

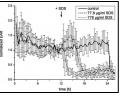
TUM Data Innovation Lab with cellasys

How to Handle Data from Living Cells

Anne Christopher, Magdalena Eberl, Sebastian Zett

Munich, August 06, 2019

1	Introduction
2	Data Collection & Pre-Processing
3	Data Analysis & Results
4	Summary & Conclusion



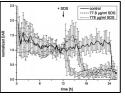
1	Introduction
2	Data Collection & Pre-Processing
3	Data Analysis & Results
4	Summary & Conclusion

Analysis of Living Cells

Microphysiometry

- Novel methodology of analyzing living cells
- Interface of electronic engineering and life sciences (biology, chemistry)
- Electrochemical and optochemical sensor technology to record cell metabolism

- Use of algorithms and models to **draw conclusions** from this raw data:
 - \rightarrow prediction models for toxicological effects
 - \rightarrow development of new drugs



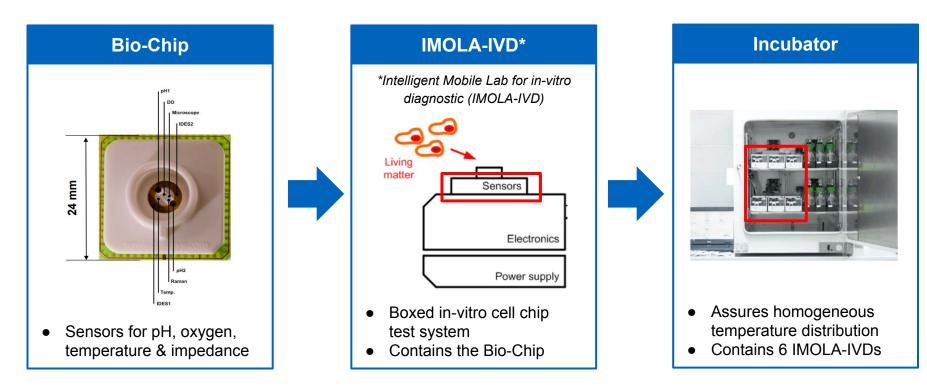
Analysis of Living Cells

Microphysiometry

- Novel methodology of analyzing living cells
- Interface of electronic engineering and life
 sciences (biology, chemistry)
- Electrochemical and optochemical sensor technology to record cell metabolism

- Use of algorithms and models to **draw conclusions** from this raw data:
 - \rightarrow prediction models for toxicological effects
 - \rightarrow development of new drugs

cellasys


cellasys

- Founded in 2007 as TUM spin-off
- Specialized in providing systems and solutions for microphysiometry

cellasys' Solution for the Analysis of Living Cells

Experiments Follow the ChemDef Protocol

Phaso	Phase Hours Nr.	Reference Group		Test Group
		Negative and positive control with cell culture	Blank without cell culture	4 replicates with cell culture
1	0 - 6 h	optimal medium (DMEM* + 10% FBS**)	optimal medium	optimal medium
2	6 - 12 h			test medium
3	12 - 16 h			optimal medium
4	16 - 20 h			test medium
5	20 - 24 h	toxic medium (0.2% SDS***)	toxic medium	toxic medium

* DMEM: Dulbecco's Modified Eagle Medium, **FBS: Fetal Bovine Serum, ***SDS: Sodium Dodecyl Sulfate

Project Goals

Optimize existing approaches of preparation & analysis

Develop methods to reduce the noise in the data

Develop methods to assess the validity of the data

Project Goals

202

Optimize existing approaches of preparation & analysis

Develop methods to **reduce the noise** in the data

Develop me

Develop methods to **assess the validity** of the data

Integrate those methods into cellasys' software environment DALiA

1	Introduction
2	Data Collection & Pre-Processing
3	Data Analysis & Results
4	Summary & Conclusion

2. DATA COLLECTION & PRE-PROCESSING

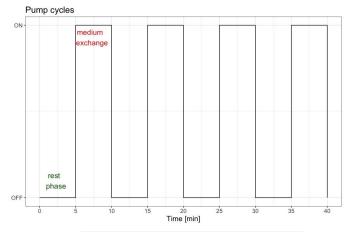
Dataset Description

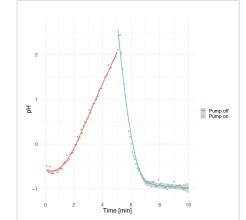
Data from two 24h experiments:

