Social Media Analytics

Team:

Abraham Duplaa Akshaya Muralidharan Jiho Yang Marie Delacourt Project lead: Dr. Ricardo Acevedo Cabra
Supervisor: Prof. Dr. Massimo Fornasier
Advisor: Matthias Wissel
Dhrubajyoti Mukherjee

26.07.2018

About us

Abraham MSc CSE

Akshaya MSc Data Engineering & Analytics

Jiho MSc CSE

Marie Msc Mathematics in Data Science

A wee bit of background & motivation

facebook

Over **2.9 billion** monthly active users. **510,000** comments, **293,000** status updates, and **136,000** photos uploaded every **60 seconds.**

Over **300 million** monthly active users. **500 million** tweets sent per day

A wee bit of background & motivation

What are we going to do with all this data?

Questions to address

- What kind of opinion do we want to know and why?
 - At first glance: Market Monitoring
- Where can we get such data?

Political data science

United Kingdom European Union membership referendum

- Predict vote results
- Political agenda adjustments
 - Feedback towards policies
 - Brexit: metric for feedback
- Analyse people's opinion towards Brexit before & after the vote
- By no means reflects Capgemini's business directions

Table of contents

Introduction

- Understanding the data
- Getting more insight with sentiment analysis
- Getting more insight with network analysis

Conclusion

Understanding the data

35

٦Э

8546930

8 432162

30 183920 1811

839201559824 218111559824 34077506797

64 2388436 93663254399

Data from twitter

#Ukip #BrexitWound #VoteLeaveGetChaos #LeaveChaos #TakeControl #ProjectHope #StrongerIn rex. teleave #` #BetterTogether #LeaveEU #Remain #EUReferendum

36 million tweets

221 countries

4 million users

Tools Used

Environment Setup

Visualise our data

Visualise our data

Tweet frequency & event frequency

💮 🖾

Existing sentiment analysis tools

Sentiment analysis lexicon

Verdict:

"verdict": "POSITIVE",

- Tokenizer
- Named entity recogniser
- NaiveBayesClassifier
- Stemmer

٠

...

Trained on movie reviews

Sentiment analysis API built on top of NLTK

36% accuracy for our dataset

3

A sentiment analysis pipeline

- Tokenization
- Stop word removal
- Stemming

The principle of word embedding

Select tweet	LEAVE.EU @ @LeaveEUOfficial · 3h New polling from @LordAshcroft shows that a big majority of the public thinks the Irish border issue is being deliberately exaggerated by politicians. Time for them to stop squabbling and deliver Brexit!
Tokenize and Create vocabulary	{ big, border, Brexit, deliberately, deliver, exaggerated, Irish, issue, LordAshcroft, new, politicians, polling, public, show, squabble, stop, think }
Build word vectors	majority = $\begin{pmatrix} 1 & 0 & 0 & \cdots & 1 & 0 & 0 & 1 \end{pmatrix}$

Word embedding with Word2Vec

Feed context into the model

[**big,** border, Brexit, deliberately, deliver, exaggerated, Irish, issue, LordAshcroft, new, politicians, polling, public, show, squabble, stop, think }

Get best embedding

majority = $(y_1 \dots y_V)$

Model

Classification problem with V classes. We use a logistic regression model. $y \mid x \sim multinomial(\sigma(W^T x))$

Start simple The bigram model

Leave.EU 🕗 @LeaveEUOfficial · 3h

New polling from **@LordAshcroft** shows that a **big majority** of the public thinks the Irish border issue is being deliberately exaggerated by politicians. Time for them to stop squabbling and deliver Brexit! Metric Find W' that maximizes likelihood P(output = majority | input = (1 ... 0), W)

The math behind the neural network

Maximize:

$$P(y|x,W) = \prod_{i=1}^{n} P(y_i|x_i,W) = \prod_{i=1}^{n} \prod_{v=1}^{V} P(y_i = C_v|x_i,W)^{1_{y_i}=C_v}$$

$$P(y_i = C_v|x_i,W) = \frac{P(x_i|y_i = C_v,W) P(y_i = C_v)}{\sum_{j=1}^{V} P(x_i|y_i = C_j,W') P(y_i = C_j)}$$

$$P(y_i = C_v|x_i,W') = \frac{\exp(W_v^T x_i)}{\sum_{j=1}^{V} \exp(W_j^T x_i)}$$

Baye's law
& formula of total
probabilities

i.e. minimize:

