DATA DRIVEN RISK-RETURN COMPUTATION FOR REAL ESTATE

July 30th 2020

Technische Universität München

AGENDA

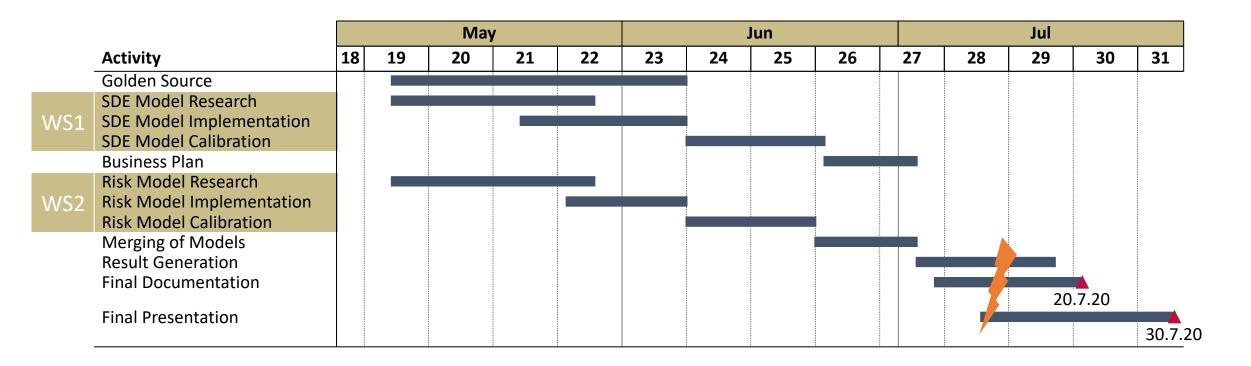
Introduction Data **SDE Model Risk Model Business Plan** Results Outlook

GOALS AND PROJECT PLAN

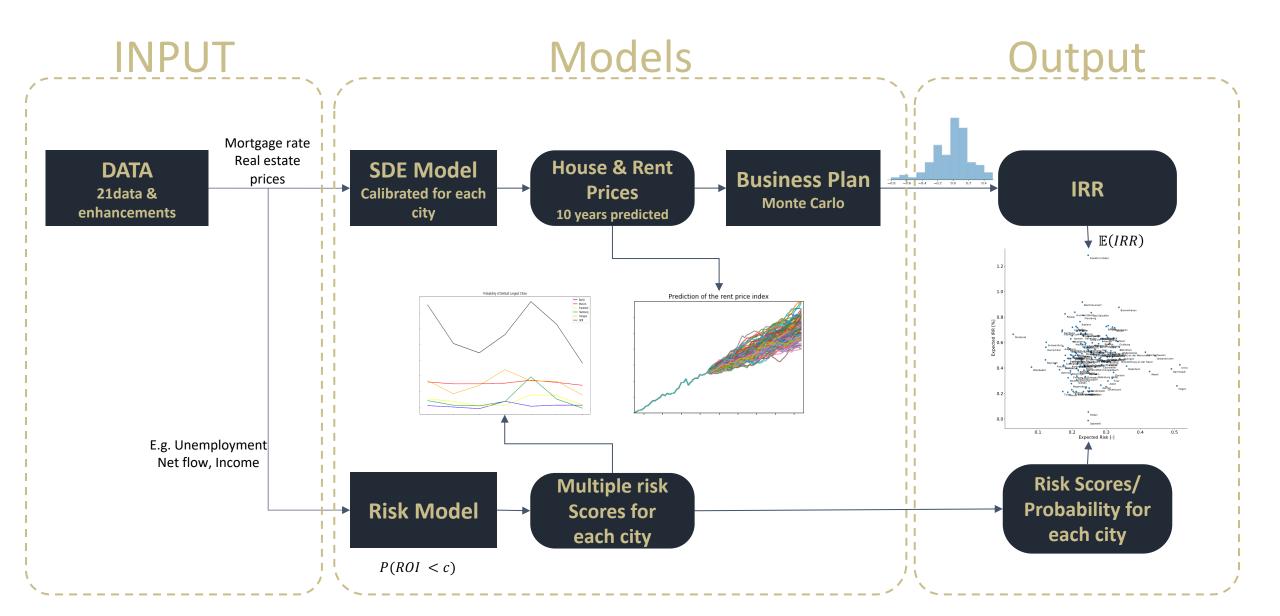
Real estate objects such as apartments or flats can be lucrative investments. Nevertheless, as with any other investment possibility **risk** and **return** must be considered. Our goal is both,

- 1. Compute the expected return on investment (Internal Rate of Return IRR) for 149 German cities
- 2. Compute a compound **risk score** for these cities as well

These 2 KPIs shall help CapitalBay to choose profitable real estate investment decisions.

