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Abstract

In the real estate industry, return calculation methods available for investors are over-
simplified — Many real estate firms assume annual growth rates of the property values
to be constant, for instance. This project, empowered by Capital Bay GmbH, aims to
improve this growth calculation approach by introducing more precise statistical and
machine learning models. For this purpose, we developed four fundamentally different
models based on the dataset provided by 21st Real Estate GmbH, together with the
macroeconomic factors we collected from various data providers.

First, we collect socio- and macroeconomic variables, aiming to use them in predicting the
rent and sale prices across Germany. Then, we train an Elastic Net in order to produce a
simple, yet accurate model. Next, we investigate a stochastic process in which the house
price index and the interest rate are interdependently tied. Furthermore, we implement
a gradient boosted trees algorithm and train it using our datasets. Lastly, we set up
vector-autoregressive models which, in addition to the prediction, enable us to capture
the interrelationships among macroeconomic variables. Based on our thought process
and observations, we set forth a set of hypotheses that we validate or invalidate using
visualizations, R2 accuracy metrics, and more.
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1

1 Introduction

Capital Bay GmbH is a digitally-oriented real estate company founded in 2016. Work-
ing together with the real-time real estate evaluation software provider 21st Real Estate
GmbH, Capital Bay helps investors, buyers and sellers with novel service in this industry.

The objective of this project is to develop value prediction systems for German residential
real estate properties. For real estate investors, the conventional way of investment return
estimation widely offered by firms, including Capital Bay, is oversimplified. In specific,
it is based merely on the discounted cash flow methods where cash flows are very simply
projected into the future, by assuming static annual growth rates for instance. Capital
Bay provided us with this project which aims for a more scientific estimation approach
of cash flows by examining different statistical and machine learning prediction models.
Thereby the investor’s cash flows we aim to predict are the rental income which will be
incorporated periodically into Capital Bay’s cash flow model, and the purchase price,
which enters the cash flow model at the very end when the asset is sold.

Specifically, the following are the initial project requirements given by Capital Bay and
workflow we applied to fulfill those:

• Literature review : In the real estate sector, a large spectrum of factors influence
house prices and market rents ranging from property size to inflation rates and
GDP. We reviewed the relevant literature on those factors (Section 2.1) as well as
prediction modelling (Section 3.1) to guide our research forward.

• Extension of the given dataset : Capital Bay provided us with a dataset which con-
tained house prices and rents of German cities as well as other socio- and macroeco-
nomic variables such as population, migration balance and unemployment rates. We
extended this dataset by collecting additional data from multiple sources (Section
2.2) and merging and transforming those datasets (Section 2.3).

• Implementation of market rent prediction models : The target variable specified as
an initial system requirement was tile-level rents of German cities — tile refers to a
geographical region of 200 m × 200 m within a city in this project. We implemented
different prediction models in Python and R using Jupyter Notebook, trained them
using our final dataset while having their unique benefits and drawbacks in mind.
For example, certain models aim for higher accuracy in the shorter term, while
others can be used for flexible indefinite time horizon predictions (Section 3.2).

• Prediction with flexible time horizons and scenario generation capabilities : We evalu-
ated our models based on 3 different prediction time horizons following Capital Bay’s
project specification. Moreover, we included variance research into our project in
order to generate meaningful future scenario distributions and confidence intervals
for our predictions (see Section 3.5 and Section 3.6).

While considering evaluation approaches of implemented models, however, we updated
the following requirements in a way that they better fit with Capital Bay’s objectives:

https://capitalbay.de/
https://www.21re.de/de/
https://www.21re.de/de/
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• Choice of the target variable. Additional to market rents, we included house price
as the target variable which was the focus of most of literature we found during the
initial research. In addition, we decided to aim at predicting the growth rates of the
real estate prices rather than their absolute values — this is proven to yield more
meaningful metrics and ultimately better models (see Hypothesis 4 in Section 3.3).

• Choice of the granularity level. As stated above, the dataset provided by Capital
Bay consisted of tile-level rents and house prices: Munich contains 293 tiles in our
dataset, for instance. We decided to aim for city-level growth rate prediction for
real estate prices by aggregating tiles within a city by the median (see Section 2.3).
This standardized the granularity level across our models, giving us a meaningful
and comparable set of metrics.

We evaluated the performance of our models by developing and testing hypotheses as
described in Section 3.3 and Section 4.

2 Data

2.1 Significant Factors on House Pricing

In the interest to model and forecast real estate prices, possible factors that have significant
impacts on the rent and sale prices were identified in the scientific literature. These factors
can be classified in different categories:

Object Intrinsic Factors
One approach reviewed is hedonic price method (see [HM10]), also known as hedonic
regression. It is based on the idea that commodities are characterized by their
properties, hence the value of a commodity can be calculated by adding up the
estimated values of its separate properties. In real estate, object intrinsic factors
including age and size of the building and floor level are considered significant.
Unfortunately, these factors are not available in our dataset and hence out of our
modeling scope.

Micro-Location Factors
This refers to the elements in an immediate area that affect the rent or sale prices
directly. For our modeling task, 21st provided information on the tile level, where
each tile is a geographical region of 200 m × 200 m within a city and micro-location
factors are defined in terms of scores for elements such as centricity, nature and
connectivity for each specific tile. However, the scores are not comparable between
cities and they were not available as a time series. For these reasons they were not
considered for modelling.

Macro-Location Factors
The macro-location elements describe the demographic properties of the city or re-
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gion where the property is located, for example the unemployment rate, house-
hold income, population density, etc. These factors are significantly contribut-
ing to the attractiveness of the property location and are used most often as a
prerequisite for an investment (cf. [Kur11]).

The study [Brä+06] used factors from the real estate demand as well as supply side
and highlighted household income and vacancy rates as important influencing
factors. Moreover it predicts real estate prices until 2020 and provide an outlook
until 2030.

Economic Factors
(Macro-)Economic factors are the factors that have a direct impact on the economy,
for example interest rates, tax rates, law, policies, wages, and governmental
activities. These factors induce considerable influence on the real estate investment
value in the future.

The paper [YS18] suggests that the mortgage rate takes the first place as an
external financing factor to purchase a property. Therefore, an increase or decrease
in mortgage rate influences the house price movements and should be taken into
account when trying to predict real estate prices. Also, in real estate markets,
external funding is mostly done through mortgages, which have a high association
with the interest rate movements.

According to [RW12], GDP is a major determinant of real estate prices in several
regions. Also, the current account of Germany is considered significant since it
seems to have a relationship with real estate markets as mentioned in [AJ09].

Leasing Regulation
Leasing regulation like rent index (Mietspiegel), rent control (Mietpreisbrembse)
or rent cap (Mietendecke) are also significantly affecting an asset’s value, however,
these regulations are already considered elsewhere in Capital Bay’s investment val-
uation process.

2.2 Data Collection

In order to obtain information for the modeling purposes, we conducted an extensive
research on the data providers available in the market. As our project is constituted of a
cooperation with a commercial company, data providers often put restrictions on the use
of their data or offer some price on the commercially usable data.

Providers such as Oxford Economics Ltd., Bulwiengesa AG, Nexiga GmbH, Microm
GmbH and Michael Bauer Research GmbH were contacted but then filtered out due
to these conditions; although for trial purposes, Oxford Economics has provided us in-
formation about six cities (two cities for each level of rental growth: low, medium and
high).

All the variables used in this project come from the following sources: 21st Real Estate
GmbH, Das Statistische Bundesamt, Deutsche Bundesbank, The Organisation for Eco-
nomic Cooperation and Development (OECD), INKAR and Empirica. For more detailed
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descriptions, see Appendix A.1.1, where we document our painstaking process of contact-
ing all data providers, receiving incomplete and/or unclean data, and sorting it out for
our uses.

2.3 Data Transformation

The dataset provided by 21st for this project comprises 149 German cities (with each
having > 50, 000 inhabitants) in the form of tiles. Each tile is a region of 200 m × 200 m
within a city. This dataset contains a total of 17,634 tiles which are randomly sampled
by 21st by applying the following formula:

xi = max{0.05×Xi, 100} (1)

where xi denotes the number of tiles in City i sampled for this project and Xi is the total
number of tiles assigned to City i in the database which 21st owns.

Figure 1 shows the distribution of cities across all German states in our dataset. In terms
of the amount of tiles, Table 1 provides an example of 7 cities and the number of tiles
assigned to each of them. Berlin has more than double the number of tiles in Munich
which can be explained by its large population. Small cities such as Augusburg and
Lüdenscheid have the minimum number of tiles defined by 21st in our dataset (100 tiles).

Figure 1: Number of cities in the 21st dataset vs. Actual
number of cities in Germany.

City Number of sampled tiles Total number of tiles

Munich 293 5860

Berlin 744 14880

Hamburg 575 11500

Leipzig 189 3780

Augsburg 100 ≤2000

Lüdenscheid 100 ≤2000

Table 1: Number of tiles sampled
for this project by 21st vs. Total
number of tiles in the 21st database
(see Equation 1).

Our main variables, rent and sale prices, come from 21st and are on tile level. However,
since none of the other factors required for modelling were on the same spatial level, they
were aggregated for each city using the median.

