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What is reinforcement learning? @

agent environment

Definitions
fram state 5, take action a

- state s
action a

e reward r
new state s’

transition function p from s to s’
after agent performs action a

get reward r new state s°
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The goal of reinforcement learning: find a policy @

Definitions
policy func;tion T parameterized by

e state s
e action a
* reward r

new state s’

« transition function p from s to s’
after agent performs action a

- - policy function

- Markov decision process (MDP)



Some important functions to consider

Policy function Ti’g(at | St)

determines a; based on S

Q-function

Q7 (st ac) = Y i—e By [r(st, 2) | st, 2]

determines the total reward
from taking a, in S;

Value function V7(s;) = E, 1, (as) [Q7 (5t, a¢)]

defines the total reward from S; while following
policy g

Advantage function A™(s;, a;) = Q"(s;, a;) — Vi’ff(st) 7

difference between taking a; and the average
return in S;
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Applications

robotics

Presentation Title | Author | Date

autonomous driving

n

language & dialogue
(structured prediction)

L!‘v.ﬂ\

time series prediction
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Recent advances

e Asynchronous Advantage Actor-Critic (A3C)
Volodymyr Mnih et al. “"Asynchronous Methods for Deep Reinforcement Learning”. In: (2016).
e Path-Consistency-Learning (PCL)

Ofir Nachum et al. “"Bridging the Gap Between Value and Policy Based Reinforcement Learning”. In: (2017).
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Atari games from OpenAlI Gym:

e Environment framework
e Unified API
e Open sourced

12
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http://www.youtube.com/watch?v=V1eYniJ0Rnk
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Reinforcement Learning Architecture — Single Agent

Hyperparameters

Function Approximator of
Value-, Q-Function or Policy
(e.g. Deep Neural Networks)

- Optimizer (e.g.

(e.g. Learning Rate, Adam, RMSProp)

Momentum)

4

g

Exploration Algorithm/Objective Learning Settings

Strategies (e.g. =) [ (e.g. DAegg %'C'—Samingf ] L 1 (e.g. Batch Size,

Entropy, Noisy-Nets,

Epsilon Greedy) I

Environment (e.g. Action
space, State space, reward
function - discrete or
continuous)

Total Episodes)

15
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Reinforcement Learning Architecture — Multiple Agents @

Global Model

« Agents send . . - Agents receive
gradient updates to Function Approximator of Value-, parameters from

global model Q-Function or Policy (e.g. Deep Neural global model
Network)

Algorithm/Obje: dlve Lea

xploration s
Strategies (e.g. (e.g. Deep Q-Learning,

nropy, Noisy-Nets, flmmd ASC, pel) - ‘m?u A
Epsilon Greedy)

Advantages:
« Different exploration policies in each agent to maximize diversity
« Parallel updates are likely to be less correlated in time

» Reduction in training time roughly linear in the number of parallel agents
16
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A3C and PCL - Two Reinforcement Learning Algorithms

A3C - (Asynchronous Actor-Critic)

Objective:

Maximizes the expected sum of the rewards

for all possible rollouts 7 of T
T

ﬂ* — ELrg?ﬁEl-THETm?rfj{T] |: Z ?'[.ﬁ'i, il j:|

i=1

Advantages:

Stable and unbiased gradient estimate

In asynchronous setting less correlated
updates and better exploration

Disadvantages:

Sample inefficient due to the on-policy
nature of A3C

PCL - (Path Consistency Learning)

Objective:

e Maximizes the expected sum of the rewards for all
possible rollouts 7 of T f# while keeping entropy of
the policy high

e Relates optimal value-function and optimal policy

V*(st) = V" (s¢41) = r(st,a¢) — Tlog 7" (ay | s¢t)

Advantages:
e On- and Off-Policy updates possible, therefore
more sample efficient
e Replay Buffers can be leveraged

Disadvantages:
e More Hyperparameters to tune and therefore
harder to train

2
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Neural Networks in Reinforcement Learning @

Input

Image based input:

End-To-End learning

through processing pEmTEEE

of the raw image
(e.g. Atari games)

State based input:

Description of the state
through physical
characteristics of

the system m

Like position, s
angles, !
velocity, Y

acceleration |‘ F

Convolutional Neural Network:

Long-Short-Term-Memory Networks:
Extension of classical recurrent neural

Space invariant feedforward artificial

neural networks
Can successfully be

applied to analyze . D ®
visual imagery

3|:|

am

coundinpon

EREED

network (RNN)
Ability to add and
remove information
to the cell state
based on long term
dependencies

I Network Architecture JEEEE Output

Depending on the algorithm:
e Deep Q-Learning (Q-Function)
e A3C (Value-Function and
Policy)
e PCL (Value-Function and

Policy)
Networks can elther be shared:




Project Goals

Modular Design

Adjustable algorithm
Adjustable network structure
Adjustable optimizer
Adjustable learning rate
Adjustable environment
Adjustable training settings
Adjustable image
preprocessing

Framework to go:

Python + Tensorflow

Scalability of Computation

e Implementation of the
asynchronous learner
approach

e Leveraging any available
hardware to distribute
computational workload

o  Multiple threads on the
same machine

o  Multiple different
machines

o  Multiple threads on
multiple machines

Framework to go:
° Distributed Tensorflow

4

Scalability of Simulation

e Implementation of a
flexible and scalable
simulation environment

e Leveraging any available
hardware to distribute
simulation workload

Framework to go:

e ROS (Robot Operating
System)

19
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Why should we scale up Reinforcement Learning?

e Exploration
e Sparse Rewards

e Computational Efficiency
e New Research Domains
e GORILA

Gorila (General Reinforcement Learning Architecture)

» 10x faster than Nature DQN on 38 out of 49 Atari games
» Applied to recommender systems within Google

21



The Framework

(Computation oS

W

Actuator

Simulation)
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The Framework

Distributed
Tensorflow

Robot Operating
System (ROS)

-

Y

Sensors &
Actuation

N

Sensors &
Actuation

N

/L L\
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Robot Operating System (ROS)

e Open Source platform for Robotic environments
o Nodes
o Communication framework
e Programming Language Agnostic
o C++/Java/Python/C# Client-Server

:::ROS

ROS Node } .