- Each experiment uses 6 IMOLAs
- Data comes as .exp (text format) file
- Contains measurement recordings, air bubble detections and current configuration information
- Information about valid and invalid IMOLAs provided (see table)

	Exp.	Valid	Invalid
	1	IMOLA 1, 2, 3, 4	IMOLA 5, 6
e)	2	IMOLA 2, 3, 5	IMOLA 1, 4, 6

2. DATA COLLECTION & PRE-PROCESSING




Pump Intervals

- Fluidic system provides fresh cell culture medium to cells on chips
- **Pump cycle:** pump switches between OFF (rest phase) and ON (medium exchange)
- 1 interval = 5 min rest + 5 min pump

Pumping Interval

- **Rest phase:** cells start to metabolize (pH increases)
- Pump phase: re-calibration of pH
- → pH change (slope) during rest phase as indirect measure for the **extracellular acidification rate (EAR)**

Speed-Up of the Existing Data Preparation Script "Bubble"

Steps of data preparation:

- Reads the .exp input file
- Performs formatting & restructuring steps, joins the different data
- Outputs one table per IMOLA

Implemented the routine again from scratch:

- Exploitation of R functionalities (lapply)
- Faster reading (readr)
- Parallelization of independent operations (parLapply, foreach)
- Profiling the code (profvis)

Script	Runtime
Bubble (old)	1,800 s (30 min)
Bubble (new)	180 s (3 min)
Bubble_Cluster	60 s (1 min)
Bubble_Online	6 s

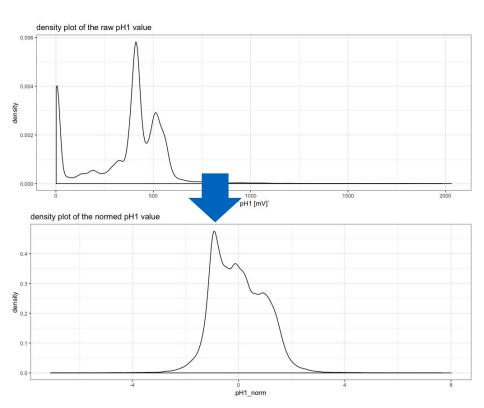
10x times faster with 2 cores 30x times faster with 6 cores

2. DATA COLLECTION & PRE-PROCESSING

cellasys TIT

Normalizing the Data for Validation

Problem:


• Sensor are not calibrated and reveal drifting behavior → data not suitable for comparison

Solution:

• Normalize the data X of each interval to

$$X - \mu$$

where σ μ = mean of one interval σ = standard deviation of one interval

2. DATA COLLECTION & PRE-PROCESSING

Check for Dummy Chips and Open Circuits

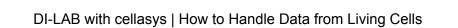
- Used to test the system's electronic components
- Original cell culture and sensors are replaced by a Dummy Bio-Chip or removed completely (Open Circuit)
- For both cases **expected ranges** for the sensor readings are known
- → **Check** whether an IMOLA is Open Circuit, contains a Dummy Bio-Chip or real cell culture

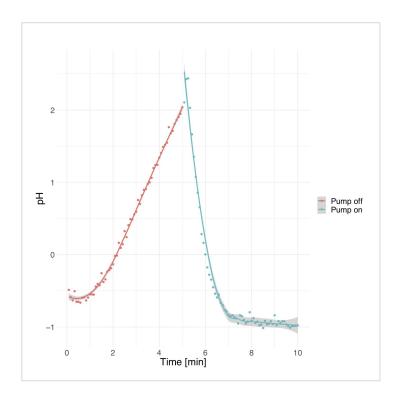
Sensor	Dummy Bio-Chip Range	Open Circuit Range	
рН	300 mV +/- 30 mV	0mV +/- 30 mV	
Temperature	1500 mV +/- 150 mV	0 mV +/- 150 mV	
0 ₂	1850 mV +/- 185 mV	2075 +/- 185 mV	
Impedance_real	130 Ω +/- 13 Ω	0 Ω +/- 5 Ω	
Impedance_imag.	-35 Ω +/- 5 Ω	0 Ω +/- 5 Ω	

