides build-in charts that
represent data in form of a table, pie chart and histograms.

• Auto-complete; in order to provide a better user experience (UX), the assistant
provides a smart auto-complete feature. The auto complete module is context based,
in the sense that it analyzes the so far typed text to supply consistent suggestions.
This also improves accuracy of the bot by helping the user to provide more struc-
tured queries.

• Simple small talk; the assistant is able to lead simple small talks, such as “Hello,
how are you?”.

• Applying filters to update charts; the users have the possibility to apply filters
to the charts by simply typing the desired filter in a natural language text. For
instance, typing “net order value larger than 10” to the chat-bot results in filtering
the charts to display only data that satisfy this condition.

2 NATURAL LANGUAGE ASSISTANT 11

• Parsing aggregator, KPIs and Columns; the assistant is able to parse text in-
put that contains an aggregator, a KPI or a Column, and multiple filters to a PQL
query. It then runs the query and displays the result. For example, it constructs
from the input “Average net order value of the vendor SMP”, the query, ‘FILTER
‘‘LFA1’’.‘‘NAME1’’ IN (‘SMP’); TABLE(AVG(‘‘EKPO’’.‘‘NETWR’’) AS COL1)

LIMIT 1’.

• Multiple filters and filter operators; the parser is able to extract multiple
filters from the input text. It also supports different operators for filtering, for
instance, “equals”, “larger than” or “in”. Note that, we distinguish between string
operators and numerical operators. Moreover, Celonis provides a powerful operator,
namely the “like” operator. It offers the possibility to filter on a pattern or an
expression. This functionality is also supported and can be extracted from the
input text. Furthermore, the parser is able to apply logical operation on top of the
filters, namely “and” and “or” operators.

• PQL to sequence; in the same frame of UX, the chat-bot embeds the returned
result in meaningful text. It formulates the executed query in a human readable
text format. This functionality provides feedback of how the assistant interpreted
the question and thus it can be used to check the correctness of the result.

• Detect hints that refers to anomaly; the assistant is able to answer questions
related to anomaly and unusual events such as “What was unusual last month?”.
More details about anomaly detection are discussed in Chapter 3.

Figure 6: Assistant Interface

2 NATURAL LANGUAGE ASSISTANT 12

2.4 Results

The assistant is able to handle different types of queries and to apply complex as well
as advanced filters to the charts. It can handle ambiguities in the text and ask back
questions. Furthermore, it reformulates the question in the way it understood, in order
to provide a feedback about the correctness of the results. It can adapt to different data
models with little external intervention. The combination of the intent based recognition
offered by DialogFlow with the automated query generation provides several benefits. On
one hand, versatility of possible actions to be triggered, like an anomaly detection algo-
rithm or a daily summary of the data, offered by intent recognition and, on the other
hand, robustness offered by the automated query generation.

Conversation flows in a natural and uncomplicated way as displayed in 6, reducing the
amount of knowledge needed to interact with the platform.

3 ANOMALY DETECTION 13

3 Anomaly Detection

In order to support strategic decisions we would like to draw attention to problematic pat-
terns found through algorithmic analysis. In most cases analysts need to anticipate poten-
tial issues and problematic patterns to compose an analysis within the Celonis framework.
To a certain extent, we aim to elevate the need for this kind of foresight by automati-
cally detecting unusual process or non-conformant cases in order to draw attention of the
decision makers to issues that might not have been addressed otherwise because nobody
thought of looking for this specific non apparent pattern. In this scenario we consider
Anomalies to be cases that are set apart either by a substantial difference in KPIs and
metrics or a clear deviation from the predefined process flow.

The second task of this project was to create an intelligent mining assistant that can
make proactive suggestions and direct the users to problems in their processes. Anomaly
detection can help to improve process mining by detecting activities that are taking more
than the required time or an activity that is repeatedly failing. Finding such processes
and rectifying them will result in increased efficiency. Also, not all users are familiar with
Celonis framework and it is not always possible to directly find anomalies when applying
certain filters in the process explorer or other analytic views in the interface. The system
should be proficient enough to analyze the case data and inform user about the anomaly
if any.