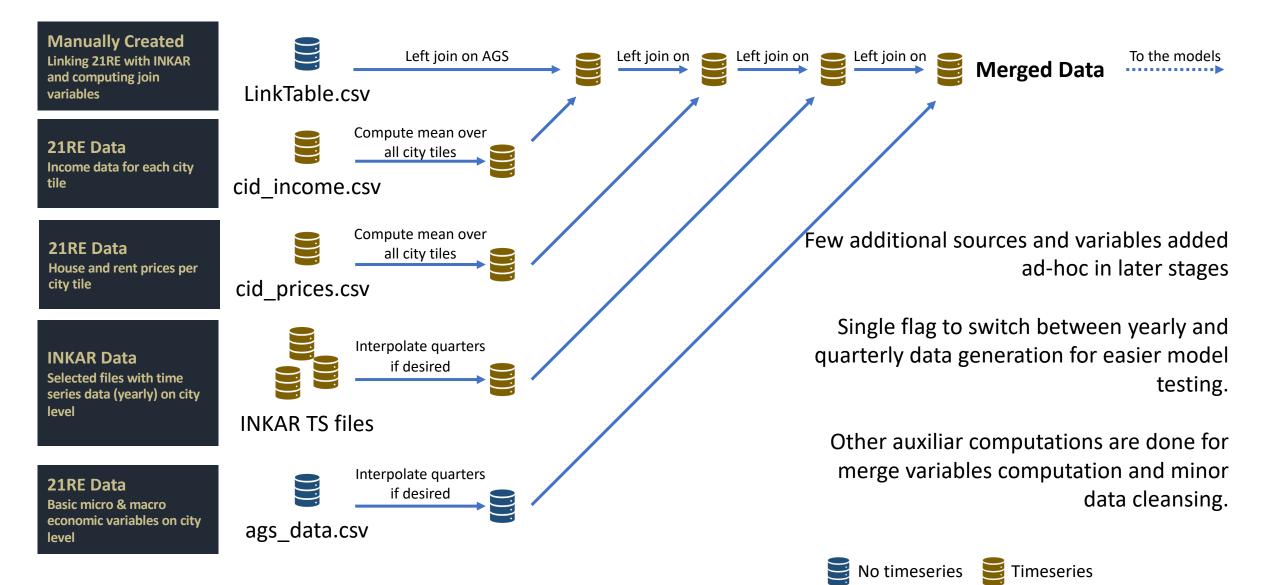


2 ½ STAND-ALONE MODELS LEAD TO RISK/RETURN



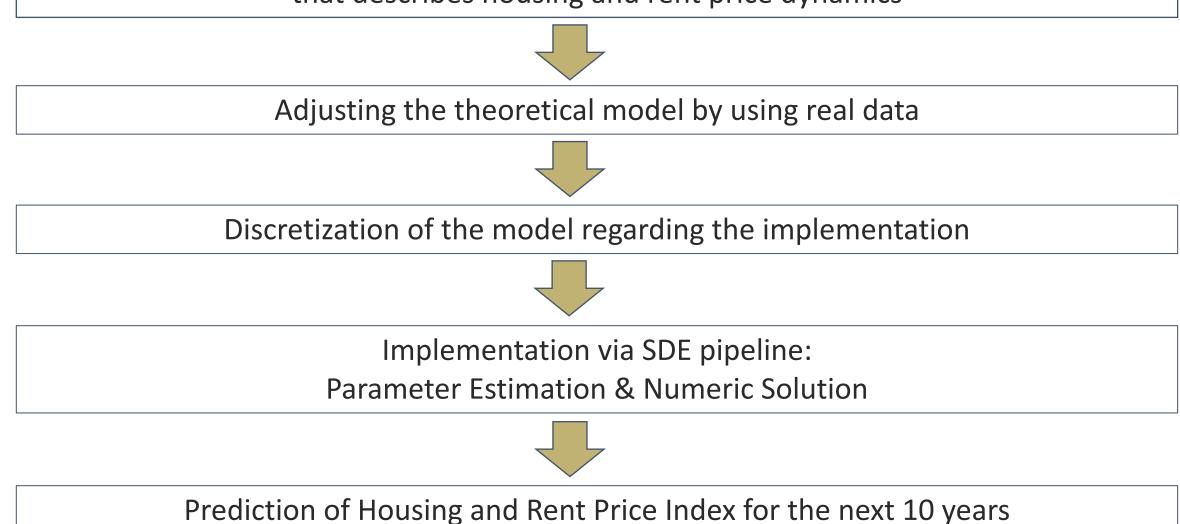
DATAPIPELINE

21REAL ESTATE AND INKAR AS BASELINE



SDE MODEL - WORKFLOW

Finding a theoretical model: stochastic differential equation system that describes housing and rent price dynamics



Adding Rent

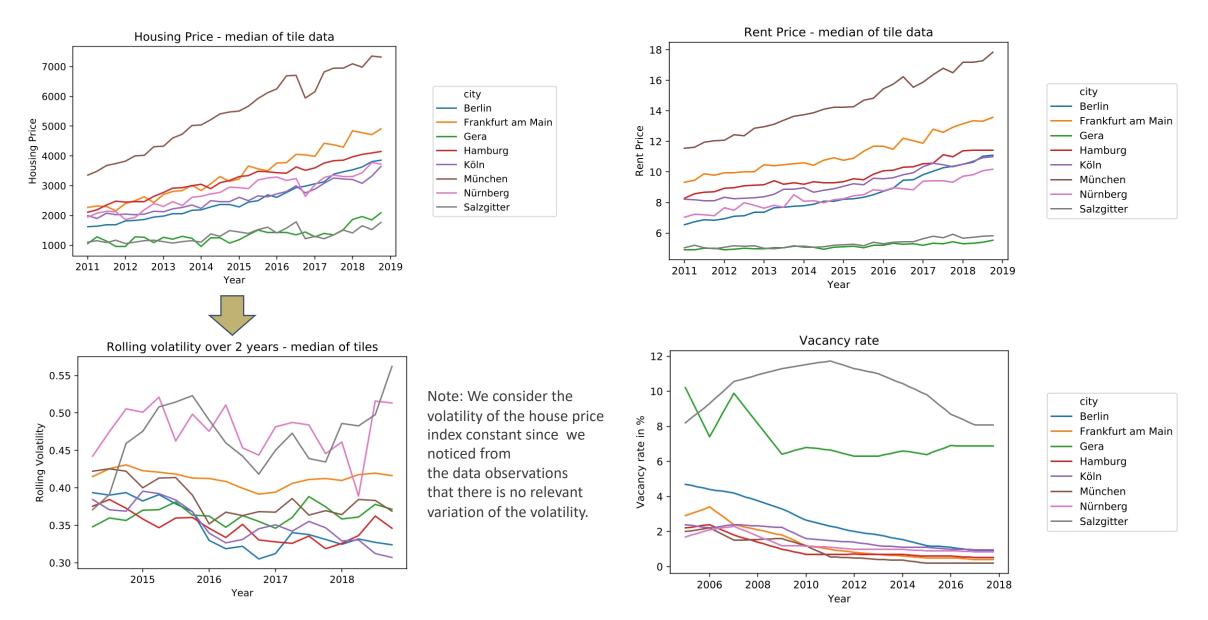
SDE MODEL – THEORETICAL MODEL

We consider a new SDE model derived from the Bates-Hull-White model applied to RE:

$$\begin{bmatrix} \overline{q} \\ h_t \\ h_t \\ h_t \\ dv_t = \lambda(\mu_h - r_t) dt + \sqrt{v_t} dZ_t^h + dH_t^h \\ dv_t = k_v(\theta_v - v_t) dt + \sigma_v \sqrt{v_t} dZ_t^v \\ dr_t = k_r(\mu_r - r_t) dt + \sigma_r dZ_t^r \\ \end{bmatrix} \begin{bmatrix} \frac{dm_t}{m_t} = \left(\mu_m + k_{m_1} \frac{dh_{t-l}}{h_{t-l}} + k_{m_2} \frac{df_{t-l_2}}{f_{t-l_2}}\right) dt + \sigma_m dZ_t^m + dH_t^m \\ df_t = k_m(\mu_m - f_t) dt + \sigma_m dZ_t^m \end{bmatrix}$$