1	Introduction
2	Data Collection & Pre-Processing
3	Data Analysis & Results

3	Data Analysis & Results
3.1	Criterion Based Validation
3.2	Validation Based on Clustering of Functional Data
3.3	Fourier Transformation (Noise Reduction)

3	Data Analysis & Results
3.1	Criterion Based Validation
3.2	Validation Based on Clustering of Functional Data
3.3	Fourier Transformation (Noise Reduction)

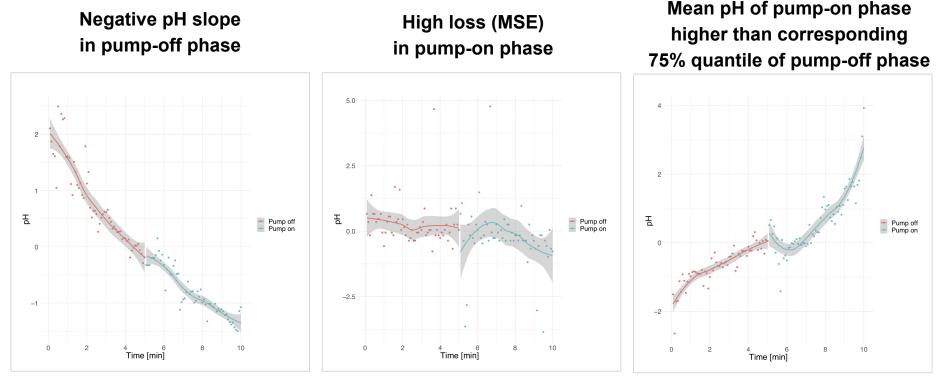

Criterion Based Validation


Why validation?

- Only curves of pH values that follow a valid curve pattern depict normal cellular metabolism
- Interpretations about cellular activity can be made only from valid pH curves

What is a good / valid pH curve?

- Curves which resemble a shark fin structure as shown in figure
- pump-off phase (rest): increasing pH value
- pump-on phase: first decreasing and then constant pH value



cellasys TIT

Criterion Based Validation: Invalid Intervals

cellasys TIM

Input Data and Expected Results

What data do we have ?

- Data from two 24h experiments: Experiment_1 & Experiment_2
- Each experiment has 6 IMOLAs

What are the expected results?

Experiment	Valid	Invalid
1	IMOLA 1 IMOLA 2 IMOLA 3 IMOLA 4	IMOLA 5 IMOLA 6
2	IMOLA 2 IMOLA 3 IMOLA 5	IMOLA 1 IMOLA 4 IMOLA 6

Results of the Criterion Based Validation

		Experime	nt_1	
IMOLA	High MSE	Negative Rest	Mean Pump	Valid IMOLA [%]
1	4	8	6	88.811189
2	3	16	34	74.825175
3	5	3	10	90.909091
4	3	4	29	76.923077
5	16	87	64	4.195804
6	47	72	32	18.881119

		стрени		
IMOLA	High MSE	Negative Rest	Mean Pump	Valid IMOLA [%]
1	22	39	28	44.755245
2	2	2	4	95.804196
3	1	4	4	94.405594
4	58	94	2	24.475524
5	2	2	4	95.804196
6	8	120	4	3.496503

Experiment 2

If a 50% benchmark is set for number of valid intervals for an IMOLA to be valid:

- IMOLA 1,2,3, and 4 are valid from Experiment_1
- IMOLA 2,3 and 5 are valid from Experiment_2

Results from criterion based validation matches expected results!