_ _ ] Publisher
e¢ Communication Paradigms Subscriber

o Client Server
o Publisher Subscriber [ROS Node } [ROS Node }

ROS Node J
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Distributed Tensorflow

e C(Client Server architecture
o Parameter Server
o Worker Nodes

Sensors &
Actuation

—

Sensors &
Actuation

|

“® TensorFlow

’ —
Parameter Server W = W - AW

0000000
/v 11\
Model D[:] DD DD
Replicas C]C] DD DD

Data
Shards

=

=




Putting it Together

Sensors &
Actuation

Sensors
&
Actuation

Ag enti

Parameter Server

DTF Worker 1 DTF Worker 3

ROS Worker 1 ROS Worker 2 ROS Worker 3

_________________________________________________

Coordinator

w
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Sequence of Operations

WorkerNodes
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Sequence of Operations

WorkerNodes
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—

Worker 1 Worker 2 Worker 3
_______ L1 A .|, A S
P X Pk o i
! lI| £y . |I-' i \ -).a' |
1 5 . i ! Y ol i
; .\1 \‘4. [ : e }
! i T i
II l'"\ ; \-‘. I'
: i Coordinator ! % 4
I i I ! !
i L \ 1
i ".\ i
.' ' 'ﬂ" -’ "? ‘h‘r T‘.: \ 'u
# ] [} e oy
_’! _/11; i .'r \1 : \.\ . h “\‘ o I‘
EnvNedes .- | i O i
i - \ Fi v '\_\ 5 -5 i
Y _& h I 4 W | b . |
Env 1 Enwv 2 Env 3 Env 4 Env 5

28



Sequence of Operations

WorkerNodes

Parameter Server
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Sequence of Operations

WorkerNodes

Parameter Server
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Sequence of Operations

WorkerNodes

Parameter Server

/ "
Y
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Sequence of Operations

WorkerNodes

Parameter Server
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Model DD
Replicas [:][:]

’ —
Parameter Server W = W - WAW

00000040

W/ Aw

]

0
00

0]
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1
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Ancillary Services

Visualization
Remote Access
Replay Buffers
Checkpoints
Preprocessing

Ancillary Services\:
|

Replay Buffer

Checkpoints

Preprocessing

______________________

DTF Worker 1

ROS Worker 1

__________________________

e B e

l n/ \ ./ \w \w\nrinment

Env 1 Env 2 Env 3 Env 4 Env 5

________________________________________________________________

Visualization

Jupyter Notebook

=

Management|
|



The Way Forward

e Complete Framework for Distributed RL

o Multi Agent Reinforcement Learning

o Game Theoretic Research Problems

e Arbitrary scaling — Internet scale?

e Native integration with Robotic platforms
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Scalability test: Setting

e Test of distribution efficiency on the LRZ cloud
e Compared average trainsteps/second on equal batch size

e 1,2,3,4,8,16 vms (4-cpu each) with one 2-cpu parameter server
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Scalability test: Result ®

1@ 5328
i
335 |
s [ —— -
|
338
4 13.52
3 3.3E
10.74
338
: Lm
1 338
338
136
focl -m
] 10 20 an 40 50 80

Esieps's Bsteps/si#ems

—Almost no loss in computational speed using 16 machines!
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Hyperparameter Study: Challenges

e Finished Implementation contains a lot of Parameters
e Feasible Parameter combinations for successful training are rare
e Successful training runs take several hours for hard environments

e A singular test run is not representative as there is also
randomness involved

e Impact of Hyperparameters is dependent on each other and on
environment

40



Hyperparameter Study: Setting

e Study conducted on Cartpole

Balance problem from OpenAl Gym
e Less compute intensive environment allows for more tests
e Different settings were averaged over 15 runs

41



Hyperparameter Study: Learning rate

e Learning rate has big impact on algorithm stability

e Too small learning rate may lead to being stuck in small local
optima and learning is slower

e Too big learning rate version may not be stable in global optimum

182 252 2587 1636 >5000 >5000 >5000 211 189 2706 555 2858 180 1544

First maximum reward 199
>5000 261 214 3952 844 3270 230 1757

Solved After 429 209

Cartpole A3C Algorithm runs with learning rate=0.02

4451 >5000 1749 >5000 >5000

© Capgemini 2018. All rights reserved | 42
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Hyperparameter Study: Learning rate

e Learning rate has big impact on algorithm stability

e Too small learning rate may lead to being stuck in small local

optima and learning is slower

e Too big learning rate version may not be stable in global optimum

Learning rate = EN/1E] 0.005 0.01 0.02
Solved 93% 80% 100% 86%
J Solved After gukt:i) 1047 585 1635

Average over 15 runs with different learning rates
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Conclusion

We achieved:

e Workbench for state of the art reinforcement algorithms

e Computation efficient and fully automated scalability

e Scalable environments through ROS and Distributed Tensorflow
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