E(W) = -ln P(y|x, W)

$$= -\sum_{i=1}^{n} \sum_{\nu=1}^{V} 1_{y_i = C_{\nu}} \ln P(y_i = C_{\nu} | x_i, W)$$
$$E(W) = -\sum_{i=1}^{n} \sum_{\nu=1}^{V} 1_{y_i = C_{\nu}} \ln \left(\frac{\exp(W_{\nu}^T x_i)}{\sum_{j=1}^{V} \exp(W_j^T x_i)} \right)$$

1 7

Word2Vec neural network

Labeling strategies

Manual Labeling (Gold Standard Brexit)

- 2000 tweets labeled by professionals
 - pro, against, neutral, irrelevant, undecided/don't care
 - Strength given (1 weak, 5 strong) for pro and against Brexit
- Only considered pro and negative Brexit tweets (1246 tweets)
- 80% used for training and 20% for inference

Try 2 Automated Labeling via Influencers

Hand picked 27 influencers out of 49 (only pro and against Brexit).

11000 tweets from the influencers, labeled based on their view towards Brexit

Account	Occupation	Brexit position
OwenJones84	Author & Guardian columnist	Against
MhairiBlack	Scottish National Party MP	Against
tom_watson	Labour Party deputy leader	Against
GuidoFawkes	Right-wing political blogger	Pro
stellacreasy	Labour MP	Pro

Labeling strategies

Automated labelling via hashtags

∼6 Million Tweets

Hashtag Used	Pro/Against Brexit
#voteleave	Pro
#leaveeu	Pro
#outofeu	Pro
#ukip	Pro
#remain	Against
#strongerin	Against
#bettertogether	Against
#leavechaos	Against
#voteleavegetchaos	Against

"We are only as strong as we are united, as weak as we are divided." - albus dumbledore #remain

"The eu costs us £350 million every week. let's #voteleave and invest in our priorities instead." #c4debate

© 2018 Capgemini. All rights reserved

Building a sentiment classifier

What we have

Tokenized tweets

Output from Word2Vec

Brexit	.565	.565	.565	.565	.565	.565	.565	.565	.565
	.343	.343	.343	.343	.343	.343	.343	.343	.343
:	.34	.34	.34	.34	.34	.34	.34	.34	.34
Irish	.345	.345	.345	.345	.345	.345	.345	.345	.345
:	.354	.354	.354	.354	.354	.354	.354	.354	.354
:	.642	.642	.642	.642	.642	.642	.642	.642	.642
deliver	.23	.23	.23	.23	.23	.23	.23	.23	.23

{ big, border, Brexit, deliberately, deliver, exaggerated, Irish, issue, LordAshcroft, new, politicians, polling, public, show, squabble, stop, think }

What we want

Tweet represented in the form of vector How do we do this? Term frequency-inverse document frequency (tf-idf)

$$tf - idf_{w,t} = (tf_{w,t}) \cdot \log(1 + \frac{1+n_t}{1+df_{w,t}})$$

Pseudocode

for each word in tweet
 inputVector = inputVector +
embedded_vector_from_word2vec[word] * idf[word]

return inputVector

Picking the right model

Try 1 Logistic regression

$$J(\beta) = \frac{1}{N} \sum_{i=1}^{N} \left[-y_i \log(h_\beta(x_i) - (1 - y_i) \log(1 - h_\beta(x_i))) \right]$$
$$h_\beta(x) = \frac{1}{1 + exp(-\beta^T x)}$$

$$\min_{W} \|W\|^2$$
$$y_i(W^T x_i + b) \ge 1 \quad \forall i = 1...N$$

Picking the right model

Try 3

Loss Function Binary cross-entropy loss

$$J(\beta) = \frac{1}{N} \sum_{i=1}^{N} \left[-y_i \log(h_\beta(x_i) - (1 - y_i) \log(1 - h_\beta(x_i))) \right]$$

2 3

Our choice: a neural network trained on hashtag-labeled data

According to classification model & labeling method.

Method	Brexit Gold Standard Data	Influencer Data	Hashtag Data
Neural Network	76%	50%	79%
SVM (linear kernel)	75%	30%	75.6%
SVM (RBC kernel)	62%	12%	75.1%
Logistic Regression	72.5%	30%	75%

Picking an optimiser

(a) Standard Neural Net

(b) After applying dropout.

Try 2 Adam $s_{k+1} = \beta_1 s_k + (1 - \beta_1) [\bigtriangledown_{\theta} L \odot \bigtriangledown_{\theta} L]$ $v_{k+1} = \beta_2 v_k + (1 - \beta_2) (\bigtriangledown_{\theta} L)$ $\theta_{k+1} = \theta_k - \alpha \frac{v_{k+1}}{\sqrt[2]{s_{k+1}} + \epsilon}$

Our choice: Adam with 5 layers

Results

Hyperparameter tuning with hashtag based results.

	Optimiser	SGD		RMSProp		Adam	
	Dropout	0	0.5	0	0.5	0	0.5
Layers	Neurons						
2	32	0.79	0.79	0.82	0.82	0.82	0.82
2	64	0.79	0.79	0.83	0.82	0.82	0.82
3	32	0.80	0.77	0.82	0.81	0.81	0.81
3	64	0.81	0.79	0.82	0.82	0.82	0.82
4	32	0.81	0.78	0.83	0.80	0.82	0.80
4	64	0.82	0.79	0.81	0.82	0.82	0.82
5	32	0.80	0.78	0.81	0.80	0.81	0.80
5	64	0.82	0.78	0.83	0.81	0.83	0.82
6	32	0.82	0.74	0.81	0.79	0.82	0.80
6	64	0.81	0.77	0.82	0.81	0.82	0.80
7	32	0.81	0.57	0.81	0.80	0.82	0.78
7	64	0.82	0.75	0.81	0.81	0.83	0.78

Sentiment over time demo

Tweet frequency with sentiment over time

Tweet frequency with average sentiment over time

Comparison of survey and sentiment analysis based prediction

Date

Getting more insights: Network analysis

Challenges

Data requirements for calculating influence

- List of users in the network (brexit tweeters)
- List of followers for each user

- Twitter Developer Account registration
- list of users from Brexit tweets mining
- Script using python-twitter library to extract followers for each user developing

Challenge – API allows 5000 followers per minute & influential users have ~ million followers each hours to extract the data of even one user

Conclusion & Future Works

- Social Media serves as a massive opinion pool
- Sentiment analysis is a very powerful method for analysing people's opinions
 - Ability to analyse bigger dataset than surveys
 - May provide more insights than other survey methods
 - Survey predicted remain, sentiment analysis predicted leave
 - Sentiment analysis prediction gave 52% leave (vote result 51.9%)
 - Flexibility
- Big data analytics crucial for real-world applications
- Ethics matters
- Generic models not applicable for specific problems

- Different automated labeling strategies
- Neural network design
- Network analysis

[{Thank}, {you}, {for}, {listening}] #Questions?

People matter, results count.

This message contains information that may be privileged or confidential and is the property of the Capgemini Group.

Copyright © 2018 Capgemini. All rights reserved.

About Capgemini

A global leader in consulting, technology services and digital transformation, Capgemini is at the forefront of innovation to address the entire breadth of clients' opportunities in the evolving world of cloud, digital and platforms. Building on its strong 50-year heritage and deep industry-specific expertise, Capgemini enables organizations to realize their business ambitions through an array of services from strategy to operations. Capgemini is driven by the conviction that the business value of technology comes from and through people. It is a multicultural company of 200,000 team members in over 40 countries. The Group reported 2016 global revenues of EUR 12.5 billion.

Learn more about us at

www.capgemini.com