Ŀ	xpected Res	ults
Ехр	Valid	Invalid
1	IMOLA 1,2,3,4	IMOLA 5,6
2	IMOLA 2,3,5	IMOLA 1,4,6

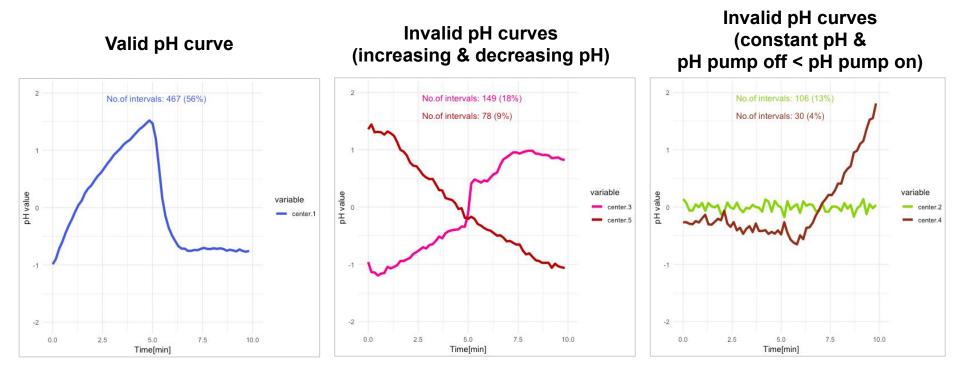
3	Data Analysis & Results
3.1	Criterion Based Validation
3.2	Validation Based on Clustering of Functional Data
3.2 3.3	Validation Based on Clustering of Functional Data Fourier Transformation (Noise Reduction)

Validation Using Clustering of Functional Data

What is 'Functional Data Analysis (FDA)'?

- 'FDA' deals with the analysis of curves or functions
- Curves are estimated from data as being linear combinations of basis functions (with the assumption that they are intrinsically smooth)

What is 'Clustering'?


• 'Clustering' is a technique that groups together a set of data objects, such that the objects within the same cluster are more similar (w.r.t. a distance metric) than to those objects in other clusters

How did we use 'FDA' and 'Clustering'?

- We aim to do validation, i.e classifying intervals as being (in)valid based on the shape of the pH curves
- We estimate the functional data (curves) using splines which are polynomial curves
- We use a clustering algorithm to find similar functional data (similar curves)
- We validate the intervals using the cluster patterns observed

Observed Cluster Patterns

Results for Experiment_1

Valid IMOLA [%]	5	4	3	2	1	IMOLA
86.086957	7 📒	1	5	3	99	1
74.825175	1	5	29	1	107	2
90.209790	2	3	7	2	129	3
77.622378	1 📒	2	29	0	111	4
3.496503	46	7	58	27	5	5
11.188811	21	12	21	73	16	6

- Intervals belonging to cluster 1 are considered valid
- If a 50% benchmark is set for number of valid intervals for an IMOLA to be valid:
 - \rightarrow IMOLA 1, 2, 3 and 4 are valid

Results for Experiment_1

Valid IMOLA [%]	5	4	3	2	1	IMOLA
86.086957	7 📒	1	5	3	99	1
74.825175	1	5	29	1	107	2
90.209790	2	3	7	2	129	3
77.622378	1 📒	2	29	0	111	4
3.496503	46	7	58	27	5	5
11.188811	21	12	21	73	16	6

- Intervals belonging to cluster 1 are considered valid
- If a 50% benchmark is set for number of valid intervals for an IMOLA to be valid:
 - \rightarrow IMOLA 1, 2, 3 and 4 are valid

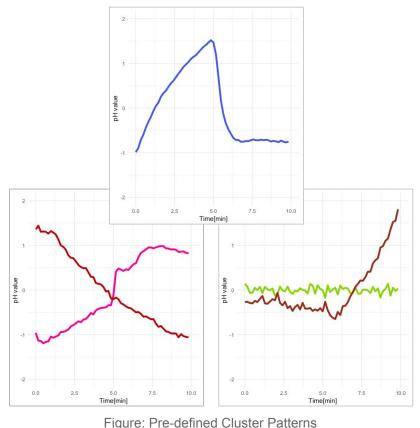
Expected Results				
Ехр	Valid	Invalid		
1	IMOLA 1,2,3,4	IMOLA 5,6		

Results from validation based on clustering matches the expected results!

FDA: Decision Making for New Data

What do we have?

• Pre-defined cluster patterns identified from data of Experiment_1 that represents commonly observed pH curve patterns


What do we want?

• For new data from other experiments, we need to validate the intervals

What do we do?

- Estimate the curves from the new data
- For each curve, find the closest pre-defined cluster and assign it to that cluster
- Classify the curve as being valid/invalid according to the cluster it is assigned to

Results for Experiment_2

Valid IMOLA [%]	5	4	3	2	1	IMOLA
30.656934	37	7	20	31	42	1
92.307692	1 📒	2	5	3	132	2
86.013986	4 📒	1	1	14	123	3
7.692308	3	5	0	124	11	4
93.706294	3 🚺	1	3	2	134	5
0.000000	109	4	3	15	0	6

- Intervals belonging to cluster 1 are considered valid
- If a 50% benchmark is set for number of valid intervals for an IMOLA to be valid:
 - \rightarrow IMOLA 2,3 and 5 are valid

Results for Experiment_2

Valid IMOLA [%]	5	4	3	2	1	IMOLA
30.656934	37	7	20	31	42	1
92.307692	1 📒	2	5	3	132	2
86.013986	4 📒	1	1	14	123	3
7.692308	3	5	0	124	11	4
93.706294	3	1	3	2	134	5
0.000000	109	4	3	15	0	6

- Intervals belonging to cluster 1 are considered valid
- If a 50% benchmark is set for number of valid intervals for an IMOLA to be valid:
 - \rightarrow IMOLA 2,3 and 5 are valid

Expected Results					
Ехр	Valid	Invalid			
2	IMOLA 2,3,5	IMOLA 1,4,6			

Results from validation based on clustering matches the expected results!

Comparison of Both Validation Techniques

Experiment_2

Criterion Based Validation								
IMOLA	Invalid	Valid	Valid IMOLA [%]					
1	75	62	45 %					
2	6	137	96 %					
3	8	135	94 %					
4	108	35	24 %					
5	6	137	96 %					
6	126	5	3%					

	Expected Results				
Ехр	Valid	Invalid			
2	IMOLA 2,3,5	IMOLA 1,4,6			

Validation Based on FDA							
IMOLA	Invalid	Valid	Valid IMOLA [%]				
1	95	42	31 %				
2	11	132	92 %				
3	20	123	86 %				
4	132	11	8 %				
5	9	134	94 %				
6	131	0	0 %				

Both validation techniques show promising results!

3	Data Analysis & Results
3.1	Criterion-Based Validation
3.2	Validation Based on Clustering of Functional Data
3.3	Fourier Transformation (Noise Reduction)

Fourier Transformation

Idea of Fourier Transformation:

• Convert a signal x from its original domain (in our case: time in sec to a frequency domain and vice versa

$$X_k = \sum_{t=0}^{N-1} x_t \exp\left(-i\frac{2\pi}{N}tk\right)$$

• Amplitude: Modulus(X_k) Phase: Argument(X_k)

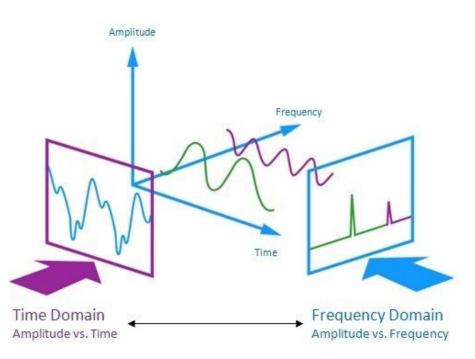
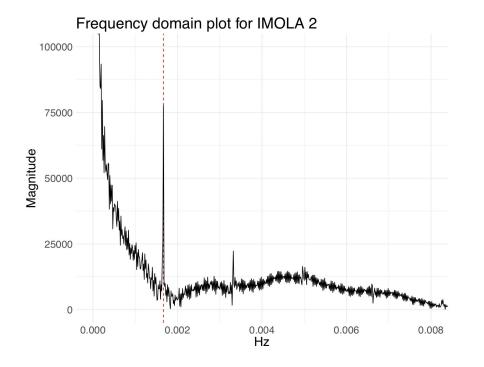



Figure: Idea of Fourier Transformation (Source)

Fourier Transformation

cellasys TIM

- Plot the frequency domain of a valid IMOLA to see if there is a periodic behaviour in the data
- A peak is observed at 0.00167 Hz (corresponds to fluid cycle frequency of 1/600s)
- All important microphysiometric information must be **stored in the frequency domain** of the fluid cycle frequency

Filter around the pump cycle frequency to eliminate the noise

DI-LAB with cellasys | How to Handle Data from Living Cells

3. DATA ANALYSIS & RESULTS

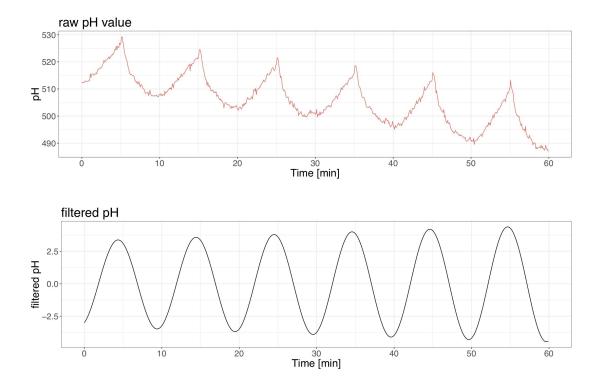
Fourier Filtering

Idea of Fourier Filtering:

- Set the unwanted frequencies to zero
- Apply the inverse Fourier transformation to the filtered values:

$$x_t = \frac{1}{N} \sum_{k=0}^{N-1} F(X_k) \exp\left(i\frac{2\pi}{N}tk\right)$$

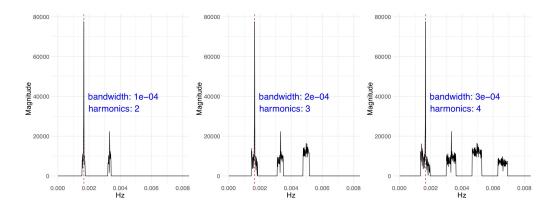
where F is a filter that filters only the required frequencies


• Calculate the real part of x_t to get the filtered pH values

Fourier Filtering: Example

DI-LAB with cellasys | How to Handle Data from Living Cells

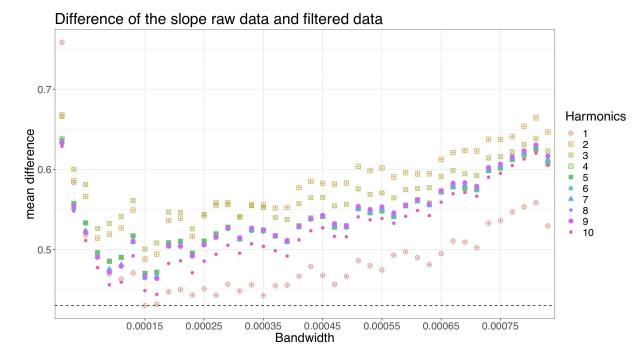
3. DATA ANALYSIS & RESULTS


Evaluation of the Filters

Idea of evaluation:

- Calculate the slope for each interval before filtering and after filtering
- **Normalize** the slopes to get comparable values
- Calculate the **difference** between the two slopes to see how much the filter affects the slope
- Best case: slope doesn't change (no frequency corresponding to the cell activity was filtered out)

Varying the bandwidth and number of harmonics:


 Vary the number of harmonics from 1 to 10 and the bandwidth from 0.01 mHz to 0.83 mHz → 420 combinations

cellasys TI

3. DATA ANALYSIS & RESULTS

Evaluation of the Filters

We can conclude that the best results are obtained when using:

- Harmonics = 1 and
- Bandwidth = 0.15 mHz

Agenda

1	Introduction
2	Data Collection & Pre-Processing
3	Data Analysis & Results
4	Summary & Conclusion

Disregarded Validation Criteria

Apart from the pH data, we also analysed the following data:

• Air bubble detections

 \rightarrow Either too many or too few detections

cellasys TIM

Disregarded Validation Criteria

Apart from the pH data, we also analysed the following data:

• Air bubble detections

 \rightarrow Either too many or too few detections

• Sensor ranges

 \rightarrow No clear indication on impact on validity

cellasys TIM

Disregarded Validation Criteria

Apart from the pH data, we also analysed the following data:

• Air bubble detections

 \rightarrow Either too many or too few detections

• Sensor ranges

 \rightarrow No clear indication on impact on validity

• Impedance data

 \rightarrow Recordings of impedance sensors did not fully match the expected behavior

cellasys TIM

Disregarded Validation Criteria

Apart from the pH data, we also analysed the following data:

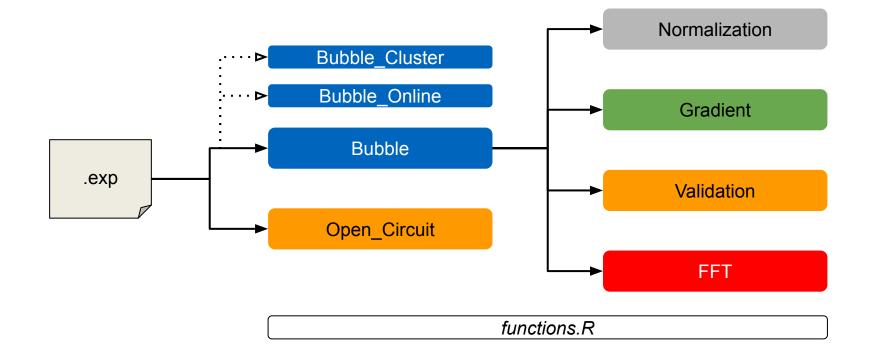
• Air bubble detections

 \rightarrow Either too many or too few detections

• Sensor ranges

 \rightarrow No clear indication on impact on validity

• Impedance data


 \rightarrow Recordings of impedance sensors did not fully match the expected behavior

• Temperature data

 \rightarrow Temperature data did not reveal further indication on cell activity

Summary of the Scripts' Workflow

Project Goals

Optimize existing approaches of preparation & analysis

Develop methods to reduce the noise in the data

 $\left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right)$

Develop methods to assess the validity of the data

Integrate those methods into cellasys' software environment DALiA

F

cellasys TIT

Project Goals

Optimize existing approaches of preparation & analysis

- Parallelization accelerated data preparation by factor 10
- Provided cluster version to speed-up by factor 30
- Developed tools to assess chip type (Open Circuit, Dummy)

Develop methods to reduce the noise in the data

Develop methods to assess the validity of the data

cellasys

Integrate those methods into cellasys' software environment DALiA

Project Goals

Optimize existing approaches of preparation & analysis

- Parallelization accelerated data preparation by factor 10
- Provided cluster version to speed-up by factor 30
- Developed tools to assess chip type (Open Circuit, Dummy)

Develop methods to **reduce the noise** in the data

- Fast Fourier Transformation and Filtering
- Reduced unwanted noise while keeping signal from cells

Develop methods to assess the validity of the data

cellasys

Integrate those methods into cellasys' software environment DALiA

Project Goals

01

Optimize existing approaches of preparation & analysis

- Parallelization accelerated data preparation by factor 10
- Provided cluster version to speed-up by factor 30
- Developed tools to assess chip type (Open Circuit, Dummy)

Develop methods to **reduce the noise** in the data

- Fast Fourier Transformation and Filtering
- Reduced unwanted noise while keeping signal from cells

Develop methods to **assess the validity** of the data

- Criterion and FDA-Based Validation
- Results match expectation extremely well

cellasys

Integrate those methods into cellasys' software environment DALiA

Project Goals

01

Optimize existing approaches of preparation & analysis

- Parallelization accelerated data preparation by factor 10
- Provided cluster version to speed-up by factor 30
- Developed tools to assess chip type (Open Circuit, Dummy)

Develop methods to **reduce the noise** in the data

- Fast Fourier Transformation and Filtering
- Reduced unwanted noise while keeping signal from cells

Develop methods to **assess the validity** of the data

- Criterion and FDA-Based Validation
- Results match expectation extremely well

Integrate those methods into cellasys' software environment DALiA

 Ensured that all scripts can be run from RStudio and DALiA Analytics

cellasys

TUM Data Innovation Lab with cellasys

How to Handle Data from Living Cells

Anne Christopher, Magdalena Eberl, Sebastian Zett

Munich, August 06, 2019

