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Abstract

Throughout the last decade sentiment analysis, with the support of data flood and ever-improving modern
computing power, has been served as a very effective method for analyzing people’s opinions. In this report,
we analyze over 32 million tweets related to 2016 United Kingdom European Union Membership Referendum
(Brexit) via sentiment analysis in order to predict sentiment of each tweet towards this modern historical
event of great importance. In conjunction, we develop an interactive & flexible pipeline of technology stacks
for pre-processing & training the data, and predicting & visualizing the sentiment results. Over 300 GB
of data is handled via Apache Spark on a cloud-based distributed system. We take double neural network
approach for solving this supervised-learning problem, which combines Continuous Bag of Words method for
pre-processing the tweets, and a two-layer neural network for training. We test, compare, and fully discuss
various machine learning algorithms, including open-source pre-trained models, for this problem. Finally,
different labeling strategies are compared and insights obtained from this data-driven analysis are discussed.
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1 Introduction

1.1 Project Description

Social media platforms more and more define how we consume news and also provide the place for political
and social discourse. The forming of opinions on and the change of mass perception of certain topics occurs
a lot faster than in the classical media setting. Therefore the analysis of social media before and after special
events became crucial to understanding what drove the decisions that were made for example in a public poll.
With this in mind, Capgemini proposed a social media analytics project for this semester related to the Brexit
referendum. This project aims to carry on an analysis of opinions and relationships before, during and after
the referendum using twitter data. The three main parts in this Brexit analysis project, timeline visualisation,
sentiment analysis and network analysis, will be discussed below.

1.2 Project Scope

1.2.1 Timeline Analysis and Visualization

A first way to analyse the Brexit referendum situation is to represent Twitter activity over time according
to different metrics (for different accounts, hashtags, etc). So a first objective is to create a pipeline that takes
as an input the dataset (or a reduced dataset) and outputs a dashboard which gives the evolution of different
Brexit-related metrics over time. The two main issues of this part will be selecting the pertient features from
our data and deciding on which data visualisation tool we are going to use for the dashboard itself.

1.2.2 Sentiment Analysis

As the Brexit referendum was all about people’s opinion on leaving the EU, a logical step in understanding
the phenomenon would be to see whether it is possible to model the evolution of users’ opinion. In this part of
the project, we wil have to figure out a way of analysing the sentiment of people on Brexit on their tweets and
find interesting metrics to reflect the results. We will obviously be using NLP (Natural Language Processing),
and more particularly ”sentiment analysis”, which is a very popular approach to convert text into opinions. We
will focus on modeling this using a neural network approach.
There are different challenges surrounding this topic, particularly concerning the model we are going to use
to embed tweets as vectors in order to be able to precess them through a sentiment classification network.
Moreover, our data is not labeled (i.e. there is no ”sentiment” item for each tweet that tells us whether each it
is ”for Brexit” or ”against Brexit”) so we will have to find out whether we want to use the classical supervised
approach or see whether it will be possible to find an unsupervised approach.

1.2.3 Network Analysis

The structure of Twitter as a social network can be represented as a graph with nodes as different users and
edges as followers. Furthermore, based on choice of modeling, we may also choose weights for these edges such
as number of re-tweets. From a cursory glance at such a graph we can visually and intuitively spot popular
users - users with many edges or users with largest incoming weights. However, Twitter being such a vast
pool of users, makes it impractical and difficult to visually depict all users and connections visually. Here,
we aim to find metrics to identify the important nodes and influencers by filtering based on these importance
metrics. Once we boil down the massive social network graph to the identified important users, we can identify
patterns and influencers, either quantitatively, using the metrics or visually, by representing the same as graphs.

2 Methodology

2.1 Working Methodology

2.1.1 Agile Software Development

There is no doubt that agile software development is being considered as one of the most widely used and
characteristic aspect of modern software development. Agile software development is rather a set of principles,
than merely a methodology, that focuses on development, not planning, and interaction instead of processes.
It aims to decompose the final product, that usually were developed after a lengthy planning, into smaller
deliverable working software such that the product can be continuously reviewed and adjusted. Although the
agile process is heavily used in software development, it would be a misunderstanding to consider it solely as a
software development practice. For this project, we have adapted the agile development philosophy in order to
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improve our working efficiency, team interaction, and most importantly, to maximize the quality of deliverable
outcome. Scrum was conducted as a mean to follow the agile process. Our scrum consisted of:

– Weekly scrum meetings: Once a week meeting with supervisor

– Weekly individual sprints: Individual work to complete the task for the week

– Weekly team member scrum meetings: Two to three days of additional meetings without the supervisor to
update the sprint progress, continuously synchronize the current working stage, enhance team interaction,
and (re)assign tasks accordingly

Our advisor, Matthias Wissel, acted as the scrum master to provide us both the weekly and overall template
of the tasks. Each team member adjusted each weekly tasks such that they can be accomplished within a week
and picked the tasks of their interest. The completed tasks were integrated after weekly scrum meetings to have
a working pipeline/software, and the process was iterated.

2.1.2 Communication Tools

Communication has to be one of the essential component of a successful group work that is often considered
as an afterthought. In the perspective of both project management and agile software development, which high-
lights team interaction, several communication tools were used to maintain a good level of team communication.
Other than standard messengers, we used Slack, and Trello board for scrum.

2.2 Tools

2.2.1 LRZ Cloud

Leibniz-Rechenzentrum (LRZ) provides cloud services to students and faculty and these services were the
foundation to the Social Analytics project. The LRZ cloud is built upon the OpenNebula framework which
made creating, monitoring, and tuning virtual machines effortless. By having access to virtual machines, this
allowed a cluster setup for distributed data computation as well as for modularity in running programs.