- h_t is the House Price Index
- *v_t* is the volatility of the index and is a
 Cox–Ingersoll–Ross (CIR) process
- *r_t* is the Mortgage rate defined by a generalized Ornstein-Uhlenbeck (OU)
- m_t is the Market Rent Index
- *f_t* is an additional factor (ie. vacancy) defined by a generalized Ornstein-Uhlenbeck (OU)
- $Z_t^S, Z_t^v, Z_t^r, Z_t^m$ are correlated Brownian Motions
- H_t^h , H_t^m are compound Poisson processes

SDE MODEL – INCORPORATING THE DATA



SDE MODEL – DISCRETIZED MODEL

We compute the numerical solution of the house price index using the implicit Euler method :

$$\begin{aligned} h_{t+1} &= h_t + (1-\theta)\lambda(\mu_h - r_t)h_t\Delta t + \theta\lambda(\mu_h - r_t)h_{t+1}\Delta t + \sigma_h h_t\Delta Z_t^h + vh_t\Delta H_t^h \\ &= \left\{ h_t + (1-\theta)\lambda(\mu_h - r_t)h_t\Delta t + \sigma_h h_t\Delta Z_t^h + vh_t\Delta H_t^h \right\} / \left\{ 1 - \theta\lambda(\mu_h - r_t)\Delta t \right\} \\ r_{t+1} &= r_t + k_r(\mu_r - r_t)\Delta t + \sigma_r\Delta Z_t^r \end{aligned}$$

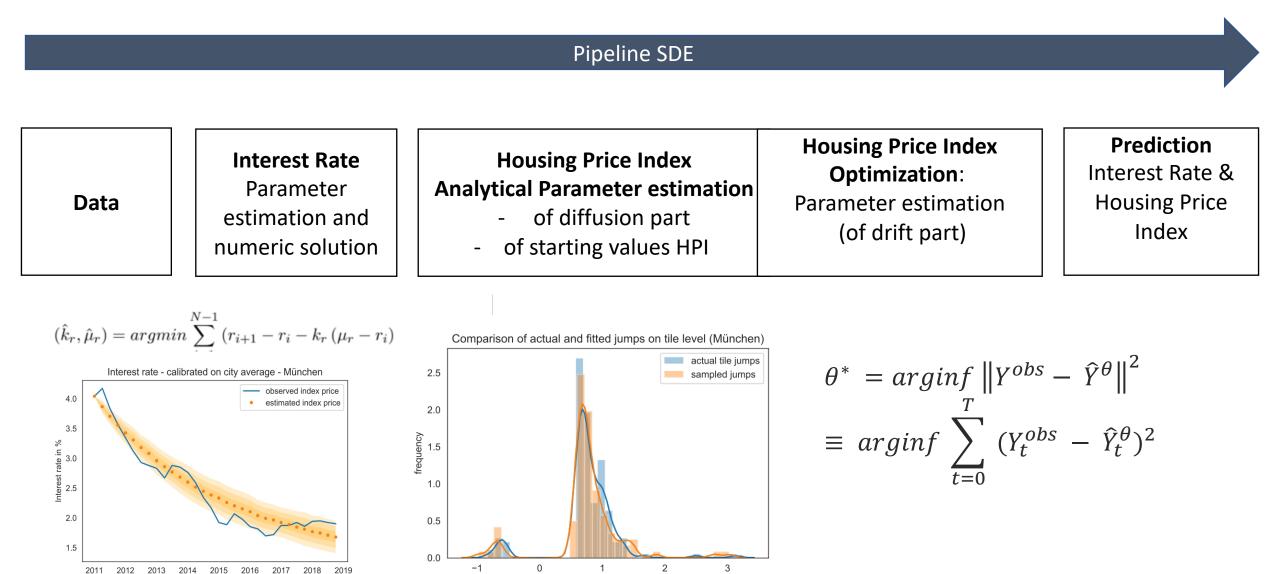
Where:

- Δt quarter
- $\Delta Z_t^h = Z_{t+1}^h Z_t^h$
- $\Delta H_t^h = H_{t+1}^h H_t^h$
- $\theta \in [0,1]$, NOTE: if $\theta = 0$ Euler-Maruyama

Analogously will be implemented :

$$\begin{split} \frac{\Delta m_t}{m_t} &= \left(\mu_m + k_{m_1} \frac{\Delta h_{t-l}}{h_{t-l}} + k_{m_2} \frac{\Delta f_{t-l_2}}{f_{t-l_2}}\right) (1-\theta) \Delta t + \left(\mu_m + k_{m_1} \frac{\Delta h_{t-l}}{h_{t-l}} + k_{m_2} \frac{\Delta f_{t-l_2}}{f_{t-l_2}}\right) \theta \Delta t + \sigma_m \Delta Z_t^m + \Delta H_t^m \\ \Delta f_t &= k_m (\mu_m - f_t) \Delta t + \sigma_m \Delta Z_t^m \end{split}$$

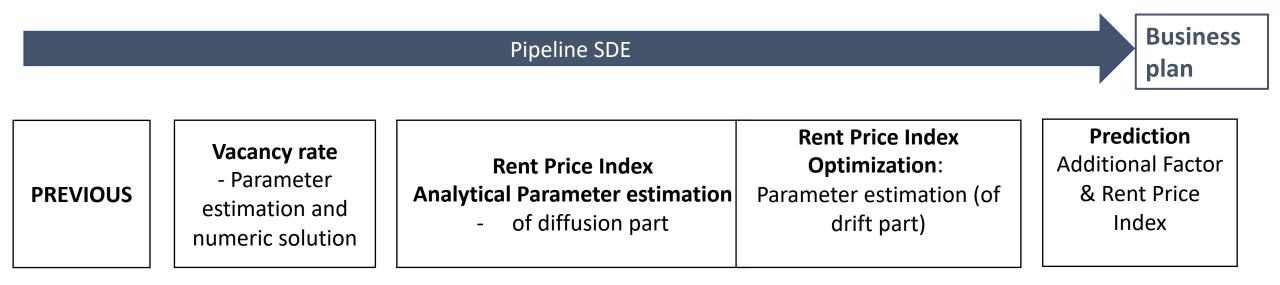
SDE MODEL – IMPLEMENTATION PIPELINE (1/2)



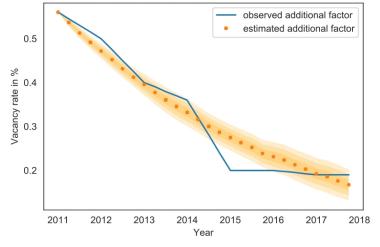
relative jump size

014 2015 2016 2017 2018 Year

SDE MODEL – IMPLEMENTATION PIPELINE (2/2)