By combining the information of all the different data providers (as detailed in Appendix
A.1.4), we obtained 58 macro-economic and macro-location factors (see Section
2.1), rent and sale prices which are detailed in Appendix A.1.2. Since all of these variables
have different granularities and time-frames, we classified them in 9 different groups as
indicated in Table 2.

https://www.21re.de/de/


2 DATA 5

group spatial level time level period number of variables
0 city quarter 2011 - 2018 2
1 city year 2012 - 2018 1
2 city year 2011 - 2017 16
3 city year 2009 - 2017 19
4 city year 2009 - 2016 4
5 country quarter 2009 - 2018 4
6 country quarter 2009 - 2018 2
7 country year 2009 - 2018 6
8 country year 2009 - 2018 2
9 state year 2009 - 2018 4

Table 2: Classification of variables according to their granularities and periods. Groups 6 and
8 are similar to groups 5 and 7, respectively, the difference relies on the fact that variables of
groups 6 and 8 represent growths as shown in Appendix A.1.2.

Variables from groups 5-9, for which their spatial level is country or state level, are treated
equally for all cities in the respective time frames and region.

Even when almost 90% of the features were on a yearly basis, the information was not
aggregated into this time level because the rent and sale prices are available for only 8
years. This means, an 8-point time series for each city and a set to train the models even
smaller. Therefore, all the features at yearly level (groups 1-4 and 7-9) were expanded at
quarterly level by taking the value of the corresponding year for all the quarters.

With the exception of groups 6 and 8, the growths of the variables were included in the
final dataset. These growths were calculated based on 3 different ”lookback periods”:

1. quarter on quarter: rate of change in performance between one quarter and the
previous quarter (included only for groups 0 and 5).

2. year on year: rate of change in performance between one quarter and the same
quarter from the previous year.

3. two-year on two-year: rate of change in performance between one quarter and
the same quarter from the 2 years before.

By applying these different growth calculation approaches to the collected 58 macro-
economic and macro-location factors, we generated the final dataset consisting of 178
features at city-quarterly level for 149 cities in Germany, including sale, rent
prices and their growths as described in the next section.

2.4 Feature Selection

6 different targets were defined in order to predict the rent and sale prices: quarter-
on-quarter, year-on-year and 2year-on-2year growth of rent and sale prices, as
described in Section 2.3 and Section 3.3.
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Due to the short time frame we were dealing with, we excluded for all the targets:

• year-on-year growth of group 1.

• 2year-on-2year growth of groups 0, 1 and 2.

Additionally, we excluded group 4 and its transformations when predicting quarter-on-
quarter and year-on-year targets. Due to the data availability and empirical results of the
Feature Regression, the time windows of the targets are: 2012Q2 - 2018Q1 (6 years)
for quarter-on-quarter growth, 2013Q1 - 2018Q4 (6 years) for year-on-year growth and
2014Q1 - 2018Q4 (5 years), for 2year-on-2year growth of rent and sale prices as illustrated
in Figure 2.

Figure 2: Time windows of the targets. The different shades of blue represent a transformation
of the acquired variables, the shades of green stand for the targets and the black areas denote the
missing values. As for shadows, the red shadow represents the data considered for modelling the
2year-on-2year growths and the predictions with respect to this target; the purple shadow is the
information used for predicting quarter-on-quarter and year-on-year growths and the respective
predictions.

Corresponding to each target, the relevant features were selected based on the Pearson’s
correlation coefficient (see Appendix A.2). For each pair of variables whose correlation
coefficient is above 0.8 (in terms of absolute value), we identified one of the variables to
be removed. The feature that was removed is the one that has less correlation (in terms
of absolute value) with the target. The specified threshold of 0.8 was taken based on
empirical results according to the feature regression 3.5.

The benefits of performing a feature selection are:

• Reduction of overfitting: Less redundant data means less opportunity to make
decisions based on noise.

• Improvement of accuracy: Less misleading data means that modeling accuracy
improves.

• Reduction of training time: Fewer data points reduce algorithm complexity and
thus enable models to be trained faster.

As a result of this process we obtained 6 different datasets A.1.3, each one of them
corresponding to a specific target. These datasets were used to fit the feature regression
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(Section 3.5) and the XGBoost model (Section 3.7). For the stochastic model (Section
3.6), the only factor used to predict the targets is the mortgage rate.

Whereas for VAR models, in order to avoid an overparametrization due to the large
number of exogenous features, only a few number of features were chosen for each target.
The selected variables and the selection methodology using an iterative forward feature
selection algorithm are described in Section 3.8.

2.5 Trends of Real Estate Prices in Germany

In this section, we present our findings on the trends regarding real estate prices in Ger-
many by visualizing the data provided by 21st. Overall, rents and house prices increased
in all German states from 2011 to 2018 as shown in Figure 3. However, the graph also
suggests the existence of a country-wide phenomenon of price and rent fall around the
end of 2016 which then rises back to the previous trend at the beginning of 2017. The
data provider 21st is aware of this effect and confirmed that this behavior is not caused by
any error in its price calculation model. Figure 4 illustrates the distribution of tile-level
house prices per square meter in Bavarian cities broken down by quarters. As shown
in the graph, Munich had house prices per square meter ranging from e5000 to e9000
in the first quarter of 2018. In terms of the house price growth, Berlin had the highest
growth rate between 2011 and 2018 as suggested in Figure 5: The house price in 2011
more than doubled in 2018 in contrast to Lüdenscheid where the house price remained
almost constant during the time period.

Figure 3: Development of rent and house price in Germany according to the 21st data.
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Figure 4: Distribution of house price across tiles in Bavaria in 2018.

Figure 5: German cities with the highest/lowest house price growths according to 21st data.
Here, growth rates are calculated by comparing the median house price of one city in 2018 to
the median house price of the same city in 2011.

3 Model Implementation

3.1 Prework and Research

When modeling and forecasting real estate prices, straightforward ideas including fea-
ture regression analysis, time series models (also called autoregressive models) and
vector autoregressive models have been thoroughly discussed in [BT10]. This book
assumes no prior knowledge of econometrics but introduces a broad range of quantitative
techniques that are relevant for the analysis of real estate data. For practical purposes,
numerous detailed examples such as modeling Sydney office market that uses information
from estimated market rents and vacancy rates and modeling Helsinki office capital values
which is based on the discounted cash flow (DCF) model have been provided.

Further research on autoregressive models is conducted in [GKM11], which compares
the forecasting performance of diferent models: VAR, factor-augmented VAR (FAVAR),
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and various Bayesian time series models (BVAR) utilizing a large set of macroeconomic
variables and spatial priors. A deeper discussion on BVAR is found in [Lit86], which
demonstrates that this inexpensive, reproducible statistical technique is as accurate, on
average, as those used by the best known commercial forecasting services and considers
the problem of economic forecasting, the justification for the Bayesian approach, its im-
plementation, and the performance of one small BVAR model over the past. Another
type of autoregressive model is called structural VAR (SVAR), which can be used to
examine the dynamic relationship between house prices, income, interest rates, housing
permits and share prices, as illustrated in [Yİ17].

These VAR methods have the similarity that they can be applied to multiple time series
only on a single section (a single tile or city). In order to apply a calibration on the whole
panel data with multiple time series across different sections (such as countries, cities,
sectors, markets or combinations of these) an application of panel VAR (PVAR) can be
referred to [CC13] and [DG14].

As 21st data is encrypted using id numbers for which exact location and coordinates can-
not be traced back, any spatial model must be omitted. This includes the ones found in
[Pac+00], [YS16] and [Cro+] such as Spatial Error Models (SEM), Spatial Durbin Models
(SDM), Spatial Classification or Geographical Weighted Regression. [Cro+] introduced a
novel four-stage methodology for real-estate valuation and showed that space, property,
economic, neighbourhood and time features are all contributing factors in producing a
house price predictor in which validation shows a 96.6% accuracy on Gaussian Process
Regression beating regression-kriging, random forests and an M5P-decision-tree.

Modeling using stochastic processes has been proposed by [YS18], where the price
change in housing markets is defined in the form of stochastic differential equations
(SDEs). It proposes a general SDE system on the price structure in terms of house price
index and mortgage rate and a calibration of the relevant parameters via a discretization
procedure. It shows that stochastic models are flexible in terms of the choice of structure
and compact with respect to the number of exogenous variables involved.

For modeling the market rents, a derivation from the prediction of the house prices
is possible. In [KA16], four different estimation techniques are compared to test for
differences in the measured relationship between rents and prices. [Gal08] uses error-
correction models and long-horizon regression models to examine how well the rent–price
ratio predicts future changes in real rents and prices. The results lend empirical support
to the view that the rent–price ratio is an indicator of valuation in the housing market.

3.2 Model Overview

Here is an overview of the models we have implemented, why we chose them, what the
main features are, and how the pros and cons stack up against each other.

1. Constant Model, detailed in 3.4.

• Pros: Simple calculation.
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• Cons: It serves only as a baseline which doesn’t include any additional feature.

2. Feature Regression, detailed in 3.5.

• Pros: Despite the simplicity of this model, it has many desirable characteristics
for us, such as feature selection and straightforward interpretability.

• Cons: The model’s simplicity also proves detrimental when dealing with fea-
tures that are not directly linearly correlated with our target. Other models,
such as XGBoost, can appropriately use nonlinear features, at the cost of added
complexity.

3. XGBoost, detailed in 3.7.

• Pros: XGBoost can capture non-linear relationship in the data and performs
implicit variable selection. Furthermore, the algorithm is highly efficient and
flexible. It has a good model performance and a higher computational speed
than other implementations of gradient boosting.