2.2.2 Hadoop File System

In order for the virtual machines to have easy access to all the data, Hadoop File System (HDFS) was chosen
for distributed file and data storage. HDFS allows all the data to be stored in a distributed fashion, while also
ensuring fault-tolerance due to redundancy of the data. HDFS handles redundancy by creating data blocks,
small chunks of data, and saving copies of these data blocks on other virtual machines in the cluster.
Furthermore, HDFS comes with a user-friendly GUI that facilitates management of HDFS. The UI provides
insight into properties such as how the data is distributed, overall node health, access to each node log, and a
very useful File browser so that files on HDFS can be viewed similar to on a native OS file browsers. Fortunately,
the processing tools used (e.g. Apache Spark) work natively with HDFS.

2.2.3 Apache Spark 2.3.0

Apache Spark is a well-known, open-source, and highly regarded general-purpose cluster computing system.
Spark has been shown to achieve high performance when compared to Hadoop, rinning workloads around 100x
faster. Aside from fast computation, Spark is also easy to use due to to extensive libraries in Java, Scala,
Python, R, and SQL. For the purpose of this project, the PySpark library and SQL functionalities were used
to create the applications which were then run as Spark applications.
Spark can be used locally or in cluster mode:

– Local: Also known as pseudo-cluster mode, the local mode only creates one Java Virtual Machine (JVM)
and all the execution components are located within the same JVM. Local Spark still performs parallelism
by using hardware threading. This mode is preferred for development, testing, and debugging, as it does
not require the overhead of the cluster and can save computational resources.

– Cluster: When the code is ready for production, cluster mode is used for data processing of the whole
dataset. This mode has a master-worker architecture, as depicted in our architecture diagram (Fig. 1).
When a spark application is run, the SparkContext object coordinates the set of processes running on
each node within the cluster. The SparkContext connects to the cluster manager and the resources for the
processes are allocated by the cluster manager. For this project, we initially tried using Kubernetes as the
cluster manager. Kubernetes is a container-orchestration system that automatically deploys containers
across a cluster. By using Kubernetes, there would be all the advantages of containerized applications in
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the form of Docker and would make deployment of Spark and other applications painless. However, in
order to focus more energy on the project and less energy on environment setup, it was decided to use
the built-in Spark Standalone cluster manager, which worked flawlessly as well. Once SparkContext is
connected to the cluster manager, the following steps occur:

1. Executors on each node are acquired.

2. The application code or python file is sent to the executors.

3. SparkContext sends tasks to the executors and the tasks are executed in a distributed fashion.

Utilized Spark Packages

1. spark.sql: With Spark 2+, the traditional basic Spark RDD API has been placed into maintenance mode
and Spark SQL has become the recommended Spark module for data processing. The major difference to
the user is that Spark SQL provides a more native syntax to users comfortable with SQL. For functions
which are easier done in RDD, spark users can switch back and forth between Spark SQL and Spark RDD
since the same execution engine is used. Furthermore, there are also performance gains to be considered
when using Spark SQL. More information about the structure of the data and computation are provided
to the Spark engine when using Spark SQL compared to when using Spark RDD, which can lead to extra
optimizations. Spark.sql contains most of the functions used for the Preprocessing and the ETL step.

2. spark.ml: Similar to spark.sql, spark.ml is the primary machine learning package as of Spark 2+, with
spark.mllib now in maintenance mode. This library is the main driving force behind tokenizing, removing
stop words, Word2Vec, and many other aspects of the Sentiment Analysis section.

2.2.4 JupyterHub

In order to provide direct contact to the virtual machines, JupyterHub was chosen as the interface of choice.
JupyterHub allows each user to have their own server and create Jupyter Notebooks, python scripts, and browse
the user’s directory. JupyterHub spawns multiple instances of the single-user Jupyter notebook server and makes
logging in easy with user GitLab account login.
JupyterHub works in the following way [8]:

– The Hub launches a proxy

– The proxy forwards all requests to the Hub by default

– The Hub handles user login and spawns single-user servers on demand

– The Hub configures the proxy to forward URL prefixes to the single-user notebook servers

2.2.5 GitLab

Working on a same project in a group not only requires a version control tool, but a cloud-based code sharing
platform. LRZ GitLab was chosen for these purposes. A private GitLab repository was created on top of which
JupyterHub was setup.

2.2.6 Docker

In order to deploy the visualization agents as well as the databases painlessly, Docker was chosen as the
container technology. Docker is a computer program that abstracts running applications from the core operating
system level. Each application runs in its own operating-system-level virtual ”container”. This makes it very
easy to run, stop, or deploy a software application in any operating system and platform (which supports
Docker).

2.2.7 Kubernetes

When setting up the environment for this project, Kubernetes was initially attempted for resource manage-
ment and ensuring easy scalability. Kubernetes is a container-orchestration system for automating deployment,
scaling and management of containerized applications (usually containerized using Docker). Kubernetes would
have made scaling easier if needed and would have prevented system conflicts due to using the technologies in
containers. Recent Spark editions including Spark 2.3 natively support Kubernetes to scale and deploy Spark
nodes. Furthermore, Kubernetes includes a very useful UI to make scaling of containers even easier. Unfor-
tunately, Kubernetes installation was difficult and there were many issues with connectivity between nodes.
However, Spark and our other applications ran without many issues.
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2.2.8 Keras

We used Keras with Tensorflow for implementing the neural network. TensorFlow is an open-source library
for building large neural networks and Keras is a high level neural network API that can be used out of the
box to construct different layers of the network. It also allows us to compile the entire network where we can
customize the optimizers for learning rate, specify the loss function and the validation metrics.

2.2.9 Databases

2.2.9.1 PostgreSQL

Since the data being processed is in a structured and relational format, PostgreSQL was chosen to store
the data. PostgreSQL is an Object-Relational database management system and was chosen as the database of
choice due to the emphasis on standards compliance. This facilitates PostgreSQL use.

2.2.9.2 MapD

One of the major challenges faced when working with large amounts of data is how to meaningfully and
efficiently visualize data. Meaningful visualizations can fortunately be designed but the latter requires excellent
pre-processing, sampling, hardware, and software. In choosing how to visualize the data effectively and in
real-time, we first tried using python libraries such as matplotlib and plotly. Although this was useful in the
early stages of discovering the data, this proved to be rather slow and cumbersome.
After trying out common python plotting libraries, 3rd party software options were tested. Tableau unfortu-
nately could not provide the capabilities we needed, especially when compared to MapD. MapD is a database
and visualization agent which is available as open-source, free community edition, and Enterprise edition. Cre-
ated for optimized SQL queries by utilizing GPU power, MapD is currently the fastest open-source in-memory
database. Since the virtual machines used for this project did not include GPUs, MapD was not used to its full
potential but still was able to display the Brexit twitter data in real-time with interactive visualizations. The
backend of MapD follows many of the conventions of traditional SQL databases.

2.3 Infrastructure Architecture

The distributed systems architecture is shown in Fig. 1. A distributed and modular architecture was chosen
to ensure that concurrently running programs do not interfere with each other and compete for resources. This
could lead to reduced performance or system crashes. The Database and Visualization node is completely
removed from the HDFS and Spark environment to ensure that the node has maximum memory to perform
complex queries and render real-time graphics. Spark computations are very memory intensieve which almost
certainly would cause insufficient memory issues if the visualizations and queries were rendered on a Spark
worker or Spark master.

2.4 Data Description

The data was extracted using the Twitter API. Fortunately, it was not necessary or in the project scope
to mine the tweets from Twitter for this project. The Brexit data was provided by CapGemini in zipped
directories filled with JSON files. In order to extract the data from the tar files, a Bash script was created to
untar, reformat the JSON files, and place them in HDFS. After preliminary screenings of the data, it was found
that the data had a timespan of April 2016 to December 2017 that had at least one of the following 15 hashtags:

– #TakeControl

– #VoteLeave

– #Brexit

– #BrexitWound

– #ProjectHope

– #LeaveEU

– #EUReferendum

– #OutOfEu

– #EURef

– #Remain

– #UKIP
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Figure 1: A schematic of the Architecture used for Computation and Visualization

– #StrongerIn

– #BetterTogether

– #LeaveChaos

– #VoteLeaveGetChaos

However, this is not the exact dataset we will be working with. Indeed, as a first preprocessing (or relevance
checking) step, we classified the hashtags according to their orientation (against Brexit, neutral, for Brexit) and
found out that two hashtags are ambiguous as they are often used for content that is not Brexit-related (see
Appendix 6.1). From now on, we will be working on the original dataset excluding the tweets associated to
those ambiguous hashtags.

It was decided to store the data in HDFS for several reasons. There are 3 main advantages of storing the
JSON files in the HDFS directory:

1. Fault Tolerance: Although the LRZ Cloud is robust and reliable, virtual machines can fail. Fortunately,
HDFS will shard the data and distribute data block copies throughout the cluster.

2. Increased Storage Capacity: With over 300 GB of raw data, it would be difficult to store and manage
the data on a local directory. By using HDFS, the storage size is vastly increased since HDFS utilizes disk
space from each virtual machine in the cluster. Furthermore, the master node should not have the sole
burden of storing and providing access to the files.

3. Facilitated Access for Distributed Computing: By having the data on HDFS, Spark can read data
in a much faster and optimized way over using NFS or the master’s local directory.

2.4.1 Data Discovery

Once in HDFS, the data discovery phase could begin. As shown in Tab. 1, it’s worth noting that the original
schema had 75 fields. Having ample amounts of data is important but unnecessary or irrelevant data could
hinder the project computationally and analytically. To understand what each field contained, a sample output
for each field was created. Please refer to Tab. 14 in the Appendix. 6.2 for a description of each field.
Once the crucial columns were identified, the data was processed in the way shown in Figure 2. This allows us
to then use the data for Data Visualization as well as for Sentiment Analysis.
Some useful insights from the data discovery are as described in Table 1 and in the Timeline section.
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Figure 2: The processing pipeline to take JSON files and make meaningful data tables for analysis
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Dataset Characteristics Metric
Data Format JSON
Physical Memory Size ±280GB
Number of Fields 75
Number of Important Fields 25

Table 1: Important metrics regarding the full dataset

2.5 Timeline Visualization

2.5.1 Data Processing

We aim to represent Twitter activity surrounding Brexit and correlate it with real-life events and decisions
on that topic. This (obviously) requires us to work with our tweets dataset but also to get data concerning
chronology of the events before and after Brexit. For the latter, we used an online Bloomberg Brexit timeline [2]
(June 2016 to March 2017) that we extracted using a web scraper and converted to a Json file (on 19.04.18).
In order to manipulate and then visualize the data on a timeline, we first of all have to find a suitable size for
our dataset. Indeed, the ”reduced” dataset (full dataset without ambiguous hashtags) has 32 million tweets
stored on Spark, which is equivalent to a 32 million rows of a Spark table. We decided not to work with so
much data on a Jupyter notebook, which means we had to find a way of working on a smaller dataset that is
still large enough to represent tendencies among tweets. We finally decided to randomly pick one third of the
data (and we noted later that it’s a sufficient proportion as the tendencies were still preserved on the graphical
representation).We then selected the necessary columns from the dataset by picking only those that could be
interesting to represent on a timeline.

Figure 3: Selected columns for time line visualization

2.5.2 Data Visualization

We tried two different approaches for the visualization: one using Jupyter notebooks (with plotly library)
and the other with MapD (an analytics platforms that has a solution to create dashboards). Our first attempt
was using Jupyter notebooks with plotly, which is a library that is specially designed for creating graphs that
can be shared and displayed online. A very strong advantage of this solution is that it is very interactive (graph
range can be changed, hovering over the graph shows the data, zooming in is possible, etc). So it offers both
a user-friendly interface that makes it very useful for a dashboard and freedom regarding what we want to
represent and how we want to visualize it. On the other hand, a (huge) disadvantage is that it takes a rather
long time to load the data and display it. For example, to display tweet frequency for only one week, it takes
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around 30 seconds to 1 minute.
So what we tried as a second approach (and what we used for or final deliverable) is dashboard creation using
MapD. For a more detailed description of MapD, please refer to Section 2.2.9.2.

2.6 Sentiment Analysis

2.6.1 A Double Neural Network Pipeline

We aimed to build a sentiment analysis tool that takes into input a tweet (a 280-characters message) and
outputs a ”pro Brexit” or ”against Brexit” sentiment. Several approaches are possible for this problem, the
most popular approach being training a neural network. To determine the best approach for our task, we did
some research on the subject and met Michal Dura, a Capgemini consultant who did his master’s thesis on
predicting the results of the Brexit referendum. He worked on similar problematics: sentiment analysis and
times series analysis, and our datasets are very similar (our dataset is just over a bigger timespan, but was
extracted using the same method - selection by hashtags). We finally decided to go for a deep neural network
approach for sentiment analysis, which should give better accuracy than logistic regression or a naive Bayes
classifier (respectively 75% and 64% accuracy for Michal).

But before predicting sentiments, we first had to find the best way to represent tweets, i.e. sequences of words,
as input vectors for our neural network. Today, there are several models to encode words as vector, but the
one that is by far the most successful and widely used today is Word2Vec [16] (a neural network developed by
Mikolov et al. at Google in 2013). We will explain in Section 2.6.2 the specificities of this model in detail. In
conclusion, our pipeline for sentiment analysis is the following (Fig. 4):

Figure 4: Pipeline for sentiment analysis using two neural networks

2.6.2 Word2Vec Continuous Bag of Words (CBoW)

2.6.2.1 Introduction to Word Encoding

If we want to represent a tweet as a vector, the first step is to understand how to represent a word as a
vector. Let us now take the following tweet as an example and compare different approaches for word encoding.

Figure 5: Pro-Brexit tweet by @LeaveEUOfficial

The first step is to define a vocabulary of V words that contains all the possible words in our document. A
first, very naive way to tackle this problem would be to encode each word as a (one-hot) vector in RV . But
this would give a very high number of orthogonal vectors and make it difficult to show similarity between words
(measured as a distance between vectors).

That is why, to get word representations that express semantic similarity, we make use of the context of the
words (”You shall know a word by the company it keeps” - J.R. Firth, 1957). Predicting a word knowing its
context is called the Bag of Words approach because it counts occurrences from the vocabulary in a window
around our target word. As an example, for the above tweet, our vocabulary would be { big, border, Brexit,
deliberately, deliver, exaggerated, Irish, issue, LordAshcroft, majority, new, politicians, polling, public, show,
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squabble, stop, think }. If we choose a window of width 4, then we could embed target words by counting
occurrences in the word window surrounding them. We get the following embedding matrix :

E =

big borders Brexit deliberately deliver exaggerated Irish . . . show squabble stop think[ ]
1 0 0 0 0 0 0 · · · 1 0 0 1 majority

0 0 0 1 0 1 0 · · · 0 0 1 0 politicians

1 0 0 0 0 0 1 · · · 0 0 0 1 public

We can then retrieve the words we are interested in with the corresponding one-hot vectors:
onehotpublic = [0 0 1]T so public = onehotpublic

T E

2.6.2.2 The General Idea Behind Embedding Learning

The general idea behind the process of embedding learning is to find the best embedding matrix (by maximising
a score or minimising a loss). The general steps are:

– collect instances xi ∈ instances(x) of a word x of vocabulary V of size v

– for each instance, collect its context words context(xi)

– define a score function score(x, context(x), θ,E), where θ,E are parameters we want to estimate

– define a loss L = −
∑

x∈V
∑

xi∈instances(x) score(x
i, c(xi), θ,E)

– estimate θ̂, Ê = argmin(θ,E)L

– use the estimated E as our embedding matrix

An important point is to design a useful scoring function. Such a function should produce a score that accounts
of how well a context accounts for word x and make apparent that this word x is better in the context context(x)
than any other word. Of course, it should also be differentiable w.r.t E and θ.

2.6.2.3 Continuous Bag of Words

The Word2Vec CBoW model consists of a neural network with one hidden layer. What we typically want
to do once our model is trained is feed it the context (x1, ...,xi−1,xi+1, ...,xc) of a word xi and get the best
encoding vector as an output (and then build our embedding matrix that way). To train our network, we first
have to define a good scoring function as defined in section 2.6.2.2. Let us consider a simple approach called
the bigram model to explain this model.

In the bigram model, we consider that each word has only one word in its context. So we simply use a 1-hot
encoded vector from RV (where V is the size of the vocabulary) as an input. We expect a probability that this
word belongs to one among V categories as an output, as we are in a 1-word-context approach. So this can be
translated into a linear classification problem with V classes (C1, ..., CV ), the 1-hot vector showing the class to
which the word belongs. We use a logistic regression model with V classes, so y|x ∼multinomial(σ(W′Tx)),
where y is the class of the input word and W′ = (w1′, ...,wV′) the weights that we want to learn. Let us say
that we train our model on n words, then we typically want to maximize the likelihood of our data:

P (y|W′,x) =

n∏
i=1

P (yi|W′,xi) =

n∏
i=1

V∏
v=1

P (yi = Cv|W′,xi)
1yi=Cv

Using Bayes’ law and the formula of total probabilities, we get

P (yi = Cv|W′,xi) =
P (xi|W′, yi = Cv)P (yi = Cv)∑V
j=1 P (xi|W′, yi = Cj)P (yi = Cj)

Which translates into, using our logistic regression approach:

P (yi = Cv|W′,xi) =
exp

(
w′Tv xi

)∑V
j=1 exp

(
w′Tj xi

)
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Where wj′ is the weight vector corresponding to class Cj , and the bias terms have been absorbed in the wj′’s
by adding a 1 on top of vector xi. We can now define an objective function E by minimizing the log-likelihood:

E(W′) = −ln P (y = Cv|w′,x)

= −
n∑
i=1

V∑
v=1

1yi=Cv
ln P (yi = Cv|w′,xi)

E(W′) = −
n∑
i=1

V∑
v=1

1yi=Cv ln

 exp
(
w′Tv xn

)∑V
j=1 exp

(
w′Tj xi

)


E is also called binary cross-entropy. Now we have our objective function and the expression of outputs
P (y = Cv|W′,x) according to the inputs, let us describe the neural network we are going to use for this prob-
lem. It has 1 hidden layer, where the weights from matrix W′ are used to connect the hidden to the output layer.
Another set of weights (w1, ...,wN) are used to create a N -dimension representation of the input vector (N
is the hyperparameter that corresponds to the number of neurons of the hidden layer). See illustration on Fig. 6.

Figure 6: Illustration of the neural network used for the bigram model

The layers are fully connected. The weights between the input layer and the hidden layer can be represented
by a V ×N matrix W, where each row of W is the N -dimension vector representation of the associated word
of the input layer. For the hidden layer, we get h = WTx, which is essentially copying the N -dimension vector
representation of the context word to h. We choose a linear activation function (directly passing the weighted
sum of inputs to the next layer). From the hidden layer to the output layer, we use W′ ∈ RN×V as explained
before. We then get an output yj for each word yj = (W′Th)j = (W′TWTx)j = (ETx)j, where E = WW′,
and then compute a score using softmax function.
We then use gradient descent and the backpropagation algorithm to update the weights until convergence.

Having explained the mechanism for the bigram model, we can now generalise easily to the n-gram model
which is used in CBoW and uses the same type of network. The only difference is that we now consider that
the word x̃ = x̃i has c >1 words in its context x̃1, ..., ˜xi−1, ˜xi+1, ..., x̃c where each x̃k is a one-hot vector. In
order to get an input vector that accounts for all the words in the context, the simplest way is to average and
get the following vector x for our input word x̃:

x =
1

C
(x̃1 + x̃k1 + ...+ ˜xk+1 + ...+ ˜xc+1) = (x1 ...xV)T

Remark: Averaging over the context is efficient, but a weighted average works better as it can reflect the
importance of the words (for example according to the number of time they appear in a corpus of documents).
One very efficient method is tf-idf, where weights increase proportionally to the number of times words appear
in the document and is offset by the frequency of each word in the corpus

This gives us the following structure for our neural network, very similar to the result for the bigram model
assumption (Fig. 7).
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Figure 7: Illustration of the neural network used for the n-gram model

We define the hyperparameter N as the number of neurons on the hidden layer. We then use the matrix W to
map the weights from the first to the hidden layer and W′ for the weights from the hidden to the output layer,
just like in the bigram model. So we get as output of the first layer h = WTx. Similarly, for the next layer,
we get an output yj for each word yj = (W′Th)j. We then use the softmax function to turn these scores into
probabilities.

2.6.2.4 Pre-trained Word2Vec Models

Before training our own Word2Vec model, we initially tried to use the available pre-trained models. Google,
for instance, provides a pre-trained Word2Vec model based on texts from Google news [12, 16]. However, due
to insufficient main memory on our LRZ compute cloud master node, we were not able to load it. On the other
hand, we tested this model on our local machines to observe its accuracy but the word Brexit was not included
in the model. This is most likely due to the model being trained before Brexit (its post on Google website [12]
is dated back to 2013), meaning it will not be suitable for our purposes.
GloVe is another algorithm for obtaining vector representations for words [17] from which pre-trained models
are available online (including the ones from twitter dataset) [7]. There are more pre-trained models for word
embeddings from a big corpus [15], but they were all trained prior to Brexit and did not include the keywords
related to this event. For the algorithm proposed in [15], for instance, it also provides an online demo of their
pre-trained model [6] and it does not recognize the word Brexit. This imposes an important message. It is
very difficult to both create and maintain a generic model for vector representations for words. Hence for an
appropriate sentiment analysis on a particular subject, corresponding word embedding model must be trained
accordingly.

2.6.3 Vector Representation Neural Network

2.6.3.1 Tokenizing and Data Processing

As stated previously, in order for the sentiment analysis model to accurately understand the textual tweets,
the tweets must be converted to vectors. This conversion from tweet to text heavily involves using Spark. The
work-flow to change a tweet filled with symbols, links, many spaces, and other confusing parameters to a useful
vector for training is shown in Figure 8. Please refer to Table 2 for an example of tokenization.
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id tweet tokenized tweet
#0 ”I don’t like Brexit today #Brexit” [I,don’t,like,Brexit,today,#Brexit]

Table 2: An example of a tweet being tokenized by the spark.ml function, Tokenizer

Figure 8: Work-flow for pre-processing tweets for conversion to vector representation

Tokenization works by splitting each tweet in to an array of ’tokens’. Each token is a word from a tweet.
However, this requires a great deal of processing, As shown in Fig. 8. Processing the tokens and removing
erroneous information is crucial for the Word2Vec Training because otherwise the Word2Vec model will be
computationally slower and more importantly create inaccurate vectors for uninteresting/unreal words. The
processing in Fig. 8 is described here:

– Lowercase the tweets: Tweets come in all shapes and sizes. Some twitter users will tweet with proper
capitalization, while others may not use any capitalization. There are also occasional twitter users which
tweet iN ThIs FaShIoN. Since Word2Vec is case-sensitive, it was decided to make all words lowercase.

– Remove retweet symbol: Some tweets are actually retweets from other users. This causes the tweet to
have ”rt” at the beginning. These were removed as they have no significance.

– Remove symbols: Furthermore, words with symbols such as ”Brexit!!!” are considered a whole word and
different from ”Brexit” when using Word2Vec. A user defined function was created in Spark to remove
all symbols from tokens.

– Remove links: Links (e.g. https://www.tum.de) are also not words and were removed.

– Remove tweet IDs: Tweet IDs (e.g. @realDonaldTrump) were removed.
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– Blank spaces were removed.

– Remove stop words: Spark.ml has a function called StopWordsRemover that removes all stop words. Stop
words are words that are used frequently and don’t carry much meaning such as ’the’ or ’a’.

Once the tokens have been fully processed and created, the next step is to vectorize the tokens using Word2Vec.

2.6.3.2 Vectorization of Tokens

In order to vectorize the tokens, Word2Vec from the spark.ml library was utilized. Table 3 describes the
parameters chosen for the Word2Vec Model.

Parameter Description Chosen Values
Vector Size The size of the vector each word will have. 10,20,100,200,400
Minimum Count The minimum amount of times a word must appear for consideration 500
Window Size The amount of words around the target word taken to consideration 7

Table 3: A description of the important parameters taken in by the Word2Vec model and the parameters we
chose, as well as justification for their values

Since training of the Word2Vec model requires a great amount of time due to the amount of data being handled
and hardware constraints, we chose one parameter to tune when creating our Word2Vec model. The chosen
parameter was vector size. A larger vector space allows the word to have a complex definition and for each
word to have a more succinct definition. We made the hypothesis that a larger vector space would correlate
with better synonyms. A qualitative experiment was formulated in order to test a trained Word2Vec model’s
ability to associate words. Please refer to Section 3.2.1 for the results.

2.6.4 Classification into Pro/Against Brexit

The problem statement could be defined as separating the tweets into two classes - Tweets that support the
clauses of the EU Referendum, hereby referred to as Brexit, and those that express sentiments against the same.

Our first and naive approach was to perform sentiment analysis using pre-trained libraries for sentiment analysis.
There were several options considered for this approach - NLTK, TextBlob, Stanford CoreNLP, gensim etc. We
considered each of the libraries and selected TextBlob. NLTK provides functions for various aspects of language
processing such as stemmers and several text analysis algorithms for over 50 corpora, however, since our tweets
are in English and TextBlob (which is built on top of NTLK and Pattern) combines the requires components of
NLTK and the required functionalities in a clean package and provides a single function to perform Sentiment
Analysis. Stanford Core-NLP requires a server-client architecture whereas TextBlob operates with out-of-box
functions which can be fed to Spark. Since pySpark was our choice of platform for the task, TextBlob was the
better option. While gensim has really powerful tools for topic modelling, there is no straightforward senti-
ment analysis API. Hence we chose TextBlob for its simplicity and compatibility with out problem statement.
TextBlob uses a Naive Bayes analyser built on top a movie reviews dataset to classify sentiments.

To process our own dataset, a more specialized model, tuned to our dataset would give better results. For
example, consider the following statement - ”Staying in the EU is surely economically advantageous!” - this is a
strongly positive sentiment. However, it is a strongly negative statement against Brexit. Hence a naive sentiment
classifier is erroneous in this situation. Hence, we formulate different methods of labeling data as described in
above sections and train several learning models and observe their accuracy. The learning algorithms we used
are the following:

– Logistic Regression

– SVM with linear kernel

– Neural Network

Rationale behind picking each of these algorithms was based on some literature survey as well as based on
interactions with a Capgemini employee who has done previous work on a very similar dataset. In his work,
logistic regression was the best performing model with a 75% accuracy and hence, we decided to pick up logistic
regression as the baseline model. Based on the survey of articles and blogs on text classification, we observed
that SVMs generally perform well on text data. Hence SVM was the next learning model choice. Finally, for
the volume of data we possessed, intuition suggests that a deep learning network would perform well. This was
our third model of choice.
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In this section we describe the input for classification and the different learning models used in short in context
of our problem.

2.6.4.1 Input into learning algorithm

The output of the first neural network, i.e. Word2Vec gives us a 2D matrix where each row and each column
represents a vector corresponding to the top words. To transform a tweet into such a vector, we first tokenize
it as described in above sections and create a word vector for each tweet by taking applying a tf-idf weight to
each token vector.

tf − idfw,t = (tfw,t) · log(1 +
1 + nt

1 + dfw,t
) (1)

where tfw,t is the number of times a word w appears in a tweet t, dfw,t is the number of tweets in which
the word appears and nt is number of tweets. This is performed using TfidfVectorizer from sklearn library.
We produce such a weighted token word vector for each word and sum them over all tokens to create an input
vector x for our learning algorithms.

2.6.4.2 Learning Algorithms

Logistic Regression

A logistic function can be defined as given below

g(z) =
1

1 + exp(−z)
(2)

where z is the output of a linear model computed with our features.

z = βTx (3)

Here x, is the feature vector which is the output of a tf-idf Word2Vec weighted model as described in the
previous section. The β’s are obtained by minimizing the below loss function.

J(β) =
1

N

N∑
i=1

[−yilog(hβ(xi)–(1–yi)log(1− hβ(xi))] (4)

where
hβ(x) = g(βTx)

This is done by differentiating the function and setting it to 0.

dJ(β)

dβ
=

1

N

N∑
i=1

xi(hβ(xi)− yi) = 0 (5)

The β’s obtained in this manner are then used to calculate z and the logistic function given in the beginning of
the section is used to compute the odds of the tweet falling in category positive Brexit sentiment (value >0.5)
or negative Brexit sentiment (value <0.5).

We use LogisticRegression from sklearn library to learn our data.

SVM

The basic idea of SVM is to find a hyperplane that separates the different classes of data. It can be formulated
at an optimization problem as follows

min
W
‖W‖2 (6)

subject to
yi(W

Txi + b) ≥ 1 ∀i = 1...N

A kernel represents the kind of algebraic transformation we do to the data to identify the hyperplane. Here,
we have used a linear kernel, which is most recommended for text classification tasks, i.e, the data is not
transformed.
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We use SVC from sklearn library to perform SVM on our data.

Neural Networks

The basic functioning and structure of a neural network are already described in the previous sections about
Word2Vec. Here, we will describe the input layers, output layers, and other relevant parameters. We used
Keras with Tensorflow for implementing the neural network. TensorFlow is an open-source library for building
large neural networks and Keras is a high level neural network API that can be used out of the box to construct
different layers of the network. It also allows us to compile the entire network where we can customize the
optimizers for learning rate, specify the loss function and the validation metrics.
The input to the network is x, a weighted tf-idf vector of tokens as described above. It was partitioned into a
ratio of 8:1:1 for training, validation and testing respectively. There is a single output neuron which provides
the likelihood of the tweet being pro-Brexit. The sigmoid function

g(z) =
1

1 + exp(−z)
(7)

is used for activation at the every layer to introduce non-linearity at the layer. The loss function used was a
binary cross entropy function, also known as softmax loss given by

L = − 1

m

N∑
i=1

yi log(ŷi) + (1–yi) log(1− ŷ) (8)

where ŷi is the predicted score for the data point i and yi is the target value.
Our initial and base network structure and parameters for the network were inspired by the work in [9]. We
have a 2-layer neural network as shown in the figure where input layer ∈ R400, hidden layers ∈ R32 and output
layer ∈ R1

Figure 9: Two layer Neural Network

The optimizers used were:

– RMSProp - Here, the weights are updated during backpropagation using the following

sk+1 = βsk + (1− β)[5θL�5θL] (9)

θk+1 = θk + α
5θL

2
√
sk+1 + ε

(10)

where θ’s are the weights, β is a friction hyperparameter and 5θL is the gradient.

– Adam - Here, the weights for the network were updated using the following

sk+1 = β1sk + (1− β1)[5θL�5θL] (11)

vk+1 = β2vk + (1− β2)(5θL) (12)

θk+1 = θk + α
vk+1

2
√
sk+1 + ε

(13)

where θ’s are the weights, β1 is a friction hyperparameter, β2 is a velocity hyperparameter and 5θL is
the gradient.
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We also tested the network with dropout probabilities of 1 and 0.5. The dropout probability is the probability
with which every node is dropped, in a given iteration.
Other hyperparameters that were tuned are:

– Number of hidden layers - The number of hidden layers is an hyperparameter that is adjusted for optimal
accuracy. The number of layers which were varied from 2 to 7.

– Number of neurons - The number of neurons were 32 or 64 in each hidden layer.

– Number of epochs - The number of epochs were varied from 5 as in the base model to 50 to identify the
threshold of overfitting and adjust accordingly.

2.6.5 Data Labeling

Despite the scope of our project being sentiment analysis, we are interested in predicting whether each
tweet describes positive or negative sentiment towards Brexit. This makes the addressed problem to be a
text classification problem via supervised learning. Supervised learning requires providing of answers of each
data. The most straight-forward, possible the most accurate, yet time-consuming approach would be manually
labeling each tweet as either pro-Brexit or against-Brexit. There are commercial services for tasks like this,
such as Amazon Mechanical Turk [1], a web-service that provides on-demand human workforce. Such services
may be useful, but certainly is not of consideration for projects like this. Other approach would be to automate
this labeling process based on certain classification criteria. For this project, we took both of the approaches as
follows:

– Manual labeling

– Automated labeling on influencers’ tweets

– Automated labeling via Hashtags

2.6.5.1 Manual Labeling

For manual labeling, we obtained 2000 tweets from Gold Standard Brexit Tweets [3]. These tweets are
manually labeled, by a group of professionals, as pro-brexit, neutral, irrelevant, and against-brexit [13]. This
dataset also provides strengths between 1 (very weak) and 5 (very strong). We ignored neutral and irrelevant
labels, and strength due to accuracy reasons (see Section 3.2.2). After removing the tweets with neutral and
irrelevant labels we were left with 1246 tweets for both training and testing (37.7% of the tweets were labeled
as either irrelevant or neutral [13]). 80% of the tweets were used for training (997 tweets) and 20% for testing
(249 tweets).

2.6.5.2 Automated Labeling Based on Influencers

We hand-picked 49 influencers from our tweet dataset and labeled their tweets (in total of 11000 tweets) based
on influencers’ attitude/opinion towards Brexit. The hand-picked influencers were categorized as pro/against
brexit or undetermined. The influencers with undetermined or neutral view towards Brexit were removed due
to accuracy reasons (see Section 3.2.2). Table 4 shows a sample set of influencers and their general opinion
about Brexit. A full list of the influencer can be found in Appendix 6.3. Influencers’ view towards Brexit were
determined based on online research, and in total, 27 influencers were considered. Of these 27 influencers, we
could obtain 11000 labeled tweets for training and testing. Same ratio of train-test tweets were used as manual
labeling (80% for training and 20% for testing).

Account Occupation Pro/Against Brexit
OwenJones84 Author & Guardian columnist Against
MhairiBlack Scottish National Party MP Against
tom watson Labour Party deputy leader Against

GuidoFawkes Right-wing political blogger Pro
stellacreasy Labour MP Pro

JohnRentoul Independent chief political commentator & author Against
Kevin Maguire Daily Mirror associate editor & New Statesman columnist Against

Table 4: Sample list of influencers considered for automated labeling. Influencers with neutral/undetermined
view towards Brexit were removed. Total of 27 influencers were considered from which 11000 tweets were labeled
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2.6.5.3 Automated Labeling Based on Hashtags

Another labeling method implemented was to label the tweets based on the hashtags used. The tweets were
filtered to only incorporate tweets which included hashtags that are clearly either Pro or Against Brexit. Table 5
shows the hashtags chosen for this dataset. Pro Brexit and Against Brexit tweets were labeled with binary 1
and 0, respectively.
In total, this created a labeled dataset of 6 million tweets, by far our largest dataset for training/testing. Due
to memory constraints, this limited the amount of data used to train the model to 200,000 tweets.

Hashtag Used Pro/Against Brexit
#voteleave Pro
#leaveeu Pro
#outofeu Pro
#ukip Pro
#remain Against
#strongerin Against
#bettertogether Against
#leavechaos Against
#voteleavegetchaos Against

Table 5: Hashtags used to automatic labeling. Each hashtag was chosen based on a review of a sample set of
tweets for the respective hashtag

2.7 Network Analysis

2.7.1 Model Representation

Twitter’s Social Network may be readily translated into a graph structure. Here, we define various aspects of
the social network and correlate the semantic meaning from it to the different components of a directed graph.

– Nodes: Each node of the graph represents a user or a unique user id, also known as a twitter handle. In
this text, we use the phrases ’user’, ’unique user id’, or ’unique twitter handle’ interchangeably.

– Edges: Each directed edge Ei,j represents a directed edge from user i to user j, indicated that user i
follows user j, i.e. user i subscribes to the tweets published by user j.

– Edge Weights: In our model, we assign a numeric weight to each edge Ei,j to indicate the amount of
information flow through the edge. We assign the value as the number of re-tweets by person i of tweets
written by person j. The rationale behind this assignment is that the number of re-tweets indicates the
strength of influence, i.e. a user more likely to re-tweet is more influenced.

– Node Weights/Metrics: In this model, each node will be assigned a score indicative of the influence of
the node and is calculated the based on graph structure and edge weights.

We define our graph to be an adjacency matrix G ∈ Rn×n to represent a social network with n users. Each
element ei,j is the weight of corresponding edge.
However, storing such a data as a matrix is inefficient since it would be a sparse matrix with most of the values
as 0. This is because, out of the millions of users, only few users would have a similar order of followers and
most of the users would have a few hundred or thousand at the most. Hence, the most optimal way to store the
followers would be as a map with each user as a key and the list of followers as a value. This would drastically
reduce the size for loading all the followers and computing metrics from the data in-memory. However, the
disadvantage of this is that conventional algorithms operate on a matrix and such algorithms may not function
on such an adjacency list.

2.7.2 Metrics

In this section, we develop some common graph metrics to fit our context. We explore the intuition behind
of each metric in this scenario of Twitter’s network. We also discuss some challenges with computing these
common metrics and propose an extended metric formulation.

– Degree centrality: This metric is defined by the number of followers a user has. If we have our graph
G ∈ Rn×n and a vector of 1’s, k ∈ Rn , then degree of each user is given by the matrix D ∈ Rn

D = kG (14)

This metric of influence indicates that users with higher number of direct followers are more influential.
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– Betweenness centrality: This metric is based on the intuition that connecting nodes are influential,
that is, a user who follows many publishers and has many subscribers is more influential as he is capable
of distributing information to a wide audience. For example - a user who tweets exclusively about golf
may have lesser followers than a user who re-tweets sports related tweets from multiple sources. This user
hence is an influencer as he lies between the source of information and the sink. It is calculated as follows:

betweenness(X) =
sp(X)

sp
(15)

where sp(X) denotes the number of shortest paths in the graph where X is a part of the path and sp is
the total number of shortest paths.

– Closeness centrality: This metric tells us how close a user is to all the other users. This tells us the
chance with which a message passed by a user reaches other users. If a user is very close to many users,
best case distance 1, this becomes the degree measure and all his neighbors receive his message. We define
it using

closeness(X) =
∑
i∈n

1

d(i,X)
(16)

where d(i,X) is the shortest distance from user X to user i.

– Page-rank inspired metric: Page-rank is an algorithm used to measure popularity of webpages on the
internet. The rank of the page is proportional to the number of incoming links from other pages and the
rank of those pages. However, we can adapt the same to our model by replacing a page with a user and
an outgoing link with a follower edge. Using this algorithm is beneficial over the other measures because
of multiple reasons. It incorporates degree measure, since more incoming links implies higher rank. The
closeness is also measured since the rank contributed by a particular link is propagated forward through
each link. However, the biggest advantage is that the algorithm can be computed in a distributed manner
without loading the entire adjacency matrix in memory. Regular updates can also be performed when
new nodes or edges are added, without recomputing the whole graph.

2.7.3 Tools

Although one could hard-code a graph data structure in distributed fashion, there are numerous ready to
use tools available within Apache Spark. The following list provides a summary of the tools we have considered:

– GraphX: This is Apache Spark’s API for graphs and parallel graph manipulation/computation. Although
GraphX is highly flexible, widely used, and native to Apache Spark, it only supports Scala

– Neo4j: Neo4j is a freemium graph database management system. Similar to GraphX, Neo4j can also be
used within Apache Spark framework and supports .Net, Java, JavaScript, and Python. Unfortunately,
Neo4j is freely available only for a single node application and requires commercial subscriptions for
parallel computations

– GraphFrames: GraphFrames is a freely available package for graph structures in Apache Spark frame-
work. Unlike GraphX, which is based on Spark RDD files, GraphFrames is based on Spark data frames.
It supports high-level APIs in Scala, