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A wee bit of background & motivation

Over 2.9 billion monthly active users.

» v 510,000 comments, 293,000 status
. updates, and 136,000 photos uploaded
every 60 seconds.

¥

twitter

Over 300 million monthly active users.
500 million tweets sent per day

reddit
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A wee bit of background & motivation

What are we going to do with all this data? Political data science

Questions to address United Kingdom European Union membership referendum

Predict vote results
What kind of opinion do we want to know and why?

« At first glance: Market Monitoring - Political agenda adjustments
* Feedback towards policies
Where can we get such data? - Brexit: metric for feedback

) = Analyse people’s opinion towards Brexit before & after
facebook ~a g the vote
o (o]
twitte reddit

By no means reflects Capgemini’s business directions
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Understanding the data




Data from twitter

#Ukl p #BrexitWound

#VoteLeaveGetChaos
#LeaveChaos
#TakeControl

# EURef#gp’é?gﬁggrln 36 million tweets

#B ﬁéﬁkit y 221 countries

#VotelLeave

#BetterTogether #LeaveEU

#Remain 4 million users

#EUReferendum
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Tools Used ‘

File systems and Data Processing Remote UI Visualization
databases

had@@
HEFS ID APACHE

++++ob|eou

SN

Spor a

' @ BatoM U
PostgreSQL ‘ .
matpl-tlib

plotly
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Visualise our data
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Visualise our data ‘

Tweet frequency & event frequency {3 &
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Getting more insights:
Sentiment analysis




Existing sentiment analysis tools

@ AFINN

Sentiment analysis lexicon

@ NLTK + TextBlob

« Tokenizer

« Named entity recogniser

S IRk S gant - NaiveBayesClassifier

« Stemmer

{
"verdict": "POSITIVE",

l Trained on movie reviews

Sentiment analysis API built on top of NLTK

36% accuracy for our dataset

© 2018 Capgemini. All rights reserved.



A sentiment analysis pipeline

process tweet into

reprocess data
prep vector

predict sentiment

« Tokenization
« Stop word removal

« Stemming



The principle of word embedding

shows that a big majority of the public thinks

Select tweet

Tokenize and big,
Create vocabulary public, show, think

big borders Brexit ... show squabble stop think

Build word vectors majority — ( 1 0 0 . 1 0 0 1 )

=



Word embedding with Word2Vec

@ Goal @ Model

Feed context into the model Classification problem with V classes.
big, We use a logistic regression model.
| y |x ~ multinomial (c(WTx))

Get best embedding
majority = (Y1 - Yv)

SEREIIEE The bigram model gl B st resdnizes Meliiees

big majority P(output = majority|input = (1 ...0), W)

© 2018 Capgemini. All rights reserved. 1



The math behind the neural network ‘

n n %4
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Word2Vec neural network ‘

Input layer Hidden layer Output layer
xj O \\ _’__// O yj
A2 1O \5‘\___‘\\ // O Vo
big *5 10 71?0 - O s
<« DIg » \ . .
1 : h;|O : V1
context = <) X, o ><: . >< ol y; : | = majority
0 ¢ hl‘ O / Vv
. WVXN: {wfa} . ’j\fx V: {W IU' .
: NO :
,f"'// ~
- T
O] _— Hyperparameter N T OPr

Linear activations Sigmoid activations



Labeling strategies

IR Manual Labeling (Gold Standard Brexit)

2000 tweets labeled by professionals

pro, against, neutral, irrelevant,
undecided/don’t care

- Strength given (1 weak, 5 strong) for pro and
against Brexit

Only considered pro and negative Brexit tweets
(1246 tweets)

80% used for training and 20% for inference

L8 Automated Labeling via Influencers

Hand picked 27 influencers out of 49 (only pro
and against Brexit).

11000 tweets from the influencers, labeled based
on their view towards Brexit

Account Occupation Brexit position
Owenlones84 @ Author & Guardian Against
columnist
MhairiBlack Scottish National Against
Party MP
tom_watson Labour Party Against

deputy leader

GuidoFawkes Right-wing Pro
political blogger

stellacreasy Labour MP Pro

© 2018 Capgemini. All rights reserved.



Labeling strategies

IR Automated labelling via hashtags

~ 6 Million Tweets

Hashtag Used Pro/Against Brexit

#voteleave Pro
#leaveeu Pro
#outofeu Pro

#ukip Pro

#strongerin
#bettertogether
#leavechaos
#voteleavegetchaos

“"We are only as strong as we are
united, as weak as we are
divided." - albus dumbledore
#remain

“The eu costs us £350 million
every week. let's #voteleave and
invest in our priorities instead.”
#c4debate



Building a sentiment classifier

What we have

Tokenized tweets { big, border, Brexit, deliberately, deliver, exaggerated, Irish, issue, LordAshcroft,

new, politicians, polling, public, show, squabble, stop, think }

Output from Word2Vec Brexit .565 .565 .565 .565 .565 .565 .565 .565 .565
.343 .343 .343 .343 .343 .343 .343 .343 .343

: .34 .34 .34 .34 .34 .34 .34 .34 .34

Irish .345 .345 .345 .345 .345 .345 .345 .345 .345

.354 .354 .354 .354 .354 .354 .354 .354 .354

: .642 .642 .642 .642 .642 .642 .642 .642 .642

deliver | .23 .23 .23 .23 .23 .23 .23 .23 .23

What we want Pseudocode

Tweet represented in the form of vector
How do we do this? Term frequency-inverse
document frequency (tf-idf)