• Cons: The models are hard to interpret and various parameters have to be
tuned in order to fit the model.

4. Stochastic Models, detailed in 3.6.

• Pros: Variable horizon predictions, great for forecasting very long periods of
time, may be useful in cash flow analyses.

• Cons: Uses only one additional exogenous variable, the mortgage interest rate;
adding more features turns out to be very difficult, mathematically. Because
of this, the results might be worse than other models.

5. Vector Autoregressive (VAR) Models, detailed in 3.8.
VAR

• Pros: VAR is an established model and the literature is numerously avail-
able (e.g. the book [Lüt05]). It can capture the interdependencies between
macroeconomic variables (the features) well. Forecasts for the features and
the target are scenario-consistent. Python packages are readily available as an
open source tool for statistical analysis such as tsa.vector ar.

• Cons: VAR can only be applied for one single section (one aggregated city
or one tile). Due to this fact and to the size of our data, this model doesn’t
provide a reliable prediction for our target variable. Furthermore, it was only
possible to integrate a few influencing factors into our model.

Bayesian VAR

• Pros: In addition to VAR, it is more robust and can reduce the risk of over-
fitting due to its iterative nature for updating the prior distribution of the
hyperparameters using the observed data.

• Cons: In addition to the cons of VAR, BVAR packages are not well established
in Python, but packages are available in the R language. Furthermore, BVAR
face an increased complexity compared to VAR.

https://www.statsmodels.org/dev/vector_ar.html
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3.3 Common Methodology and Hypotheses

One of the biggest pitfalls of the data is the relatively short timespan of the targets and the
variables. Therefore, when constructing lagged or growth variables, or considering targets
further out in the future, this timespan can be reduced to as little as 3-4 years. Having this
in mind, we try to stay away from very lagged features or long-term predictions, since we
have no effective way of achieving good results with our dataset. All the transformations
performed and the final time windows we considered for the final dataset are illustrated
in Figure 2 and clarified in Sections 2.3 and 2.4.

Due to the time-window limitations aforementioned, for the feature regression (Section
3.5), XGBoost (Section 3.7) and VAR models (Section 3.8), we split the dataset in different
periods according to the targets:

• quarter-on-quarter and year-on-year targets:

– train set: 4 years (2012 - 2015), 66% of the data.

– test set: 2 years (2016 - 2017), 33% of the data.

• 2year-on-2year targets:

– train set: 4 years (2012-2015), 80% of the data.

– test set: 1 year (2016), 20% of the data.

As for the stochastic model detailed in Section 3.6, we split our dataset so that the test
set spans over 11 quarters (> 2016), and the train set covers the remaining previous
4 years (2012-2015), aiming to have verifiable growth predictions over at least 2 years
(2016-2017).

We train the models on the train set, and report the R2 results exclusively for the test
set. For each time horizon (1, 4 and 8 quarters respectively), we take every quarter from
the test set as a start date, and iterate the projection for the required number of quarters
in the future. Using these numbers as the predicted variable, we can compute the R2

against the observed variable, as well as transform it back into growth and compute R2

for that.

Since the time horizon of our dataset is so short, we can hypothesize the following:

Hypothesis 1 Shorter term predictions will yield much better results than long term,
irrespective of the model under supervision.

In determining our target variable, we faced a choice between the house price index
sale cell and house rent prices rent cell. Taking the literature into consideration,
most of the data we have available is more useful in predicting the prices, rather than
rents, so we arrive at our second hypothesis:

Hypothesis 2 All else equal, training the same models to predict sale cell will yield
better results than predicting rent cell.
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We compute the R2 of the predicted values against the real ones, which is a statistical
measure that represents how much of the dependent variable’s variance is explained by our
independent variable’s variance (see Appendix A.2). This metric is misleading, however,
when applied to the raw variable sale cell, because of its high autocorrelation factor of
around 80%. In other words, this year’s prices are very similar to last year’s, so it is easy
to guess the ballpark of how much an apartment costs this year by just predicting last
year’s price, unchanged (see Section 3.4).

As a solution, we defined 6 different targets: quarter-on-quarter, year-on-year and
2year-on-2year growth of rent and sale prices. We will refer to those targets as
sale growth or rent growth, unless something particular applies to one of them. They
were calculated as described in Section 2.3. These are harder, but more interesting targets
to predict. Intuitively, this way we predict how a house price changes using 3 different
lookback periods, rather than whether the house is expensive or cheap, in absolute terms.
To sum it up in hypotheses:

Hypothesis 3 The variable sale cell is highly autocorrelated and models predicting it
will have large R2, while sale growth will be a much harder target to predict.

Hypothesis 4 Depending on the model, predicting sale growth and transforming that
back in absolute prices, will yield better results than even predicting the absolute sale cell

directly.

Regarding the tile vs. city-level time series prediction, the usual bias-variance trade-
off applies here, which states that models with finer granularity will have a better fit
(less bias) but higher deviations (more variance). Formulating it as a hypothesis for this
scenario:

Hypothesis 5 For all models, training them to predict tile-level prices will yield models
with more accurate predictions, but much wider confidence intervals.

Going into model-specific analysis, the pros and cons highlighted in Section 3.2 can be
further interpreted as a set of testable hypotheses:

Hypothesis 6 Engineering the features for the feature regression model so that they
are better correlated linearly with the target will improve the model’s performance, since
the raw features are not guaranteed to have this quality.

Hypothesis 7 Compared to the baseline of the constant model, the stochastic model
will have similar results on the shorter horizons, but will get increasingly better as time
stretches out. This is because of the long-term calibration; this model is better suited to
predict long-term trends, rather than accurately capture short-term movements.

Hypothesis 8 The feature regression model will perform considerably better than the
stochastic model specifically over shorter timespans, thanks to the predictive power of
the features we designed.
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Hypothesis 9 Also, the XGBoost model will perform considerably better than the fea-
ture regression, since our features most likely exhibit non-linear dependencies to the
target, and the machine learning model captures them better than a linear model.

3.4 Constant Model

As a performance baseline for our experiments we include an elementary case of statistical
forecasting, the constant model. The predictions for all values in the test set are merely
the values from the last observed quarter. This depends on the prediction horizon; for
example, for a horizon of 4 quarters, the predicted value for Munich’s rent in 2017Q2 is
just the value from 2016Q2.

In mathematical terms, for a target yt,i indexed by time t and city label i, across a horizon
of ∆t, our prediction ŷ is:

ŷt+∆t,i = yt,i.

Naturally, in terms of growth, this model will always forecast 0. We realize this might not
be the most realistic forecast model, but it is a good enough baseline for our purposes.

3.5 Feature Regression

Based on [Boj16], we aim to predict the rent and house prices for Germany using a linear
model. To produce a more accurate model we selected an Elastic Net, which is a linear
regression model trained with both L1 and L2 -norm regularization of the coefficients. By
adding this penalty, we get lower variance compared with the multiple linear regression
and also some coefficients are driven to zero. This helps to prevent overfitting, as well as
selecting the most important features. The objective function to minimize is:

min
w

1

2nsamples

||Xw − y||22 + αρ||w||1 +
α(1− ρ)

2
||w||22

where X represents the features, w the coefficients, y the target and α and ρ are the
hyperparameters.

The penalization parameter α is scanned across a relevant range, and optimized for the
best R2 out of sample. The ρ parameter, which determines the weighting between the
L1 and L2 norms, is set either at 0.8 or 0.4, also by scanning the range from 0 to 1 and
picking the one that yields the best R2 for the optimal α.

This model uses the variables collected and their transformations (Section 2.3) as features
to predict the development of house and rent prices. These features had to be selected so
that the cross-correlation between them is low (see Section 2.4).

A Monte Carlo simulation was performed to generate possible scenarios for the rent and
sale prices (Figure 7), by using the following procedure:

1. The Elastic Net was fitted on the corresponding dataset.

https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
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(a) R2 of sale qoq for ρ = 0.4. (b) R2 of sale qoq for ρ = 0.8.

Figure 6: Choosing the optimal hyperparameters α and ρ for the sale qoq target. α = 0.003
and ρ = 0.4.

2. A multiple linear regression was performed using the variables selected by the Elastic
Net (those whose coefficient is different than zero).

3. For each coefficient, a set of ”new coefficients” was obtained by sampling randomly
from a normal distribution that has the coefficient as mean and the variance ac-
cording to the multiple linear regression.

4. ”New predictions” were estimated using ”new coefficients” from the already gener-
ated sets.

(a) Rent prices and simulations. (b) Sale prices and simulations.

Figure 7: Predictions of the rent and sale prices of Berlin using the year-on-year growth as
target. The shades of yellow represent quantiles of 100 multiple scenarios generated using a
Monte Carlo simulation.

After predicting all the targets, we did the corresponding calculations to obtain the pre-
dicted rent and sale prices. These are illustrated in Figure 8. The model results are
summarized in Section 4 and the coefficients of the model can be reviewed in Appendix
A.3.
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(a) Rent prices and predictions. (b) Sale prices and predictions.

Figure 8: Different horizon predictions of rent and sale prices in Berlin (2012-2018), from the
Feature Regression model. The blue line corresponds to the observed prices, while the dotted
lines refer to the predictions for different time horizons (qoq, yoy, 2y).

