Capgemini

Technische Universität München

End-to-End Learning AI project

Team: Haris Jabbar, Christian Holland, Adrian Sieler, Egor Labintcev

Supervision by Capgemini: Matthias Wissel

TUM Data Innovation Lab

Adrian Sieler

- Master Mathematics in Data Science
- Expert in Big Data related Buzzwords
- Loves scrambled egg

Haris Jabbar

- Master CSE Student
- Roboticist
- Wantrepreneur
- #LikeHumansDo

Christian Holland

- Master Mathematics
- AI enthusiast
- Love to travel
- Tea connoisseur

Egor Labintcev

- first-year Master student in CSE
- ML/DS
- CNN part, general coding
- loves bretzels

2

33 © Capgemini 2018. All rights reserved

Tests

- Scalability •
- Hyperparameters •

Theory •

Algorithms

Introduction

Applications ullet

Approaches

Architecture

2 1 3

0

Scaling

ullet

- **Distributed Tensorflow**
- ROS

Agenda

Technische Universität München

Introduction

Presentation Title | Author | Date

© Capgemini 2017. All rights reserved | 4

What is reinforcement learning?

Definitions

- state **s**
- action a
- reward r
- new state s'
- transition function p from s to s' after agent performs action a

The goal of reinforcement learning: find a policy

m

Definitions

- state **s**
- action a
- reward r
- new state s'
- transition function p from s to s' after agent performs action a
- policy function π
- Markov decision process (MDP)

Policy function $\pi_{\theta}(a_t \mid s_t)$

determines a_t based on S_t

Q-function

$$Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_{\theta}}[r(s'_t, a'_t) \mid s_t, a_t]$$

determines the total reward from taking a_t in s_t

Value function $V^{\pi}(s_t) = \mathbb{E}_{a_t \sim \pi_{ heta}(a_t | s_t)}[Q^{\pi}(s_t, a_t)]$

defines the total reward from s_t while following policy π_{θ}

Advantage function $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$

difference between taking a_t and the average return in s_t

Policy function $\pi_{\theta}(a_t \mid s_t)$

determines a_t based on s_t

Q-function

$$Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_{ heta}}[r(s'_t, a'_t) \mid s_t, a_t]$$

determines the total reward from taking a_t in S_t

Value function $V^{\pi}(s_t) = \mathbb{E}_{a_t \sim \pi_{ heta}(a_t | s_t)}[Q^{\pi}(s_t, a_t)]$

defines the total reward from s_t while following policy π_{θ}

Advantage function $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$

difference between taking a_t and the average return in s_t

8

Policy function $\pi_{\theta}(a_t \mid s_t)$

determines a_t based on s_t

Q-function

$$Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_{\theta}}[r(s'_t, a'_t) \mid s_t, a_t]$$

determines the total reward from taking a_t in s_t

Value function $V^{\pi}(s_t) = \mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)}[Q^{\pi}(s_t, a_t)]$ defines the total reward from S_t while following

Advantage function $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$

difference between taking a_t and the average return in s_t

policy π_{θ}

Policy function $\pi_{\theta}(a_t \mid s_t)$

determines a_t based on s_t

Q-function

$$Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_{\theta}}[r(s'_t, a'_t) \mid s_t, a_t]$$

determines the total reward from taking a_t in s_t

Value function $V^{\pi}(s_t) = \mathbb{E}_{a_t \sim \pi_{ heta}(a_t | s_t)}[Q^{\pi}(s_t, a_t)]$

defines the total reward from s_t while following policy π_{θ}

Advantage function $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$

difference between taking a_t and the average return in s_t

Applications

time series prediction

Recent advances

Asynchronous Advantage Actor-Critic (A3C)
Volodymyr Mnih et al. "Asynchronous Methods for Deep Reinforcement Learning". In: (2016).

• Path-Consistency-Learning (PCL)

Ofir Nachum et al. "Bridging the Gap Between Value and Policy Based Reinforcement Learning". In: (2017).

Atari games from OpenAI Gym:

- Environment framework
- Unified API
- Open sourced

Technische Universität München

Algorithms

Presentation Title | Author | Date

Capgemini 2017. All rights reserved | 14

Reinforcement Learning Architecture – Single Agent

Reinforcement Learning Architecture – Multiple Agents

Advantages:

- Different exploration policies in each agent to maximize diversity
- Parallel updates are likely to be less correlated in time
- Reduction in training time roughly linear in the number of parallel agents

A3C and PCL - Two Reinforcement Learning Algorithms

A3C - (Asynchronous Actor-Critic)

Objective:

• Maximizes the expected sum of the rewards for all possible rollouts au of $\pi heta$

$$\theta^{\star} = argmax_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \Big[\sum_{t=1}^{T} r(s_t, a_t) \Big]$$

Advantages:

- Stable and unbiased gradient estimate
- In **asynchronous** setting less correlated updates and better exploration

Disadvantages:

• Sample inefficient due to the on-policy nature of A3C

PCL - (Path Consistency Learning)

Objective:

- Maximizes the expected sum of the rewards for all possible rollouts τ of π_{θ} while keeping entropy of the policy high
- Relates optimal value-function and optimal policy

$$V^*(s_t) - \gamma V^*(s_{t+1}) = r(s_t, a_t) - \tau \log \pi^*(a_t \mid s_t)$$

Advantages:

- On- and Off-Policy updates possible, therefore more sample efficient
- Replay Buffers can be leveraged

Disadvantages:

 More Hyperparameters to tune and therefore harder to train

Neural Networks in Reinforcement Learning

Input

Network Architecture

Image based input:

 End-To-End learning through processing of the raw image (e.g. Atari games)

State based input:

- Description of the state through physical characteristics of the system
- Like position, angles, velocity, acceleration

Convolutional Neural Network:

- Space invariant feedforward artificial neural networks
- Can successfully be applied to analyze visual imagery

Long-Short-Term-Memory Networks:

- Extension of classical recurrent neural network (RNN)
- Ability to add and remove information to the cell state based on long term dependencies

Output

Depending on the algorithm:

- Deep Q-Learning (Q-Function)
- A3C (Value-Function and Policy)
- PCL (Value-Function and Policy)

Networks can either be shared:

or separate:

© Capgemini 2018. All rights reserved

Project Goals

Modular Design

- Adjustable **algorithm**
- Adjustable **network structure**
- Adjustable **optimizer**
- Adjustable learning rate
- Adjustable **environment**
- Adjustable training settings
- Adjustable image preprocessing

Framework to go:

• Python + Tensorflow

Scalability of Computation

- Implementation of the asynchronous learner approach
- Leveraging any available hardware to distribute computational workload
 - Multiple threads on the same machine
 - Multiple different machines
 - Multiple threads on multiple machines

Framework to go:

Distributed Tensorflow

Scalability of Simulation

- Implementation of a **flexible** and **scalable** simulation environment
- Leveraging any available hardware to distribute simulation workload

Framework to go:

• ROS (Robot Operating System)

Technische Universität München

Scaling Up Reinforcement Learning

Capgemini 2017. All rights reserved | 20

Presentation Title | Author | Date

Why should we scale up Reinforcement Learning?

• Exploration

GORILA

- Sparse Rewards
- Computational Efficiency
- New Research Domains

Gorila (General Reinforcement Learning Architecture)

Applied to recommender systems within Google

The Framework

Robot Operating System (ROS)

- Open Source platform for Robotic environments
 - Nodes
 - Communication framework
- Programming Language Agnostic
 - C++/Java/Python/C#

- Communication Paradigms
 - Client Server
 - Publisher Subscriber

Distributed Tensorflow

- Client Server architecture
 - Parameter Server
 - Worker Nodes

Putting it Together

Ancillary Services

- Visualization
- Remote Access
- Replay Buffers
- Checkpoints
- Preprocessing

The Way Forward

- Complete Framework for Distributed RL
 - Multi Agent Reinforcement Learning
 - Game Theoretic Research Problems
- Arbitrary scaling \rightarrow Internet scale?
- Native integration with Robotic platforms

Technische Universität München

Runtime and Algorithm Tests

Presentation Title | Author | Date

Capgemini 2017. All rights reserved | 37

- Test of distribution efficiency on the LRZ cloud
- Compared average trainsteps/second on equal batch size
- 1,2,3,4,8,16 vms (4-cpu each) with one 2-cpu parameter server

Scalability test: Result

 \rightarrow Almost no loss in computational speed using 16 machines!

Hyperparameter Study: Challenges

- Finished Implementation contains a lot of Parameters
- Feasible Parameter combinations for successful training are rare
- Successful training runs take several hours for hard environments
- A singular test run is not representative as there is also randomness involved
- Impact of Hyperparameters is dependent on each other and on environment

Hyperparameter Study: Setting

- Study conducted on Cartpole
- Balance problem from OpenAI Gym
- Less compute intensive environment allows for more tests
- Different settings were averaged over 15 runs

Hyperparameter Study: Learning rate

- Learning rate has big impact on algorithm stability
- Too small learning rate may lead to being stuck in small local optima and learning is slower
- Too big learning rate version may not be stable in global optimum

First maximum reward	199	182	252	2587	1636	>5000	>5000	>5000	211	189	2706	555	2858	180	1544
Solved After	429	209	4451	>5000	1749	>5000	>5000	>5000	261	214	3952	844	3270	230	1757

Cartpole A3C Algorithm runs with learning rate=0.02

Hyperparameter Study: Learning rate

- Learning rate has big impact on algorithm stability
- Too small learning rate may lead to being stuck in small local optima and learning is slower
- Too big learning rate version may not be stable in global optimum

Learning rate	0.003	0.005	0.01	0.02
Solved	93%	80%	100%	86%
Ø Solved After	1389	1047	585	1635

Average over 15 runs with different learning rates

We achieved:

- Workbench for state of the art reinforcement algorithms
- Computation efficient and fully automated scalability
- Scalable environments through ROS and Distributed Tensorflow

We are ready for your questions:)

Adrian Sieler

- Master Mathematics in Data Science
- Expert in Big Data related Buzzwords
- Loves scrambled egg

Haris Jabbar

- Master CSE Student
- Roboticist
- Wantrepreneur
- #LikeHumansDo

Christian Holland

- Master Mathematics
- AI enthusiast
- Love to travel
- Tea connoisseur

Egor Labintcev

- first-year Master student in CSE
- ML/DS
- CNN part, general coding
- loves bretzels