Lf = idfw,e = (tfue) -log(1 + )

for each word in tweet
inputVector = inputVector +
embedded_vector_from_word2vec[word] * idffword]

return inputVector

© 2018 Capgemini. All rights reserved. 2



Picking the right model

IIYAM Logistic regression 1P SVM
1 N . 2
J(B) = N ;[—inOQ(hﬂ(%) — (1 —y;)log(1 — hg(x;))] ILin Wl
. 1 ;yz-(WTxi +b)>1 Vi=1..N
slz) = 1+ exp(—pTz)
0.0} e omesummommmoeme o o o Negative inystances(y=-1) Positive instiances(yﬂl)
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Picking the right model

Neural network

hidden layers

output layer

Preliminary 2 layer neural network » input layer {
400 input neurons 32 neurons 1 output neuron
each hidden layer
N
Loss Function 7(8) = ¢ S -uiloa(ha(a:) — (1 — y)log(1 — hi(:)]
. - ) 7 7 )
Binary cross-entropy loss N & &

1=1

© 2018 Capgemini. All rights reserve
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Our choice: a neural network trained on hashtag-labeled data

@ Results table

According to classification model & labeling method.

Method Brexit Gold Standard Data Influencer Data Hashtag Data
Neural Network 76% 50% 79%
SVM (linear kernel) 75% 30% 75.6%
SVM (RBC kernel) 62% 12% 75.1%

Logistic Regression 72.5% 30% 75%

© 2018 Capgemini. All rights reserved. 2



Picking an optimiser
IIYAN RMSProp
Sk+1 = Bsk + (1 = B)[VoeL © Vol]

(a) Standard Neural Net

Pl Adam
Spr1 = B1sk + (1 — B1)[Wel ® VL]

Vi+1 = Bavk + (1 — B2)(Vel)
Vk+1

JSk+1 T €

Hk—l—l :Hk - X

© 2018 Capgemini. All rights reserved.



Our choice: Adam with 5 layers

Results

Hyperparameter tuning with hashtag based results.

Optimiser SGD RMSProp Adam
Dropout 0 0.5 0 0.5 0 0.5
Layers  Neurons

2 32 0.79 0.79 0.82 0.82 0.82 0.82
2 64 0.799 0.79 0.83 0.82 0.82 0.82
3 32 0.80 0.77 0.82 0.81 0.81 0.81
3 64 0.81 0.79 0.82 0.82 0.82 0.82
4 32 0.81 0.78 0.83 0.80 0.82 0.80
4 64 0.82 0.79 0.81 0.82 0.82 0.82
5 32 0.80 0.78 0.81 0.80 0.81 0.80
5 64 0.82 0.78 0.83 0.81 0.83 0.82
6 32 0.82 0.74 0.81 0.79 0.82 0.80
6 64 0.81 0.77 0.82 0.81 0.82 0.80
7 32 0.81 0.57 0.81 0.80 0.82 0.78
7 64 0.82 0.75 0.81 0.81 0.83 0.78

© 2018 Capgemini. All rights reserved.
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Sentiment over time demo .
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Tweet frequency with sentiment over time

BIN: auto 19 1Tmo 1w Apr 24, 2016 — Dec 03, 2017
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Tweet frequency with average sentiment over time

BIN: auto 1 Tmo 1w Apr 01,2016 - Dec 01, 2017
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Comparison of survey and sentiment analysis based prediction
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Getting more insights:

Network analysis




Influence measures

OlJieslM Betweenness centrality

Oljiesi? Degree centrality

Oli[es M Closeness centrality

W )
é / li@ i4x10
NN




Challenges

Data requirements for calculating
influence

List of users in the network (brexit tweeters)

List of followers for each user

Steps taken

e Twitter Developer Account registration
e list of users from Brexit tweets mining
e Script using python-twitter library to extract

followers for each user developing

Challenge - API allows 5000 followers per minute
& influential users have ~ million followers each -

hours to extract the data of even one user

© 2018 Capgemini. All rights reserved.



Conclusion & Future Works

= Social Media serves as a massive opinion pool
= Sentiment analysis is a very powerful method for analysing
people’s opinions
« Ability to analyse bigger dataset than surveys
* May provide more insights than other survey methods
— Survey predicted remain, sentiment analysis predicted leave
— Sentiment analysis prediction gave 52% leave (vote result 51.9%)
— Flexibility
= Big data analytics crucial for real-world applications
= Ethics matters

= Generic models not applicable for specific problems

= Different automated labeling strategies
= Neural network design

= Network analysis




[{Thank}, {you}, {for}, {listening}]
#Questions?



About Capgemini

A global leader in consulting, technology services and digital transformation,
Capgemini is at the forefront of innovation to address the entire breadth of clients’
opportunities in the evolving world of cloud, digital and platforms. Building on its
strong 50-year heritage and deep industry-specific expertise, Capgemini enables
organizations to realize their business ambitions through an array of services from
strategy to operations. Capgemini is driven by the conviction that the business
value of technology comes from and through people. It is a multicultural company
of 200,000 team members in over 40 countries. The Group reported 2016 global
revenues of EUR 12.5 billion.

Learn more about us at
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