3.6 Stochastic Models

3.6.1 Mathematical Background

For this modeling problem, we consider a stochastic process in which the ht house price
index’s recursive equation is dependent on the interest rate rt. Our model is based on
[YS18], where the dependency between ht and rt is modeled as a mean-reverting recursive
process. This is based on economic fundamentals which state that the interest rate dictates
house prices, since a considerable part of the housing market is financed through debt and
therefore the house prices naturally incorporate the cost of borrowing.

The authors assume that there is a natural long-term equilibrium level for ht (denoted
by µh) and rt (denoted by µr); at every step, the process converges towards the mean,
with an added noise term. They model this process as a system of stochastic differential
equations that embed this mean-reverting process in terms of parameters λ, κ ≥ 0, µh, µr ∈
R, σh, σr ≥ 0:

dht
ht

= λ(µh − rt)dt+ σhdZt (2)

drt = κ(µr − rt)dt+ σrdWt (3)

For our purposes, we use the discretized version of this model, where the process runs in
step-wise increments rather than continuously. We index the time series by ti, 1 ≤ i ≤ T ,
and we allow a variable distance ∆t = ti+1 − ti between time increments. For ht and rt,
the authors consider the following discrete model:

hti+∆t = hti + λ(µh − rti)hti∆t+ σhhti(Zti+∆t − Zti), (4)

rti+∆t = rti + κ(µr − rti)∆t+ σr(Wti+∆t −Wti) (5)
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To fit the parameters, we need to minimize the noise variance and solve the optimization
problem. The original paper just uses a convex solver, but in our original contribution, we
found closed-formula solutions that also generalize to training on multiple data series. All
of the mathematical derivations, including the formulas for the solutions, can be found in
Appendix A.4.

3.6.2 Evaluation Methodology and Metrics

We train 4 sets of parameters: the convergence rate for the price series λ and for the
interest rate κ, together with the optimal interest rate for each price series µh and for the
interest rate series itself µr. κ and µr depend only on one series rt, therefore Equations 4
and 5 can be used straight away.

To train λ and µh, we have to consider multiple house price time series, one for each
city or tile. It makes sense for each series to have an optimal interest rate µh, but the
convergence rate between all of them can be shared, therefore we train an individual µh

for each series and a global λ for all of them.

One of our main goals for this model is to generate scenarios and obtain predicted distri-
butions for the target variable. To achieve this goal, we perform N = 300 Monte Carlo
simulations, by drawing the noise variable Zt ∼ N (0,

√
∆t) and plugging it back into

the equation system to get N predicted time series ĥt and r̂t. Plots from Figure 9 are a
sample of the long term prediction this model yields. They are done just like the ones in
Section 3.5, by coloring equidistant quantiles for every time step with a hue that fades
away proportional to how far away the quantile is from the median.

(a) House price index prediction. (b) Interest rates prediction.

Figure 9: 10 year (2016-2026) test set prediction for Munich, with colored quantiles for the
predicted distributions obtained through 200 Monte Carlo simulations.

The tile vs. city debate also applies here. This model can be trained on either tile-level or
city-level, by considering ht to be either the raw price series for each tile, or the city-level
aggregated price series. In Figure 10, notice that the tile-level training yields large noise
variance σh, and so for the actual metrics collection we decided to go forward with the
higher bias, less variance model trained on city-level series.
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(a) Training over cities, using fewer series aggre-
gated across tiles.

(b) Training over tiles, using all the tile-level series
available.

Figure 10: Train set (2011-2016) predictions for Munich - illustration of variance difference
between different calibration methods.

Given a start date and a set of historical data, this model returns a projected series of
arbitrary length into the future.

Looking at the mortgage rate evolution in Figure 11, we noticed a shift in regime between
the train and test sets, which possibly makes it hard for this model to accurately predict
the test set targets. The reader should keep this in mind as they parse the results section.
This can be mitigated with longer training datasets where different trend regimes are
explored, or even with a hard bound on the convergence value for the interest rate (i.e.
forcing µr ≥ 0, for example).

(a) Predictions over train set, showing a good fit
for the trend.

(b) Predictions over test set, train set trend does
not generalize.

Figure 11: Mortgage rate predictions vs. observed values, showing a poor capture of the trend
shift between the train and test set.

Intrinsically, this model yields a distribution of predictions, for each city. This means
that, for each city, we can compare the distribution of predicted prices with the observed
distribution of prices across tiles, and see whether our model generates a similar set of
predictions. The timeline of distributions, for the test set, is shown in Figure 12, together
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with a Q-Q plot — the means are quite similar, yet the predicted distributions tend to
have much larger tails in the future.

(a) Violin plot of distributions.
(b) Q-Q plot for quarter 3 of 2018.

Figure 12: Analysis plots of predicted vs. observed distributions of sale cell for Munich.

In Appendix A.5, we explore how to transform these predicted distributions for sale cell

to ones for rent cell. This makes sense for Capital Bay, since their cash flow analysis
specifically takes into consideration the rents a building would continuously generate
across periods typically lasting for 10 years or more — exactly the kind of predictions this
model can yield. Figure 13 shows the 10-year prediction outline for rent cell, for the
same scenario as in Figure 9. For graphs showing distribution comparison for rent cell

similar to how Figure 12 shows it for sale cell, refer to the aforementioned Appendix
A.5.

Figure 13: 10 year (2016-2026) graph showing predictions for rent prices, after taking the scenario
from Figure 9 and transforming the house prices in rent prices.

Note. As opposed to Figure 9 where the prediction seems to overshoot the actual trend,
in Figure 13 the prediction actually undershoots the trend. Also, the trend prediction
doesn’t start from the same spot as the real value. All these artifacts can most likely be
attributed to the poor fit of the linear regression that transforms sale cell in rent cell.
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3.7 XGBoost

XGBoost is a very popular and efficient gradient boosting algorithm, which can be used
for regression as well as classification. It is a supervised learning method and its objective
function contains a training loss part and a regularization part. The regularization term
controls the complexity of the model and prevent overfitting. The model seeks a good
bias-variance trade-off. A detailed description of the model can be found in [CG16].

To fully leverage the advantages of the XGBoost model over other algorithms, different
parameters need to be considered and their values have to be specified for the implementa-
tion. Therefore, we tuned a set of parameters for tree boosters that has a positive impact
on the performance which includes learning rate, max depth, min child weight,
gamma, subsample, reg lambda. We used the Python library Hyperopt (cf. [BYC13]),
which optimizes the hyperparameters of machine learning algorithms in order to auto-
matically tune the hyperparameters for our model. Hyperopt takes as an input a space of
hyperparameters in which it will search and moves according to the result of past trials.
We have optimized the model for the best R2 out of sample.

After finishing this optimization procedure for each of the targets and getting the predic-
tions, we did the corresponding calculations to obtain the predicted rent and sale prices.
These are illustrated in Figure 14. A summary of the results can be found in Section 4.

(a) Rent prices and predictions. (b) Sale prices and predictions.

Figure 14: Different horizon predictions of rent and sale prices in Frankfurt (2012-2018), from
XGBoost. The blue line corresponds to the observed prices, while the dotted lines refer to the
predictions for different time horizons (qoq, yoy, 2y).

An implementation of scenario prediction is not straightforward for XGBoost. Section
5 raises a question for future research with regards to simulating features which may be
applied to XGBoost.

https://xgboost.readthedocs.io/en/latest/parameter.html
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3.8 Vector Autoregressive Models

3.8.1 Mathematical Background

Standard Vector Autoregressive (VAR) Model
For modeling house prices with macroeconomic dependent variables, VAR models are
commonly suggested. VAR is a multiple time series model which enables us to model and
forecast a number of independent equations and simultaneously to capture the interrela-
tionships among macroeconomic variables by an impulse response analysis (see Appendix
A.6.3). It is thus often used in applied macroeconomics (see [Lüt05]).

In VAR models all variables are treated as endogenous and interdependent, both in a
dynamic and in a static sense, although in some relevant cases, exogenous variables could
be included. An m-dimensional and p-order vector autoregressive model V ARm(p) is
defined in [CC13] as follows

yt = a0 +

p∑
i=1

Φiyt−i + ut, t = 1, 2, ..., T, ut ∼ iid(0, σu)

where yt = (y1t, y2t, ..., ymt) is an m×1 vector of endogenous variables, jointly determined
by its own lags and the lags of other variables. a0 is a m × 1 vector for the fixed effect,
Φi are m × m coefficient matrices, and ut is an m × 1 matrix of unobserved shocks
(disturbances).

VAR models require the estimation of many free parameters and the number of parameters
to estimate grow very fast with the size of the model. This often leads to overparameter-
ization. Since we just have limited data for training and validating models, there is an
increased risk of overfitting and therefore inaccurate out-of-sample forecasts.

Bayesian VAR (BVAR) Model
To overcome these problems, we consider Bayesian VAR models, which shrink the model
parameters by using informative priors. The difference with standard VAR models lies
in the fact that the coefficients are considered as random quantities having their own
distribution, the so-called posterior distribution. The vector β := (a0,Φ1, ..,Φp) consists
of matrices containing the model’s unknown parameters. Bayesian inference derives the
posterior probability of β as a consequence of prior beliefs in combination with observed
data. The conditional posterior of β can be obtained by multiplying this prior by the
likelihood function. This makes the models more robust and reduces the risk of overfitting
as well as the estimation uncertainty.