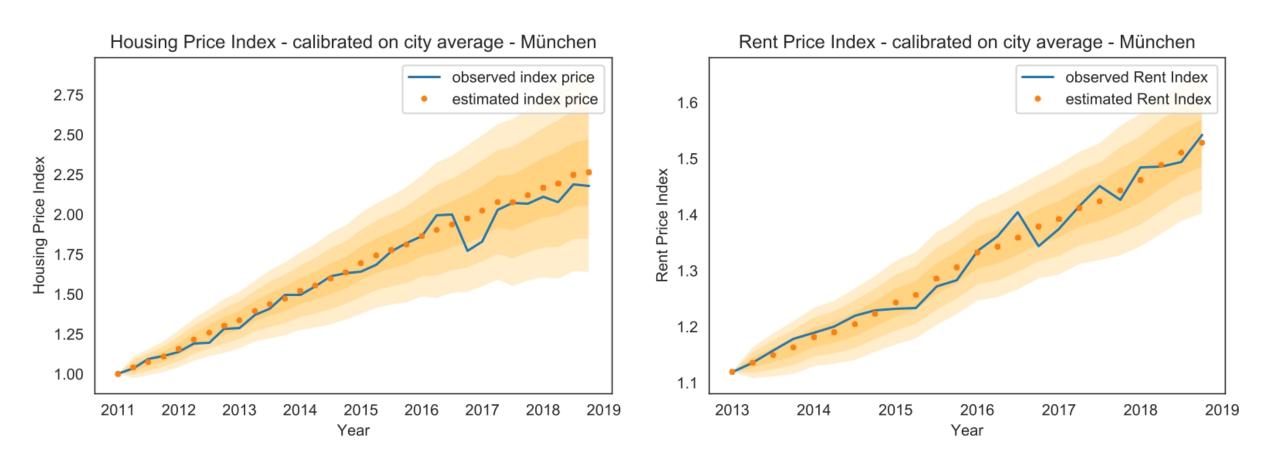
Vacancy is Additional Factor - calibrated on city average - München



$$\theta^* = arginf \left\| Y^{obs} - \hat{Y}^{\theta} \right\|^2$$

$$\equiv arginf \sum_{t=0}^{T} (Y_t^{obs} - \hat{Y}_t^{\theta})^2$$

SDE MODEL – OBSERVED VS ESTIMATED DATA



SDE MODEL – OUTLOOK AND LIMITATIONS

LIMITATIONS

Model derived by an historical point of view:

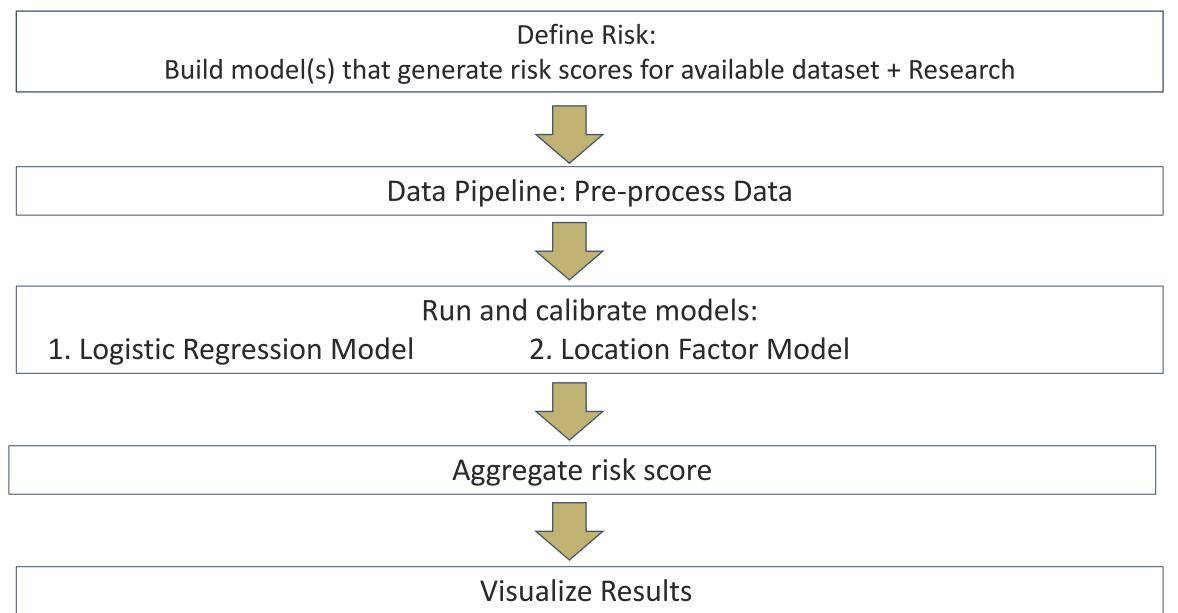
- no embedding of economic point of view into the future
- no adjustment of predictions due to the outbreak of the Corona Virus

Possible model extension:

- Non-constant volatility
- Incorporating further additional factors
- Prediction on tile level if location information is available

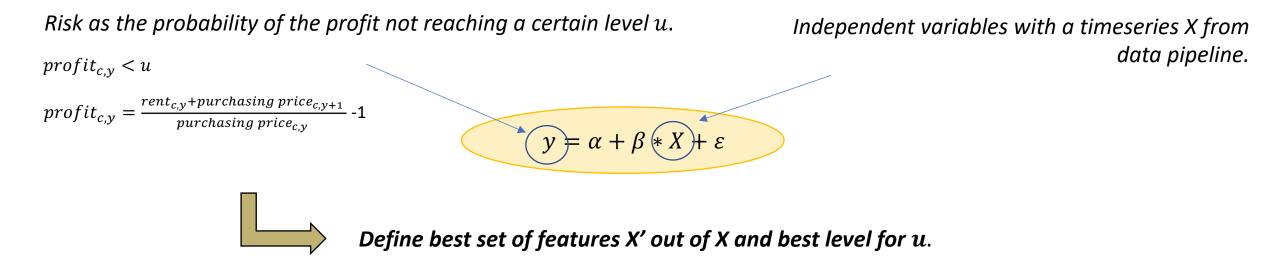
RISKMODEL

RISK MODEL – WORKFLOW



RISKMODEL

RISK MODEL – LOGIT MODEL



Run regression pipeline for ~40 different values for u. Tested city-, time-specific and constant levels for u.

- 1. Drop missing values
- 2. Remove correlated features
- 3. Include Interactions in X
- 4. Include Lags
- 5. Scale Features
- 6. Remove correlated features again
- 7. Recursive Feature Elimination

RISK MODEL – LOGIT MODEL

Highest measure of certainty R^2 for u=5%.

Results: Logit

		teature		coer	pvalues			
Model: Dependent Variable:	Logit y	Pseudo R-squared: AIC:	0.210 936.4231		1 50/	Einkommensteuer	-2.057223	0.036350
Date: No. Observations: Df Model:	2020-07-17 14:36 1043 20	BIC: Log-Likelihood: LL-Null:	1040.3701 -447.21 -566.20	Significant features with	p-values<5%	growth_Population	-6.220143	0.004923
Df Residuals: Converged:	1022 1.0000	LLR p-value: Scale:	3.0117e-39 1.0000		m	ult_Income_x_Pendlersaldo	-2.822570	0.009620
No. Iterations:	8.0000				mult_Studierende_x_grov	wth_app_licence_residential	4.231842	0.000456
Einkommensteuer		Coef. Std.Err. -2.0572 0.9829	z P> z [0.025 0.975]		mult_growth_Anteil Sch	utzsuchender an Bevölker	6.248036	0.027844
Population growth Anteil Schutzsuchender an Bevölkerung		4 9122 2 5345	1.9381 0.0526 9.8797 0.0553 1.3581 0.1744 0.9477 5.2248	V	mult_growth_Empfänger	von Grundsicherung im Al	-3.772807	0.009756
growth_Population mult_Income_x_Pendlersaldo	-2.8226 1.0901	-2.8120 0.0049 -10.5556 -1.8847 -2.5892 0.0096 -4.9592 -0.6859		growth	_Schuldnerquote_lagged_1	1.754109	0.019934	
<pre>mult_Studierende_x_growth_app_lic mult_Einkommensteuer_x_Growth_Sh mult Verhältnis junge zu alten E</pre>	-2.0190 1.6854	3.5055 0.0005 1.8658 6.5979 -1.1979 0.2310 -5.3223 1.2844 -1.8939 0.0582 -2.9458 0.0505		growth_Existe	enzgründungen_x_lagged_2	2.399322	0.029069	
<pre>mult_vernations junge zu atten i mult_growth_Einkommensteuer_x_gro mult growth Anteil Schutzsuchende</pre>	-0.6167 1.6642	-0.3706 0.7110 -3.8784 2.6451	L	growth_Anteil Te	eilzeitbeschäftigte_lagged_2	-2.168165	0.006936	
mult_growth_Empfänger von Grunds: growth Schuldnerquote lagged 1	vth_Shrink_Ratio	-2.58440.0098-6.6341-0.91152.32760.01990.27703.2312		growth_Beschäftigte am	Wohnort mit akademische	1.948616	0.018591	
growth_Existenzgründungen_x_lagg growth_Anteil Teilzeitbeschäftig growth_Beschäftigte am Wohnort m				growth_Personen in Bedar	fsgemeinschaften_lagged_2	2.714470	0.001965	
growth_SGB II - Quote_lagged_1 growth Personen in Bedarfsgemein:	1.6386 0.9479 2.7145 0.8769	1 7286 0 0839 0 2193 3 4965		gr	owth_birth_death_lagged_2	-1.724871	0.016903	
growth_birth_death_lagged_2 Growth_Shrink_Ratio_lagged_1		2.3353 1.5280	1.5283 0.1264 -0.6596 5.3301		growth_Gro	wth_Shrink_Ratio_lagged_1	2.980461	0.035766
growth_Growth_Shrink_Ratio_lagged const	d_1	2.9805 1.4196 0.0958 1.2975	2.0996 0.0358 0.1982 5.7627 0.0739 0.9411 -2.4472 2.6389					

We end up with a **probability of default p** for every city and year.

 $p = \frac{e^{\beta_1 * X_1 + \beta_2 * X_2 + \dots + \beta_n * X_n}}{e^{\beta_1 * X_1 + \beta_2 * X_2 + \dots + \beta_n * X_n} + 1}$

faatur

RISK MODEL – LOCATION FACTOR MODEL

$$Risk \stackrel{?}{=} f(LocationFactors)$$

$$y = \alpha + \beta * X + \varepsilon$$

Independent variables without timeseries from data pipeline

Risk as stability versus instability over time

Sharpe Ratio_c =
$$\frac{mean(profit_{c,qy})}{std(profit_{c,qy})}$$

$$Variance \ of \ profit growth_{c} = Var(\frac{profit_{c,qy} - profit_{c,qy-1}}{profit_{c,qy-1}})$$

Fig 1: Government district

Fig 3: Infrastructure connection (Autobahn)

Fig 2: Airport accessibility

Fig 4: DAX companies

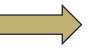
RISK MODEL – LOCATION FACTOR MODEL

Higher measure of certainty R^2 for y=Sharpe Ratio.

Results: Ordinary least squares

		·	
Model: Dependent Variable: Date: No. Observations: Df Model: Df Rosiduals: R-squared:	OLS SharpeRatio_Absolut 2020-07-20 11:21 149 15 133 0.530	Adj. R-squared: AIC: BIC: Log-Likelihood: F-statistic: Prob (F-statistic): Scale:	0.477 -40.8291 7.2341 36.415 10.00 1.46e-15 0.040233
		Coef. Std.Err. t P> t	[0.025 0.975]
<pre>mult_Leistungen für Wohngeld_ mult_Nahversorgung Grundschul mult_Nahversorgung Supermärkt mult_Anteil Erholungsfläche_m mult_Anteil Erholungsfläche_m mult_Anteil Erholungsfläche_m mult_Erreichbarkeit von IC/EC</pre>	ean äfen_x_Anteil Erholungsfläche_mean mean_x_Ein- und Zweifamilienhäuser_mean en Durchschnittsdistanz_x_Erreichbarkeit von Ober e Durchschnittsdistanz_x_Erreichbarkeit von Autob wean_x_Erreichbarkeit von Autobahnen uean_x_Erreichbarkeit von IC/EC/ICE-Bahnhöfen wean_x_Erreichbarkeit von Oberzentren hahnen x_Nahversorgung Apotheken Durchschnittsdist /ICE-Bahnhöfen_x_Nahversorgung Apotheken Durchsch wan_ix_Ein- und Zweifamilienhäuser_mean	ahnen 0.2633 0.1658 1.5875 0.1148 - 0.4851 0.1780 2.7252 0.0073 0 -0.5054 0.2481 -2.0365 0.0437 - -0.3560 0.1275 -2.7912 0.0060 - anz -0.5366 0.2240 -2.3953 0.0180 -	2.2727 0.9357 1.4980 1.5268 2.0727 0.7282 3.5571 -0.0575 3.9314 -0.2617 0.6315 2.0016 0.1874 0.2476 0.1638 0.5911 9.130 0.8372 9.962 0.0145 0.9962 0.0145 0.6082 -0.0033 0.9907 -0.0935 0.0204 0.6502 0.3849 1.9545
Omnibus: Prob(Omnibus): Skew: Kurtosis:	49.134 0.000 1.024 9.229	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Condition No.:	1.731 266.930 0.000 132

Significant features with p-values<5%



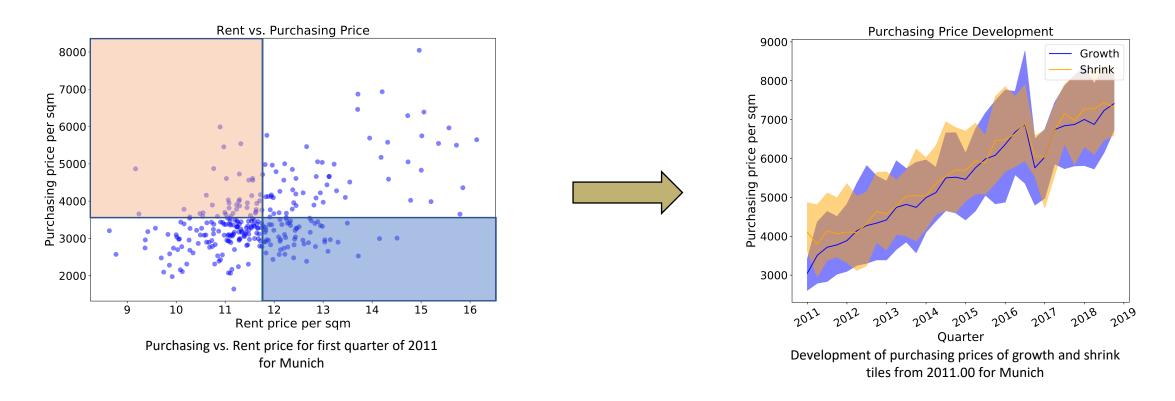
		•
Anteil Erholungsfläche_mean	0.604224	0.000440
Großunternehmen_mean	-0.307319	0.016276
mult_Erreichbarkeit von Flughäfen_x_Anteil Erh	-0.596523	0.000584
mult_Anteil Erholungsfläche_mean_x_Erreichbark	0.485129	0.007291
mult_Anteil Erholungsfläche_mean_x_Erreichbark	-0.505358	0.043680
mult_Anteil Erholungsfläche_mean_x_Erreichbark	-0.355964	0.006026
mult_Erreichbarkeit von Autobahnen_x_Nahversor	-0.536618	0.018001
mult_Erreichbarkeit von IC/EC/ICE-Bahnhöfen_x	0.335290	0.037094

feature

We end up with normalized risk score for every city and year q. $q = \beta_1 * X_1 + \beta_2 * X_2 + ... + \beta_n * X_n$

RISKMODEL

RISK MODEL – QUADRANTS



Include observations into Logit Model using two additional features

Growth Shrink Ratio_{y,c} = $\frac{\#tilesgrowth_{y,c}}{\#tilesshrink_{y,c}}$

Price Rent Ratio Variance_{y,c}

RISKMODEL

RISK MODEL – OUTLOOK AND LIMITATIONS

LIMITATIONS

Different way of calculating the profit

 $grossprofit_{c,y} = \frac{rent_{c,y}}{purchasing \ price_{c,y}}$ VS. $profit_{c,y} = \frac{rent_{c,y} + purchasing \ price_{c,y+1}}{purchasing \ price_{c,y}} - 1$

Location Factor Model

-> aggregating the data leaves us with only 149 observations, one could think of just incorporating the historic Sharpe Ratio

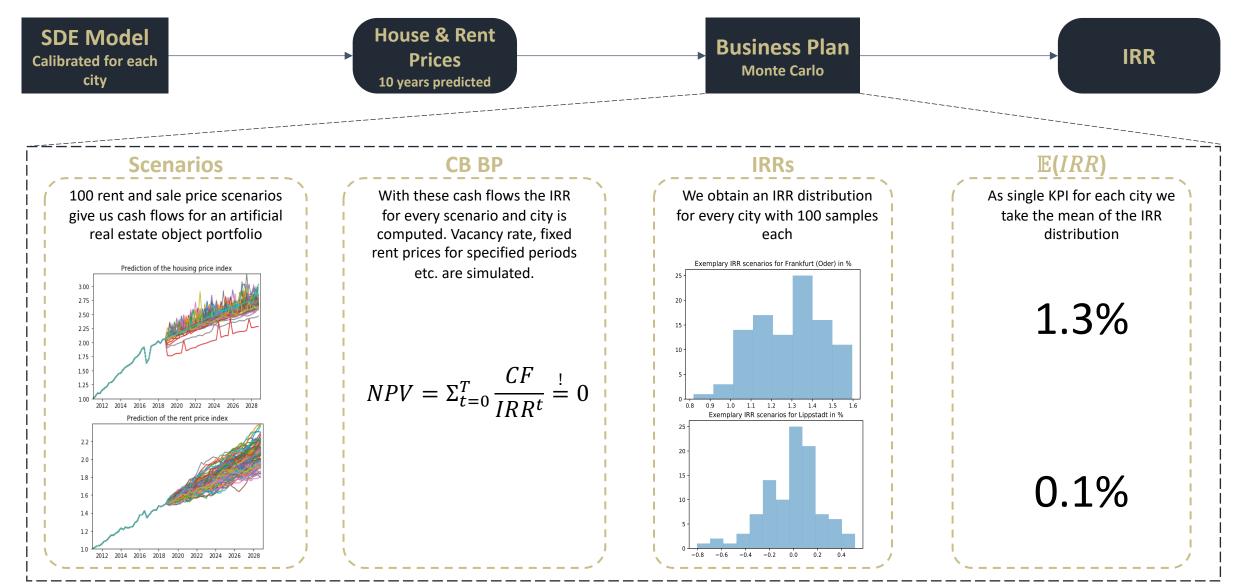
City specific level of u

-> with more granular data, one could run city specific regressions

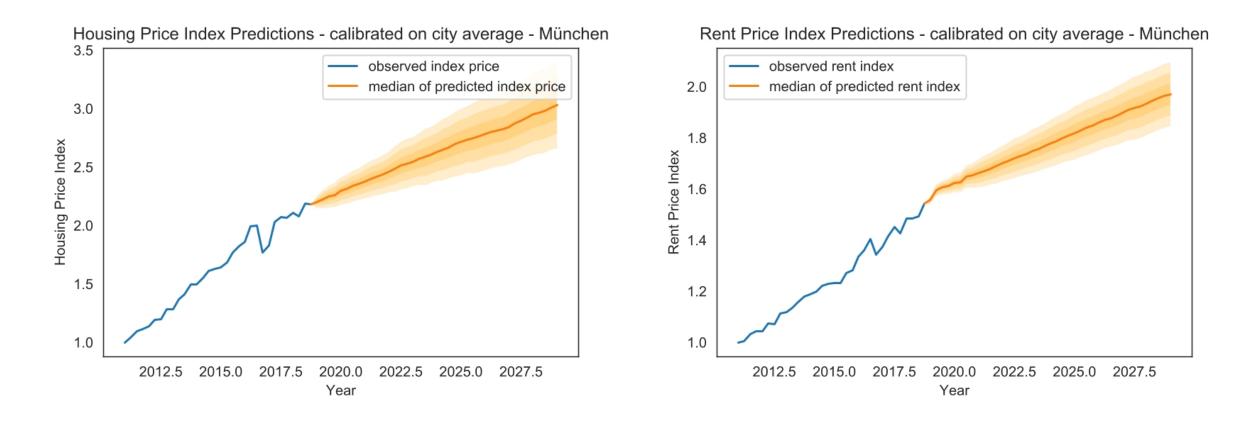
Quadrants

-> came up with this concept, further research might be interesting

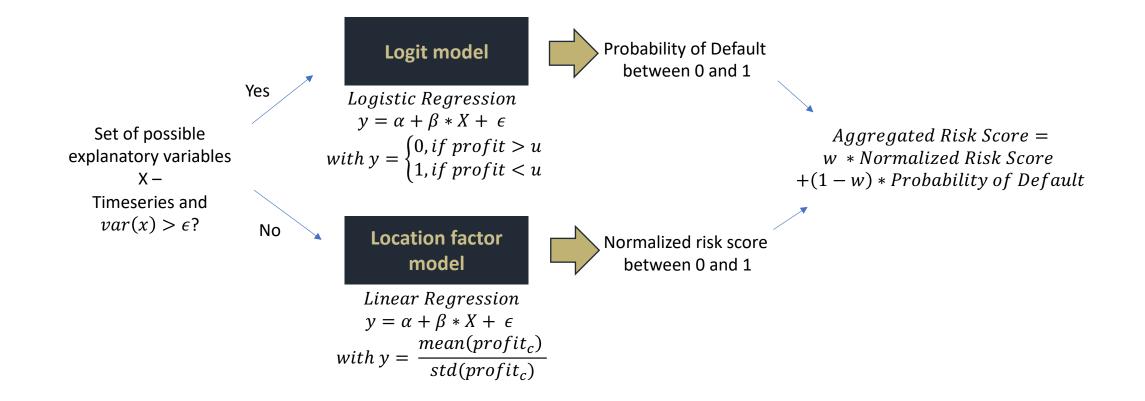
TRANSFORMING SCENARIOS TO IRR



SDE MODEL – RESULTS: PREDICTIONS OVER 10 YEARS

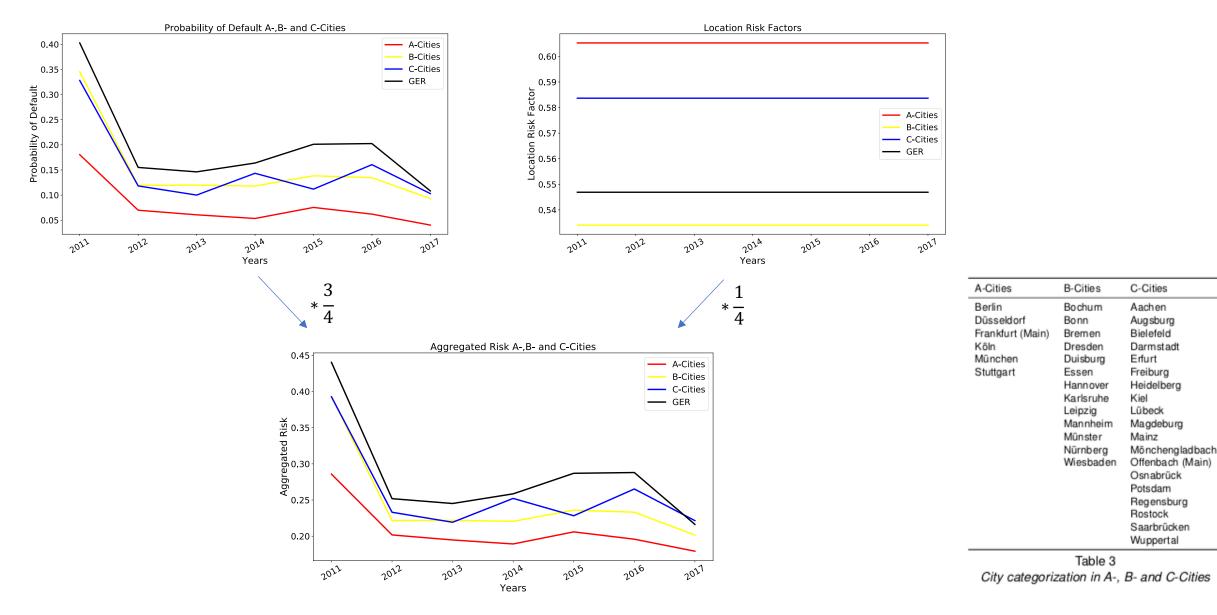


RISK MODEL – AGGREGATED RISK MODEL

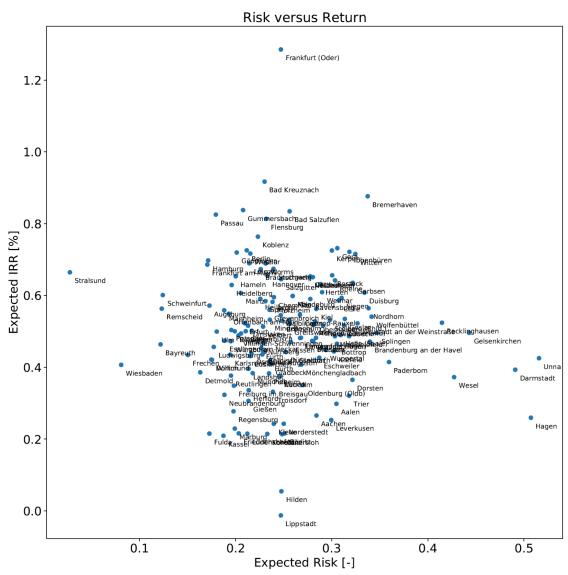


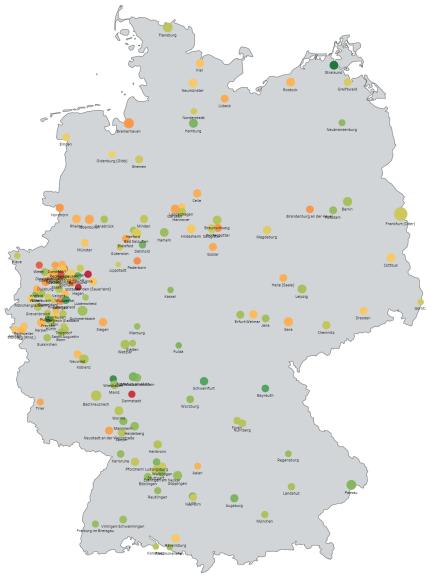
FINALRESULTS

RISK MODEL - RESULTS



RISK VS UNLEVERED RETURN SIMILAR FOR CITIES





PLAUSIBLE RESULTS WITH ROOM FOR IMPROVEMENT

Caveats

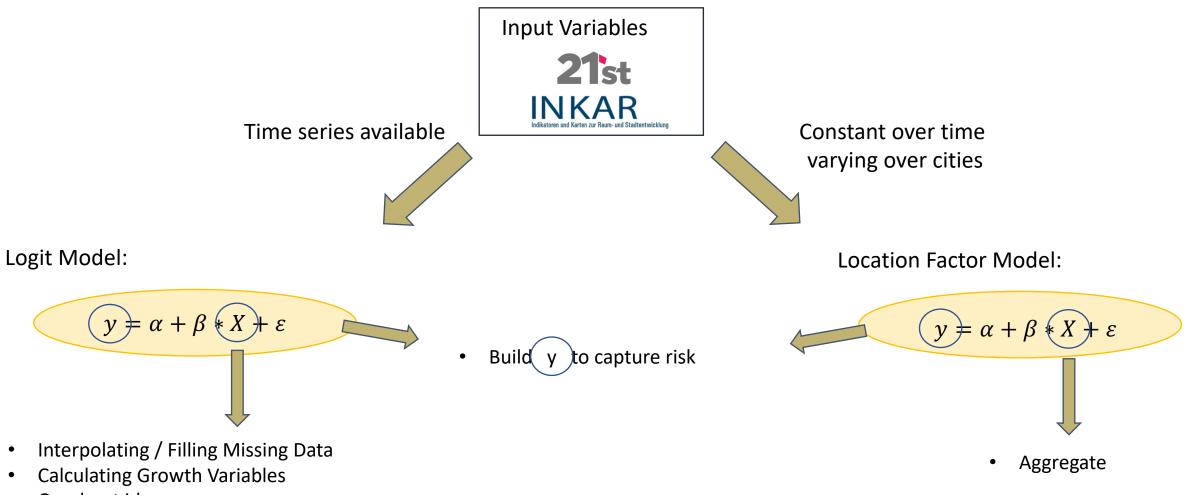
- 21RE data is still limited in scope and only reflects offered prices, not the true transaction prices (these are only known by notaries and tax offices).
- The data quality of INKAR data is good, but only on yearly basis.
- Information on tile level had to be aggregated and only KPIs on city level are computed. In reality still big differences intracity possible (Apartment at Marienplatz vs. Giesing differs price-wise).
- Risk and return KPIs are our subjective choices and other KPIs might be better suited for investment decisions.

Outlook

- Different KPIs for both risk and return
- More data and better data pipeline, data driven approaches dictate garbage in, garbage out
- Third, a analysis not only on city level but on tile or district level could be feasible. That approach would also need more data but would allow for single real estate objects to be evaluated more precise.
- SDE and risk model assumptions can be weakened and expanded, e.g. non-constant volatility for the SDE model or other additional factors.

Appendix

RISK MODEL – DATA PIPELINE



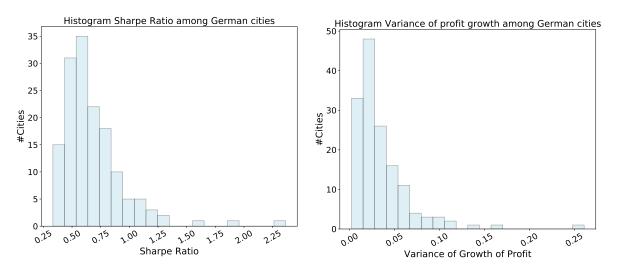
• Quadrant idea

RISKMODEL

RISK MODEL – LOCATION FACTOR MODEL

Risk as stability versus instability over time

Sharpe Ratio_c = $\frac{mean(profit_{c,qy})}{std(profit_{c,qy})}$ Variance of profitgrowth_c = Var($\frac{profit_{c,qy} - profit_{c,qy-1}}{profit_{c,qy-1}}$) $y = \alpha + \beta * X + \varepsilon$ Independent variables without timeseries X out of the data pipeline



Run regression pipeline for Sharpe Ratio and Variance of profitgrowth as y.

- 1. Drop missing values
- 2. *Remove correlated features*
- 3. Include Interactions in X
- 4. Scale Features
- 5. Recursive Feature Elimination

List of Figures

- Fig 1: <u>https://www.berlin.de/tourismus/dampferfahrten/x/5233670-5433923-schiffstouren-im-regierungsviertel.html</u>, Accessed 29.07.20, © JFL Photography stock.adobe.com.
- Fig 2: <u>https://www.airliners.de/analyse-verkehrszahekln/50268</u>, Accessed 29.07.20, © Fraport.
- Fig 3: "Autobahn Vector PNG" <u>http://pluspng.com/png-99964.html</u>, Accessed 29.07.20
- Fig 4: <u>https://de.wikipedia.org/wiki/Datei:Siemens-logo.svg</u>, Accessed 29.07.20, ©Siemens AG.