3.1 Dataset

The provided data stems from SAP data entries describing a Purchase-to-Pay process.
Parts of the data were fabricated to increase the data volume and we do not have clear
indications concerning the data quality. The analyzed dataset encompasses roughly 67000
cases. Even though each case as a data entry is specified by over 200 columns combining
data from various SAP standard tables, most columns are sparsely populated and only
certain columns can be meaningfully applied as KPIs (e.g.: throughput time).

From an activity perspective, the process data lists 24 different activities and 347 unique
connections between them, demonstrating a large variation in the process. The precon-
ceived process path, dubbed the Happy Path, includes 7 activities with 6 connections
between them.
For the purpose of analysis, the dataset can conceptually be split into 3 categories of data
dimensions:

• Case Specification: These columns enumerate the case properties which are set
from the process start. Included are such stats as “Vendor” or “Order Quantity”.

• Case Metrics and KPIs: These are measured quantities, such as “Throughput
Time” and status indicators which are not predetermined and are acquired during
operation or after process completion.

• Process Flow Data: This data subset encodes the topological information of the
case specific process flow. This is done by specifying connections as directed edges

3 ANOMALY DETECTION 14

with the start and end activity including the respective time stamps.

In our approach, the different data categories are utilized very differently, thus warranting
such a distinctive categorization of columns.

3.2 Related Work

Lamba et al. [7] use a model-based approach to cluster sequences of user behaviours and
find anomalous sequences. The authors model clusters using Markov chains and define a
likelihood based statistic to score anomalous sequences. The paper exploited the contex-
tual information of the technical architecture and was found to be a scalable and robust
framework for detecting anomalies. Agrawal and Agrawal [8] present a survey on different
data mining techniques for anomaly detection ranging from clustering-based techniques to
neural networks. Silva and R Ferreira [9] describe a Hidden Markov Model(HMM) based
Sequence Clustering algorithm for detecting unusual event log traces for process mining.
They experiment with different ways of using HMMs in handling noise to generate log
traces.

3.3 Approaches and Issues

The section describes the approaches that were considered for anomaly detection and
other issues with the dataset in general.

• Dataset Limitations
Without clear indications of data quality, very limited domain knowledge and par-
tially fabricated data, we face multiple factors that aggravate the interpretation of
result and thus hinder iterative improvement and tuning of methods. This on mul-
tiple occasions led to system inherent behaviors to be classified as anomalies during
the first milestones of this project.

• Markov Chains
Markov chains have been successfully used for anomaly detection in sequences. We
wanted to apply the Markov model based clustering method as described by [7].
The paper proposes a method where a set of clusters are modelled as Markov chains
by initializing with random transition and initial probabilities. The optimal set of
clusters is found using Bayesian Information Criteria. The probabilities per each
cluster are updated based on training example which belongs to the cluster. Each
training sequence is assigned a score based on it’s likelihood of belonging to a par-
ticular cluster. If the score falls below a threshold, then the sequence is marked as
anomalous. This approach marks a sequence as anomalous if a specific sequence or
the most likely sequence is not being followed by a training example. With respect
to the business process data, apart from sequences which do not follow an ideal
path, sequences that follow a desired path but have an extreme value for a KPI e.g.
a high throughput time, should also be reported to the user. Using the approach
described in the paper will not classify such sequences as anomalies since they follow
a desired path.

3 ANOMALY DETECTION 15

• Clustering
Clustering is an unsupervised learning algorithm which separates a set of items into
groups such that within-group similarity is higher than between-group similarity.
Clustering helps to identify a set of outliers which have striking differences from the
rest of the data points, and these outliers are termed as anomalies. We used K-means
clustering to find deviations in the P2P model. Instead of using all available features
from the dataset, we identified ‘Vendor’ as a high priority dimension based on it’s
importance in Celonis analysis. Data was filtered on a specific Vendor. This can be
done because it can be safely concluded that different Vendors follow a different set
of steps for processing orders. So it is unreasonable to cluster without pre-filtering.
Filtering allows us to do more accurate prediction. We constructed a set of KPIs as
presented in Figure 7. Once filtered, the constructed KPIs were provided as feature
vectors to cluster the dataset.

Figure 7: KPIs

The elbow method was used to determine optimal number of clusters. For multiple
Vendors, 7 was the ideal number of clusters. The clusters obtained were showed
similarities between a set of KPIs. But we could not identify a cluster which showed
deviations with respect to all/maximum set of KPIs and clearly deviates from the
group. Also, for some Vendors the elbow plot did not appear to converge to a
particular number but decreased with more number of clusters. Thus, we concluded
that K-means clustering was not a suitable approach.

3.4 Implemented Approach

Our final approach uses simple statistics to find anomalies. We have replicated and
automated the Celonis Anomaly Analysis. Cases were split into sub-sets based on case
specification data, i.e. ‘Vendor’. Figure 8 shows the worklow of the approach. Due to the
limited time frame of the project we focused on metrics-based analysis. Path-based and
topological features analyses were not implemented due to time constraints and can be
addressed as future work.

3 ANOMALY DETECTION 16

Figure 8: Filtering Cases based on spec similarity

The implemented approach requires ‘Vendor’ and ‘Event Timespan’ as mandatory input
dimensions. i.e. when a user asks a query, it is necessary to provide the Vendor name and
time period for which the user will like to have the information. Material and Purchasing
Group are optional dimensions. The timespan should specify if the user wants the details
per Year/Month/Week and respective dates.

The user is asked to select a KPI from the list of KPIs presented in Table[7]. These KPIs
are hard-coded in the script, but it is possible to add new key indicators by modifying the
PQL query to incorporate additional KPIs and adding conditions to process the new KPIs
in the existing Python script. Figure 9 shows the dialog flow displayed in the assistant.

Figure 9: Anomaly Dialog Flow

Anomalies are reported per activity level for ‘Change Activities’, ‘Manual Updates’, ‘Dele-
tions/Cancellations’, ‘Repeat Activities’. Activity level analysis evaluates individual ac-
tivities for a given time period and reports changes in the activities. The data is grouped
by timestamp and ratio of change activities, manual updates, deletions, repetitions is
found with respect to total activities. The assistant reports a percentage change between
the queried and past date when the vendor was operational to the user as an output,

3 ANOMALY DETECTION 17

along with a graph presenting variation in KPIs over the past dates.

We assumed a threshold of 50% change to identify an anomalous KPI. If the percentage
change in a KPI is greater than 50%, user is asked to verify the process for the queried
time-span. The analysis also showed that most of vendors in the dataset have more than
10 activities per Week, more than 30 activities per Month and more than 600 activities
per Year. Thus, percent change is found only if the median value of total activity for any
vendor is at-least 5 activities per Week, 25 activities per Month or 500 activities per Year.
If the median is less than the specified value, then absolute change in the exact value of
the kpis is reported without finding the ratios.

Anomalies for ‘Throughput Time (in Days)’ are reported per Case level. Case level
analysis evaluates individual cases and reports cases which deviate from the rest in the
group. The data is grouped on Case IDs. Dataset analysis revealed that throughput
times for most of the vendors is right skewed. Thus, we find the skewness for throughput
time in days for a given vendor. For a right skewed distribution, the cases with through-
put times greater than the 95th percentile are evaluated further. If the distribution is
left skewed, the cases with throughput times lesser than the 5th percentile are processed
further. It is important to consider cases with very low processing times, as it is possible
that some cases are skipping a mandatory and a critical activity due to which the order
gets finished quickly. We assume 95th and 5th percentile as a reasonable estimate which
provides cases with extreme throughput days. For an unskewed distribution, the top five
cases with maximum time duration are evaluated. We find the anomaly factor for these
separated cases which is given as follows:

Anomaly Factor = Change Activity Ratio + Manual Update Ratio +

Delete Cancel Ratio + Repeat Activities Ratio

The assistant presents a distribution graph of throughput time to the user with some
explanation and five cases(if present) with their variants having high anomaly factor.

3.5 Results

The approach is implemented using Python. The Celonis Python API is used to generate
queries for data retrieval. The following section explains the results returned for different
variations of queries being asked by the user.

1. Query: What was unusual for Vendor AluCast for March 2009?
KPI selected: Case Count
Inputs: Vendor = AluCast, Span = Month, Date = 2009-03-01, KPI = Case Count
Output: Result returned is displayed in Figure 10.
Since the percentage increase in Case count is 80% which is more than the 50%
threshold, assistant asks the user to verify the activities of the vendor for the queried
month. If the percentage was less than threshold the assistant would report “Noth-
ing unusual happened in the given time”

3 ANOMALY DETECTION 18

Figure 10: Output for Query 1

2. Query:- What was odd for Vendor Unisono AG for third week of March 2009 for
the material ‘Frozen Foods’ and purchasing group ‘R30’?
KPI selected:- Throughput Time
Inputs:- Vendor = Unisono AG, Span = Week, Date = 2009-03-16, KPI = Through-
put Time, Material = Frozen Foods, Purchasing Group = R30
Output:- Result returned is displayed in Figure 11.
The output explains the graph and displays the anomaly factor calculation.

Figure 11: Output for Query 2

3 ANOMALY DETECTION 19

3.6 Future Work

The assistant at present detects anomaly in data only when Vendor is mentioned with
the time period in which anomaly is to be observed. Also, it only consider one KPI that
should be specified by the user. Though the assistant is smart enough to detect anomaly
for specific KPIs, it can be made smarter so that it can detect anomaly without applying
any filter and can consider necessary KPIs altogether.

One approach is to use network analysis that can observe all the paths between activities
and find pattern in them. Taking metrics like throughout time as weights, it can be used
to detect unusual paths and cases in which this pattern is recurrent and those cases can
be further scrutinized with other KPIs like automation rate.

Second approach can be using machine learning algorithms like clustering and Markov
chain methods to cluster cases taking different KPIs as weights and to find path-based
anomalies. But this requires large and balanced dataset. The given dataset is not sym-
metric as some Vendors have very large amount of cases and for some there are only
handful of cases so the clustering approach in the current dataset will be biased towards
large vendors.

4 SUMMARY 20

4 Summary

In this project, Celonis platform was enhanced by adding an Intelligent Assistant that
helps users mine their processes in a more intuitive way. This assistant takes questions
from user in natural language and translates it into PQL query to get the desired output.

The assistant can also be used to detect anomalous activities or cases. If users want to
know the reason for the delay in their orders or why it got cancelled, they have three
approaches: first, ask the analyst themselves and wait for their reply which might take a
lot of time; second, use Celonis framework and apply filters to see if something anomalous
occurred in their order. But this approach needs domain knowledge about how Celonis
framework works and which filters to apply. Not all users know how to use the framework
and even if they do, it is not guaranteed that the applied filters will show aberrant result.
Third approach is to use this assistant to ask what unusual happened for the particular
vendor in a given time period and in which KPI you are most interested in.

Given the short time-frame of this project, using annotated data to deal with query am-
biguity was not possible. Celonis, as a company, has the means (man-hours) to invest
in such annotation effort and we strongly believe that the assistant can reach production
level and be deployed as a product with a bit more of perfectioning. Besides that, Celo-
nis’ platform can also provide more functionalities for the bot that would allow to answer
more complex queries, for instance “Which vendors have a throughput time larger than
average?”, which translates to a complicated PQL query, but that would be simple if
sub-queries were allowed. To be successfully integrated, the assistant shouldn’t be seen as
an application running on top of Celonis, instead it should become an application within
Celonis, such that new features of the platform also take it into consideration.

Anomaly detection can also be improved if more data is given so that machine learning
algorithms can be applied to get better accuracy. Also to detect abnormal behaviour of
activity, good domain knowledge is required which can help in feature engineering and
selecting attributes that interests clients.

Bibliography

[1] Susan Steele. “Mark Steedman,Surface structure and interpretation (Linguistic In-
quiry Monographs 30). Cambridge, MA: MIT Press, 1996. Pp. xiv 126.” In: Journal
of Linguistics 34.2 (1998), 489â“549. doi: 10.1017/S0022226798317119.

[2] Percy Liang. “Lambda Dependency-Based Compositional Semantics”. In: CoRR abs/1309.4408
(2013). arXiv: 1309.4408. url: http://arxiv.org/abs/1309.4408.

[3] Yoav Artzi and Luke Zettlemoyer. “Weakly Supervised Learning of Semantic Parsers
for Mapping Instructions to Actions”. In: Transactions of the Association for Com-
putational Linguistics 1 (Dec. 2013), pp. 49–62. doi: 10.1162/tacl_a_00209.

[4] Luke Zettlemoyer Yoav Artzi Nicholas FitzGerald. Semantic Parsing with Combina-
tory Categorial Grammars. 2014. url: https://yoavartzi.com/tutorial/ (visited
on 07/27/2019).

[5] SpaCy. Spacy Matcher. https://spacy.io/api/matcher/. [Online; accessed 26-
July-2019]. 2019.

[6] Google. Google Speech-to-Text. https://cloud.google.com/speech-to-text/.
[Online; accessed 26-July-2019]. 2019.

[7] Hemank Lamba et al. “Model-based Cluster Analysis for Identifying Suspicious Ac-
tivity Sequences in Software”. In: Proceedings of the 3rd ACM on International Work-
shop on Security And Privacy Analytics, IWSPA@CODASPY 2017, Scottsdale, Ari-
zona, USA, March 24, 2017. 2017, pp. 17–22. doi: 10.1145/3041008.3041014. url:
https://doi.org/10.1145/3041008.3041014.

[8] Shikha Agrawal and Jitendra Agrawal. “Survey on Anomaly Detection using Data
Mining Techniques”. In: 19th International Conference in Knowledge Based and In-
telligent Information and Engineering Systems, KES 2015, Singapore, 7-9 September
2015. 2015, pp. 708–713. doi: 10.1016/j.procs.2015.08.220. url: https:

//doi.org/10.1016/j.procs.2015.08.220.

[9] Gil Silva and Diogo R Ferreira. “Applying Hidden Markov Models to Process Min-
ing”. In: Jan. 2009. doi: 10.13140/2.1.4120.7689.

21

https://doi.org/10.1017/S0022226798317119
http://arxiv.org/abs/1309.4408
http://arxiv.org/abs/1309.4408
https://doi.org/10.1162/tacl_a_00209
https://yoavartzi.com/tutorial/
https://spacy.io/api/matcher/
https://cloud.google.com/speech-to-text/
https://doi.org/10.1145/3041008.3041014
https://doi.org/10.1145/3041008.3041014
https://doi.org/10.1016/j.procs.2015.08.220
https://doi.org/10.1016/j.procs.2015.08.220
https://doi.org/10.1016/j.procs.2015.08.220
https://doi.org/10.13140/2.1.4120.7689

	Abstract
	Introduction
	Cases, Activities and the Process Graph
	Process Query Language
	Problem definition and goals of the project

	Natural Language Assistant
	Intent based Assistant
	Automated sequence to PQL
	CCG- Semantic Composionality

	Implementation
	Parsing Pipeline
	Features

	Results

	Anomaly Detection
	Dataset
	Related Work
	Approaches and Issues
	Implemented Approach
	Results
	Future Work

	Summary
	Bibliography