We use the BVAR-package from the R language (see BVAR package), which implements
hierarchical Bayesian estimation of VAR models in the fashion of [GLP15]. It uses a
combination of the frequently used priors, Minnesota, sum-of-coefficients and dummy-
initial-observation priors for the conditional Gaussian prior for β. The draws from the
posterior predictive density are generated from the training data to predict one step
(quarter, year or two years) ahead. Then the procedure is integrated, updating the
estimation sample step by step until the end of the test set. The posterior distribution of
the hyperparameters is re-estimated at each iteration.

https://cran.r-project.org/web/packages/BVAR/BVAR.pdf
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3.8.2 Evaluation Methodology

In VAR models, we calibrate the set of parameters β̂ := (â0, Φ̂1, .., Φ̂p) consisting of
one vector and p coefficient matrices of size m×m. Note that p describes the lag of the
variables used. Due to the problematics of the short timespan of our datasets as described
in Section 3.3, we try to stay away from a very lagged model and thus we choose p = 2.
A sequential prediction by forecasting one quarter ahead and integrating the predicted
value into the training set would be another possibility to extend the time series. But
prediction error will carry over through the model, hence we did not apply this approach.

Further, we try to avoid the problem of overparametrization by choosing only the most
relevant features using a forward selection algorithm as described in [Sic18]. It starts by
regressing on each feature individually, and then observing which feature would improve
the model the most using the mean squared error (MSE) value (see Appendix A.2). Then
it incorporates the winning feature into the model. It iterates through the remaining
features to find the next feature which improves the model the most, again using the
MSE. It does this until there are K features in the model.

For our purpose, we choose to include a maximum of K = 5 variables. The choice of this
value is based on the experiment that adding more variables did not add the resulting R2

tremendously. Note that since we are working with matrices, linear algebra comes into
play and for some targets we have to select less variables. The overview of the variables
used in the model for each target can be seen in Appendix A.6.1.

Recall that VAR models are only applicable on one section, hence we construct our model
only on the city-level by aggregating all tiles within a city by the median values for each
time point. Then we apply VAR model to predict the next 4 or 8 values (depending on
the target) for each city.

For the evaluation purposes, we append the prediction values for all cities altogether into
one vector and the corresponding test values into another vector in order to calculate the
R2 for each target as shown in Table 3. For the forecast plots and some visualizations on
the macroeconomic interdependencies see Appendix A.6.2 and A.6.3.

4 Results

4.1 Evaluation Approach — Metrics and Results

Table 3 offers a comparative overview for our models, with respect to different metrics.
We shall interpret it in Section 4.2 where we test hypotheses and answer questions. Here
is how to read the metric names:

1. The first part denotes the time horizon for the prediction, with 1q, 1y and 2y

referring to one quarter, one year and two year horizons, respectively.

2. The second part indicates the type of metric, with r2 denoting R2.
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3. The third part refers to the dependent variable, where sale cell is the house price,
rent cell is the rent costs, and so on.

Metric
Constant

Model
Feature

Regression
Stochastic

Model
XGBoost VAR

1q r2 sale cell 0.911 0.913 0.829 0.920 0.778
1y r2 sale cell 0.842 0.916 0.874 0.896 0.741
2y r2 sale cell 0.691 0.920 0.837 0.912 0.891
1q r2 sale cell growth −0.017 0.205 ≤ −1.0 0.130 ≤ −1.0
1y r2 sale cell growth −0.251 0.254 −0.005 0.126 ≤ −1.0
2y r2 sale cell growth ≤ −1.0 0.347 −0.05 0.306 ≤ −1.0

1q r2 rent cell 0.975 0.907 - 0.979 0.901
1y r2 rent cell 0.932 0.977 - 0.975 0.884
2y r2 rent cell 0.794 0.968 - 0.968 0.955
1q r2 rent cell growth −0.075 −0.008 - 0.216 ≤ −1.0
1y r2 rent cell growth ≤ −1.0 0.241 - 0.259 ≤ −1.0
2y r2 rent cell growth ≤ −1.0 0.251 - 0.301 −0.248

Table 3: Out-of-sample metrics results for trained models. Bold text references best-in-class
model for predicting the corresponding target.

4.2 Hypothesis Testing

In this section, we analyze our hypotheses one by one, presenting results and answering
the questions we set forth. This aims to be a comprehensive analysis of our models’
features and performances.

If we look at the R2 performance of the feature regression model, for example, we notice
that Hypothesis 1 actually is invalidated: performances seem to increase for longer
prediction time spans. We can come up with two explanations:

1. qoq performance is measured over 7 intervals, whereas 2y is measured over one
interval. Less data makes test results for longer periods more prone to idiosyncratic
behaviour, in other words, maybe this 2 year interval is just easier to predict/fits
better on our train set?

2. Quarterly measurements, as opposed to yearly ones, can suffer from seasonality
problems, for which we have no mitigation in place. This may explain the much
worse performance for qoq, compared to yoy or 2y.

Comparing the performance between sale cell growth and rent cell growth, Hypoth-
esis 2 is validated — scores are consistently higher when predicting house price growth
versus rent growth. Even though the R2 scores for the absolute values might look larger
for rent cell than for sale cell, this can very well be an artifact of the different dis-
tributions for different targets.
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House Price
Growth Model

R2 test score for
sale cell growth prediction

R2 test score for
sale cell growth prediction
which is transformed back

to absolute prices

R2 test score for
sale cell prediction

Linear Regression 0.196 0.844 0.835
Elastic Net 0.207 0.847 0.836

Table 4: R2 metrics for the prediction of different targets: sale cell growth vs.
sale cell growth then transforming back to absolute prices vs. sale cell.

For assessing the validity of Hypothesis 3 and 4, we compare the performance between
the prediction of sale cell and sale cell growth with the basic regression models as
shown in Table 4. Note that we calculated these values using the dataset before selecting
the features, which explains the deviation to the main results.

The R2 values for the growth prediction (first column) is around 0.2 while for absolute
prediction (third column) around 0.8. This observation indeed confirms our Hypothesis
3 about the high autocorrelation of sale cell and the difficulty of sale cell growth

prediction. However, transforming the growth prediction values back to the absolute
prices yield a slightly better R2 value, which further validates our Hypothesis 4.

Hypothesis 5 is validated by looking at the residual values for each method of fitting in
Figure 4, as well as inspecting visual plots of the distributions for the simulated scenarios,
as we saw in Figure 10. As mentioned in Section 3.6, we decided to train on city-wide
levels and report R2 metrics as such in Table 3.

Also, Hypothesis 7 is validated by the results Table 3. The constant model’s R2 decays
quickly, giving the stochastic model an increasing edge as the horizons grow. Notice the
quite good accuracy for the constant model within one quarter, though; it beats every
other model!

For Hypothesis 6, we trained the model with and without the linearized features; what
we noticed in figure 15 was an increase in the training R2, but a decrease in the test R2,
therefore actually invalidating our hypothesis. This might be because of overfitting, or
maybe collinearity issues with the features. See the full set of figures and transformations
in the respective notebook, within the codebase.

Hypotheses 8 and 9 are validated by the R2 results for rent cell growth summarized
in 3.

The XGBoost model and the feature regression had the best performance in R2 terms,
with extra possibility for improvement by tuning more hyperparameters and adding more
train data. The discrepancies can occur due to feature nonlinearities, we discovered some
that predict the target better with tree-like cuts (smaller or greater than a threshold) as
opposed to applying a directly proportional linear relationship (see Figure 16).
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Figure 15: Feature Regression train and test R2, for raw and optimized variables, as the
penalty term for the elastic net increases. We used the sklearn elastic net package, generating
this plot with ρ = 0.4 and target sale cell 2ygrowth.

(a) Linear dependency for sale cell yoy. (b) Nonlinear dependency for
pop density 2ygrowth.

Figure 16: Target (sale cell 2ygrowth) heatmap across quantiles of different features. A
feature like sale cell yoy that linearly correlates with the target variable would have a smooth
ramp of colors across the spectrum, i.e. the target would increase/decrease proportionally with
the feature. On the other hand, pop density 2ygrowth has clear nonlinearities, with the target
increasing, then decreasing, then increasing again, as the feature increases in value; these are
the variations that models like XGBoost can capture.

5 Conclusion and Outlook

Through diligent construction of a clean and well documented dataset, together with
extensive literature research, we managed to implement and use a number of different
models that shine through their own strengths. Simple linear models like an elastic net
have great interpretability and yield very good results, machine learning models like XG-
Boost have an advantage dealing with nonlinearities and provide accurate predictions,
while trend-oriented models like our stochastic model generate useful long-term sce-
narios for predicting house prices and rents, and time series-oriented models like VAR
models provide a scenario-consistent prediction for both the target variable (house prices
or rents) and the relevant macroeconomic variables.

Throughout our work, we have had several ideas for future development that we had the
chance to only partially tackle within this project. Here is what we envision to be the
future developments with the highest potential:
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• City/tile clustering. In this project, we developed city-level prediction models by
simply aggregating all tiles within a city. Intuitively, clustering of tiles based on
similar characteristics, however, may generate better results: a model for city center
tiles, one for rich suburbs, one for tiles close to industrial areas, for instance. This
has a potential of smoothing out tile idiosyncratic behaviors, ultimately generating
a dataset that is better suited to train our models.

We have briefly experimented with KNN clustering of tiles based on sale cell growth

profile, yet results were inconclusive and therefore we left them out of the report.
We would suggest defining a robust way of clustering tiles, visualizing and under-
standing it, training a model for each cluster and check the out of sample results.

• Feature simulation. To generate scenarios for the feature regression, we simulated
the regression parameters, while for the stochastic model we simulated the noise
variable. These are all relatively straightforward ways of implementing scenario
prediction, as opposed to simulating the actual features used within the model; i.e.
having a process to generate plausible values for household income, or GDP, rather
than just changing the regression coefficient.

This is a much more involved procedure, which requires in-depth understanding of
every feature and careful calibration of the generative process. We believe that, if
done right, this not only has the potential of yielding more accurate results, but
also can be applied to any model that uses features, even if it is difficult to get
predictions otherwise, like in the case of XGBoost.

• Features for the stochastic model. This was a topic to which we dedicated a signifi-
cant amount of time. Emboldened by the advantage of flexible horizon predictions,
we wanted to adapt the model so that it can depend on more features, not just
the mortgage interest rate. Unfortunately, the optimization equations become too
complex to handle, and we could not arrive at a closed-form solution to it. Alas, one
might still be able to find an approximate minimum point solution to this augmented
model, yet we did not explore this possibility further.
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A Appendix

A.1 Data

A.1.1 Data providers description

21st Real Estate GmbH
The dataset provided by 21st comprises 149 German cities (with each having > 50, 000
inhabitants) in the form of tiles, where each tile is a region of 200 m × 200 m within a
city. From the universe of 21st database, 5% of all tiles in a specific city (but at least
100 tiles) have been randomly sampled, making a total of 20,000 tiles available to us.
The exact geographical location and coordinates of each tile have been encrypted using id
numbers and are therefore unknown for us. This pre-sampling procedure and encryption
of the exact location are due to the data protection policy of 21st. Obtained variables
include:

• Target variables: sale and rent prices at tile level from 2011 to 2018 on a quarterly
basis.

• Micro-location factors: scores for factors for each tile including connectivity, na-
ture, urbanity and income are part of 21st data. Note that the scores are not
comparable across cities and due to the difficulty of incorporating these to our mod-
els, we dropped these factors from our modeling scope.

• Macro-location factors: 17 macro-location variables including population, migra-
tion balance, number of births and unemployment rate were provided for
each city from 2011 to 2017 on a yearly basis.

In terms of micro-location factors, income scores experienced a small variance over time in
the 21st dataset. This is due to the fact that raw income data are generally only available
down to a ZIP code level which entails many tiles. As scores are calculated as percentiles,
and a ZIP code’s income percentile, relative to the rest of the city, is barely changing
throughout time, these scores are rather ‘sticky’.

Das Statistische Bundesamt (Destatis)
Destatis is the Federal Statistical Office of Germany, which has the task to collect and to
provide statistical information concerning economy, society and environment in Germany.
Obtained variables:

• Macro-location factors: unemployment rates (female, male and entire popu-
lation), household income and population from 2007 to 2018 on a yearly basis
for each German state.

• Economic factors: Germany’s gross domestic product, inflation (annual change
of consumer price index), gross national income and gross value added for agri-
culture, industry and services of Germany from 2009 to 2018 on a yearly basis.

https://www.21re.de/de/
https://www.destatis.de/DE/Home/_inhalt.html
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Deutsche Bundesbank
Deutsche Bundesbank is the central bank of Germany which offers information on market-
relevant interest rates. Obtained factors:

• Economic factors: mortgage rate from 2003 to 2019 on a quarterly basis.

The Organisation for Economic Cooperation and Development (OECD)
OECD is an intergovernmental economic organisation that works on establishing inter-
national norms and finding evidence-based solutions to a range of social, economic and
environmental challenges. It publishes books, reports, statistics, working papers and ref-
erence materials through OECD iLibrary. Obtained variables:

• Economic factors: gross domestic product, unemployment rate and Ger-
many’s current account from 2006 to 2019 on a quarterly basis.

INKAR (Indikatoren zur Raum- und Stadtentwicklung)
Data and maps on living conditions in Germany and Europe have been published by The
Federal Institute for Building, Urban and Spatial Research (BBSR) online at INKAR
online. INKAR comprises more than 600 statistical parameters on almost all socially
important topics. Obtained variables:

• Macro-location factors: 18 variables such as life expectancy, population density,
living space per resident, inflow and outflow of people, average age of the
population and number of university students per 1000 residents from 2007
to 2018 on a yearly basis for each city.

A comparison between the income data from Oxford Economics and INKAR showed that
the data only differed by a constant. The INKAR data has the advantage that, like our
target variable, it is on city level, but it is on yearly level instead of quarterly level. We
looked through all the statistical parameters available and choose the ones that seem to
have considerable influence on the rent or sale prices according to the literature.

Empirica
Empirica AG is an independent economic and social science research and consulting in-
stitute. Empirica regio GmbH is a database specialised in the processing, analysis and
provision of framework data for the real estate industry. Empirica has provided us with
time series of vacancy rates. Some analyses of the vacancy data can be found in the
CBRE-empirica-Leerstandsindex. Obtained variables:

• Macro-location factors: vacancy rate for all German independent cities and coun-
ties from 2005 to 2017 on a yearly basis.

https://www.bundesbank.de/de
https://www.oecd.org/
https://www.oecd-ilibrary.org/
https://www.inkar.de/
https://www.inkar.de/
https://www.empirica-institut.de/
https://www.empirica-institut.de/fileadmin/Redaktion/Publikationen_Referenzen/PDFs/CBRE-empirica-Leerstandsindex-Methode-2018-v.pdf
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A.1.2 Variable description
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Table 5: Description of the all the variables collected as described in Section 2.2.
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A.1.3 Selected features

Figure 17: Features selected for each target. The 6 main columns on the right represent the
targets, the number 1 indicates which transformation of the variable (on the left) was considered
as feature for the corresponding target after the correlation analysis described in Section 2.4.
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A.1.4 Merging map

Figure 18: Merging map. This map represents all the files and notebooks used to create the
final data set and their dependencies. The names of the notebooks are on red, the files as we
obtained them from their source are highlighted in green, the files in blue are either mergings
or reformats of the ’green’ files, while the red and orange files represent qoq/yoy growths and
2year growths, respectively. The lines are a sign of dependencies between files and notebooks.
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A.2 Statistical measures

R2

In statistics, the coefficient of determination, denoted R2, is the proportion of the variance
in the dependent variable that is predictable from the independent variable(s). An R2 of
1 indicates that the regression predictions perfectly fit the data.

Values of R2 outside the range 0 to 1 can occur when the model fits the data worse
than a horizontal hyperplane. This would occur when the wrong model was chosen, or
nonsensical constraints were applied by mistake.

Its main purpose is either the prediction of future outcomes or the testing of hypotheses,
on the basis of other related information. It provides a measure of how well observed out-
comes are replicated by the model, based on the proportion of total variation of outcomes
explained by the model.

In [DS98], R2 is defined as follows:

Definition 1 Let the data set have n values marked y1, ..., yn (collectively known as yi,
i = 1, ..., n), each associated with a fitted (or modeled, or predicted) value ŷ1, ..., ŷn. And
define the residuals as ei = yi − ŷi.

If ȳ is the mean of the observed data: ȳ = 1
n

∑n
i=1 yi, then the variability of the data set

can be measured using three sums of squares formulas:

• The total sum of squares (proportional to the variance of the data):

SStot =
n∑

i=1

(yi − ȳ)2,

• The regression sum of squares, also called the explained sum of squares:

SSreg =
n∑

i=1

(ŷi − ȳ)2,

• The sum of squares of residuals, also called the residual sum of squares:

SSres =
n∑

i=1

(yi − ŷi)2 =
∑
i

e2
i .

And the coefficient of determination is defined as

R2 = 1− SSres

SStot

.

MSE
The mean square error (MSE) is a frequently used measure of the differences between
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values (sample or population values) predicted by a model or an estimator and the values
observed. MSE represents the second sample moment of the differences between predicted
values and observed values or the quadratic mean of these differences. These deviations
are called residuals when the calculations are performed over the data sample that was
used for estimation and are called errors (or prediction errors) when computed out-of-
sample.

Definition 2 The MSE of an estimator θ̂ with respect to an estimated parameter θ is
defined in e.g. [DS98] as

MSE(θ̂) = E((θ̂ − θ)2).

For the data set y1, ..., yn, the MSE of predicted values ŷn of a regression’s dependent
variable yn, is computed as follows:

MSE =

∑n
i=1(ŷn − yn)2

n
.

Pearson’s correlation coefficient
In statistics, the Pearson’s correlation coefficient ρX,Y , is a measure of the linear correlation
between two variables X and Y . According to the Cauchy-Schwarz inequality it has
a value between +1 and -1, where 1 is total positive linear correlation, 0 is no linear
correlation, and -1 is total negative linear correlation.

Given a pair of random variables X and Y , ρX,Y is defined as

ρX,Y =
cov(X, Y )

σXσY
,

where cov(X, Y ) is the covariance of X and Y , and σX , σY are the standard deviations of
X, Y , respectively.

When applied to a sample, Pearson’s correlation coefficient is commonly represented by
rxy and may be referred to as the sample correlation coefficient or the sample Pearson’s
correlation coefficient. We can obtain a formula for rxy by substituting estimates of the
covariances and variances based on a sample into the formula above. Given paired data
{(x1, y1), . . . , (xn, yn)} consisting of n pairs, rxy is defined as:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where n is sample size xi, yi are the individual sample points indexed with i: x̄ = 1
n

∑n
i=1 xi

(the sample mean); and analogously for ȳ.

Rearranging gives us the following formula for rxy:

rxy =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2
i − (

∑
xi)2

√
n
∑
y2
i − (

∑
yi)2

,

where n, xi, yi are defined as above.
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A.3 Feature regression

A.3.1 Coefficients of targets associated with rent prices

VARIABLE rent qoq rent yoy rent 2y
intercept -2.94E-02 -2.72E-01 -5.68E-01
app completion nonresidential 1.75E-05 1.16E-04 1.17E-04
app completion nonresidential yoy -8.91E-07 1.02E-05 -1.50E-05
app completion total 2.48E-07 1.90E-06 3.02E-06
app licence nonresidential 1.37E-05 -1.08E-05 -5.25E-06
app licence nonresidential yoy -5.13E-05 -5.74E-05 -1.74E-04
app licence total yoy -4.86E-05 -1.84E-04
arbeitslosigkeit -4.09E-05 -8.57E-05 -4.18E-05
birth death 6.17E-04
current acc gdp 2ygrowth qcd 1.55E-03
current acc gdp cyd 9.70E-03
current acc usd cyd 1.08E-06
current acc usd qoq -3.42E-04
employees km2 7.50E-06
f flats -7.17E-04 -1.78E-03
f flats 2ygrowth 3.43E-04
f flats yoy 1.17E-03
gdp capita current -1.13E-06
gdp constant annualc -8.76E-03
gdp qoq -1.55E-03 4.76E-03
gni 1.28E-06
hh income inhab 1.75E-06 4.43E-06 6.22E-06
hh income inkar 1.89E-05
income 1.31E-05 2.27E-05 9.98E-05
inflow -1.24E-05 -8.08E-05 -1.62E-04
life exp 2.84E-03 4.50E-03
mortgage rate qoq 8.19E-03
mortgage rate yoy -2.88E-02 9.04E-03
n flats yoy -1.01E-03
permits 1.24E-03 3.98E-03
permits 2ygrowth -1.49E-03
permits yoy -9.00E-04 -4.70E-03
pop age -1.74E-03 -3.93E-03
population -2.83E-10 -7.92E-10 -1.23E-09
protection seekers 2.38E-03 5.46E-03
rent cell qoq -2.74E-01 -2.33E-01
rent cell yoy -2.73E-01 -1.80E-01
res space 5.75E-04 1.55E-03
sale cell -1.29E-06 -7.97E-06 -2.05E-05
sale cell yoy 3.42E-02 3.74E-02
students 4.00E-09 -2.53E-05 -5.02E-05
students 2ygrowth 2.02E-03
vacancy rate -4.77E-05 -2.08E-03 -3.50E-03
vacancy rate 2ygrowth -1.49E-02 -2.07E-02
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A.3.2 Coefficients of targets associated with sale prices

variable sale qoq sale yoy sale 2y
intercept -7.69E-01 3.71E-01 5.17E-01
app completion nonresidential 1.74E-05 7.71E-05 3.16E-05
app completion nonresidential yoy 4.30E-05 4.46E-04 -7.56E-05
app completion residential yoy -4.08E-04 -2.43E-04
app licence nonresidential -4.21E-05 -1.98E-04 -2.42E-04
app licence nonresidential yoy -1.19E-04 -1.85E-04
app licence residential yoy 2.78E-03
app licence total yoy 8.02E-03
arbeitslosigkeit -1.30E-04 -2.52E-05 3.19E-04
arbeitslosigkeit 2ygrowth -4.45E-02
current acc gdp 2ygrowth qcd -3.85E-03
current acc gdp qcd -2.48E-02
current acc usd qcd 1.67E-07 -1.98E-06
current acc usd yoy 1.35E-01
employees km2 1.62E-05
gdp 4.90E-04
gdp qoq 1.64E-02 1.86E-02
gdp yoy qcd 7.79E-04 4.79E-03 -2.10E-02
gva agriculture 2ygrowth 3.08E-02
gva agriculture growth 2.09E-03
hh income inhab 8.00E-06
hh income inkar 1.43E-05
hh income syd -3.59E-08
income 1.11E-04 1.67E-05 -1.18E-04
inflation -3.14E-04
inflow 9.95E-05 -2.16E-05
life exp 9.34E-03 4.06E-04
migrbal -6.25E-07 -6.70E-07
mortgage rate 2ygrowth 2.12E-02
mortgage rate qoq 4.13E-03
mortgage rate yoy -2.66E-02 9.81E-02
n flats 1.15E-03 -5.03E-03 -7.70E-03
n flats yoy 1.28E-03 9.33E-03
outflow -2.46E-04
permits 3.13E-03 4.69E-03 4.96E-03
permits 2ygrowth 2.07E-03 7.96E-03
permits yoy -4.13E-03
pop age -3.90E-03 -6.03E-03
population -1.16E-09 -1.82E-09
protection seekers 8.24E-03
rent cell 1.77E-03
res space -1.04E-03 3.72E-04 1.76E-03
sale cell -4.91E-05
sale cell qoq -2.09E-01 -2.89E-01 -3.25E-01
sale cell yoy -1.42E-01 -2.14E-01 -2.75E-01
students -1.43E-05 -2.19E-05 -4.21E-05
svb working 5.75E-08
tax municipal 1.64E-05 -3.32E-06
up female -2.63E-03 -4.42E-03
vacancy rate -2.25E-03 -2.32E-03 -6.70E-03
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A.3.3 Coefficient plots

While comparing the coefficients of the rent and sale prices targets, we can notice that
some of the main features of the models are transformations of rent and sale prices them-
selves. Even when the time window may be reduced by including the transformations,
it was good to include them. Also, the fact that these factors have a bigger impact that
most of the others explain the simmetry in the Montecarlo simulations shown in Figure
7.

(a) Coefficients of 2y rent cell.
(b) Coefficients of 2y sale cell.

Figure 19: Coefficients of 2year-on-2year rent and sale prices from the Feature Regression model.
To have a better interpretation of the importance of the features, we normalized them before
fitting the model.
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A.4 Mathematical Derivation of the Stochastic Model Calibra-
tion Steps

Recap the model: we first discretize the time into a finite set of intervals t1, ..., tN , where
ti < ti+1 for all i ∈ [0, N ], with t0 = 0 and tN = T . Using a sufficiently large N and an
evenly spaced time-lattice ti = iT

N
, we approximate the HPI returns and mortgage rate.

Starting from initial values observed from the real data, the HPI returns and mortgage
rate are determined as follows:

ht+∆t = ht + λ(µh − rt)ht∆t+ σhht(Zt+∆t − Zt), (6)

rt+∆t = rt + κ(µr − rt)∆t+ σr(Wt+∆t −Wt) (7)

where ∆t = ti+1 − ti. To calibrate the parameters, we minimize the variance of the noise
variables via the least squares method:

(λ̂, µ̂h) = argmin
N−1∑
i=1

((
hi+1 − hi

hi

)
− λ(µh − ri)∆t

)2

, (8)

(κ̂, µ̂r) = argmin
N−1∑
i=1

(ri+1 − ri − κ(µr − ri)∆t)2 (9)

In the original paper, there is no explanation on how we reach these optimal points, so we
derive a method ourselves. Since these equations are quadratic, we can obtain analytic
formulations of the solution points. To do this, we take the partial derivatives with respect
to λ and µh, and set them to 0. Because the functions are quadratic and therefore convex,
this will yield the global minimum point.

∂

∂λ
= 2

N−1∑
i=1

(
λ(µh − ri)2∆t2 − (µh − ri)

hi+1 − hi
hi

∆t

)
= 0 (10)

∂

∂µh

= 2
N−1∑
i=1

(
λ2µh∆t2 − λ2ri − λ

hi+1 − hi
hi

∆t

)
= 0 (11)

Through algebraic manipulations, the first equation is equivalent to:

λ =

∑N−1
i=1 (µh − ri)hi+1−hi

hi

∆t
∑N−1

i=1 (µh − ri)2

and the second one is equivalent to:

λ =

∑N−1
i=1

hi+1−hi

hi

∆t
∑N−1

i=1 (µh − ri)

Both of the fractions are equal to λ. Therefore, now set the fractions to be equal, do the
cross-product, and expand further to get a relation for µh:

∆t
N−1∑
i=1

(µh − ri)2

N−1∑
i=1

hi+1 − hi
hi

= ∆t
N−1∑
i=1

(µh − ri)
N−1∑
i=1

(µh − ri)
hi+1 − hi

hi
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µ2
h

(
(N − 1)

N−1∑
i=1

hi+1 − hi
hi

)
− 2µh

(
N−1∑
i=1

ri

N−1∑
i=1

hi+1 − hi
hi

)
+(

N−1∑
i=1

r2
i

N−1∑
i=1

hi+1 − hi
hi

)
= µ2

h

(
(N − 1)

N−1∑
i=1

hi+1 − hi
hi

)
−

µh

(
n

N−1∑
i=1

ri
hi+1 − hi

hi
+

N−1∑
i=1

ri

N−1∑
i=1

hi+1 − hi
hi

)
+

N−1∑
i=1

ri

N−1∑
i=1

ri
hi+1 − hi

hi

N−1∑
i=1

r2
i

N−1∑
i=1

hi+1 − hi
hi

−
N−1∑
i=1

ri

N−1∑
i=1

ri
hi+1 − hi

hi
=

µh

(
−(N − 1)

N−1∑
i=1

ri
hi+1 − hi

hi
+

N−1∑
i=1

ri

N−1∑
i=1

hi+1 − hi
hi

)

µ̂h =

∑N−1
i=1 r2

i

∑N−1
i=1

hi+1−hi

hi
−
∑N−1

i=1 ri
∑N−1

i=1 ri
hi+1−hi

hi∑N−1
i=1 ri

∑N−1
i=1

hi+1−hi

hi
− (N − 1)

∑N−1
i=1 ri

hi+1−hi

hi

We have a solution for µh! Plug this back in the relationship for λ, and notice how the
whole formula simplifies reasonably nice:

λ =

∑N−1
i=1

hi+1−hi

hi

∆t
∑N−1

i=1 (µh − ri)
=

1

∆t

∑N−1
i=1

hi+1−hi

hi

(N − 1)µh −
∑N−1

i=1 ri

=
1

∆t

∑N−1
i=1

hi+1−hi

hi

(N−1)
∑N−1

i=1 r2i
∑N−1

i=1

hi+1−hi
hi

−(N−1)
∑N−1

i=1 ri
∑N−1

i=1 ri
hi+1−hi

hi
+(

∑N−1
i=1 ri)

2 ∑N−1
i=1

hi+1−hi
hi

−(N−1)
∑N−1

i=1 ri
∑N−1

i=1 ri
hi+1−hi

hi∑N−1
i=1 ri

∑N−1
i=1

hi+1−hi
hi

−(N−1)
∑N−1

i=1 ri
hi+1−hi

hi

=
1

∆t

∑N−1
i=1 ri

∑N−1
i=1

hi+1−hi

hi
− (N − 1)

∑N−1
i=1 ri

hi+1−hi

hi

(N − 1)
∑N−1

i=1 r2
i −

(∑N−1
i=1 ri

)2

The final solutions will therefore be, where n = N − 1:

λ̂ =
1

∆t

∑
i rti

∑
i

hti+1−hti

hti
− n

∑
i rti

hti+1−hti

hti

n
∑

i r
2
ti − (

∑
i rti)

2 (12)

µ̂h =

∑
i r

2
ti

∑
i

hti+1−hti

hti
−
∑

i rt
∑

i rt
ht+1−ht

ht∑
i rti

∑
i

hti+1−hti

hti
− n

∑
i rti

ti+1−hti

hti

(13)
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All the sums range along the time increments for i = {1, 2, . . . , T}. Similarly, for the
other equation, by symmetry we can deduce the solutions:

κ̂ =
1

∆t

∑
i rti

∑
i (rti+1

− rti)− n
∑

i rti(rti+1
− rti)

n
∑

i r
2
ti − (

∑
i tit)

2 (14)

µ̂r =

∑
i r

2
ti

∑
i (rti+1

− rti)−
∑

i rti
∑

i rti(rti+1
− rti)∑

i rti
∑

i (rti+1
− rti)− n

∑
i rti(rti+1

− rti)
(15)

Note. This particular interpretation of the model refers to fitting for a single price series
ht (indexed by ti, 1 ≤ i ≤ T ). One can easily adapt it to fit for N multiple price series
hjti , 1 ≤ j ≤ N, 1 ≤ i ≤ T , by summing up over both j (the series index) and ti (the
time index) within the solution equations for λ and µh. (indexation is similar to the VAR
models, as seen in Section 3.8).

A.5 Inferring Market Rents from House Prices and its Appli-
cation to the Stochastic Model

One more desire was to attempt to extrapolate the rent prices from the house prices,
and use this model to generate a continuous prediction for the rent prices. Looking at a
lagged cross-correlation analysis between sale cell and rent cell described in Figure
20, we generate a simple regressive model with rent cell as the dependent variable and
8 previous lags of sale cell as independent variables (see Figure 21). Then, we apply
this model to the predicted series for sale cell we plotted in Figure 12 to generate a
predicted series for rent cell. We visualize the distributions comparison between the
one we obtain for rent cell with the observed one across tiles of Munich in Figure 22.

Figure 20: Lagged correlation between rent growth and price growth in Munich. Positive lag
means that rent growth data is in the later time point than price growth data, negative lag
means vice versa.
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Figure 21: Regression summary of rent cell against
8 lags of sale cell. Train R2 (< 2016) is 0.881, test
R2 (≥ 2016) is 0.900.

The means are even more skewed than
what we saw for sale cell in figure
12 back in Section 3.6 — this is most
likely due to the unsatisfying fit of the
cross-correlation model, unable to pro-
vide a good prediction for rent cell.
A different approach would be neces-
sary to yield good results.

As a side note, one can see the large
tails for quarters 1 and 2 of 2016; this
is the direct data coming from 21st. It
is the same data anomaly we noticed
in Section 2.5, for Bayern and Baden-
Württemberg. Munich is part of Bay-
ern, after all.

Figure 22 shows the fit across all Ger-
many, whereas in Figure 23, the fit is
done only for Munich. In spite of much
fewer data points available for fitting,
the predicted distributions look much
closer to the observed ones, indicating
that this might be a better way to pur-
sue this question. However, we did not
run this for all cities, merely for Mu-
nich, and therefore it remains some-
thing to be further investigated.

(a) Violin plot of distributions.
(b) Q-Q plot for quarter 3 of 2018.

Figure 22: Analysis plots of predicted vs. observed distributions of rent cell for Munich.
Extrapolated from a linear regression from lagged sale cell, fitted on all cities.



A APPENDIX 40

(a) Violin plot of distributions.
(b) Q-Q plot for quarter 3 of 2018.

Figure 23: Same as 22, but the model is fitted only on Munich data. The fit looks much better,
with more realistic means and shorter tails. This might not generalize to other cities, though!

A.6 VAR models

A.6.1 Overview of the selected features

Target
Number of selected

variables
Selected variables

qoq sale cell 5 ’birth death’, ’hh income inhab’, ’n flats’
’svb working’, ’life exp’

yoy sale cell 1 ’birth death’
2y sale cell 5 ’birth death’,’tax municipal’,’vacancy rate’

’up female’,’migrbal’
qoq sale cell growth 4 ’gdp qoq’, ’mortgage rate qoq’

’current acc usd growth’, ’gdp yoy qcd’
yoy sale cell growth 1 ’up’
2y sale cell growth 4 ’gva agriculture growth’,’hh income 2ygrowth syd’

’employees km2’,’mortgage rate 2ygrowth’

qoq rent cell 5 ’birth death’,’hh income inhab’,’vacancy rate’,
’birth death yoy’,’pop age’

yoy rent cell 5 ’birth death’, ’hh income inhab’, ’vacancy rate’
’pop age’, ’gdp’

2y rent cell 5 ’birth death’,’hh income inhab’,’vacancy rate’
’pop age’,’gdp’

qoq rent cell growth 3 ’population growth’, ’current acc usd yoy’, ’up yoy’
yoy rent cell growth 3 ’population growth’, ’mortgage rate yoy’, ’birth death’
2y rent cell growth 5 ’population growth’,’birth death’,’gdp constant annualc x’

’employees km2 2ygrowth’,’vacancy rate yoy’

Table 6: Selected features for each of the targets based on the forward selection algorithm
described in Section 3.8.

A.6.2 Forecast plots

The following figures visualize the prediction results of standard VAR models.
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(a) Rent prices and predictions. (b) Sale prices and predictions.

Figure 24: Different horizon predictions of rent and sale prices in Cologne (2012-2018), from the
standard VAR model. The blue line corresponds to the observed prices, while the dotted lines
refer to the predictions for different time horizons (qoq, yoy, 2y).

While VAR models are not the best model for predicting each of the targets itself as we
have seen in Table 3, the main advantage of this model is that we can achieve scenario-
consistent predictions of the macroeconomic variables (see Figure 25).

Figure 25: Illustration of standard VAR predictions of the target 2y rent cell (bottom-most
time series) and the corresponding macroeconomic variables as shown in Table 6 for Cologne.
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A.6.3 Impulse response analysis

The impulse response analysis quantifies the reaction of every single variable in the model
on an exogenous shock to the model. Two special cases of shocks can be identified: The
single equation shock (Figure 26) and the joint equation shock where the shock mirrors
the residual covariance structure (Figure 27). In the first case we investigate forecast error
impulse responses, in the latter cumulative impulse responses. The reaction is measured
for every variable a certain time after shocking the system. The impulse response analysis
is therefore a tool for inspecting the inter-relation of the model variables.

They are computed in practice using the MA(∞) representation (see e.g. [Lüt05]) of the
V ARm(p) process:

yt = µ+
∞∑
i=0

Φiut−i,

where µ is the mean of yt. Asymptotic standard errors are plotted by default at the 95%
significance level.

Figure 26: Illustration of the impulse response analysis of VAR models for visualizing the inter-
dependencies between macroeconomic variables.

The cumulative effects Ψn =
∑n

i=0 Φi (see [Per+19]) can be plotted with the long run
effects as illustrated in Figure 27.



LIST OF FIGURES 43

Figure 27: Illustration of the cumulative effects between macroeconomic variables.
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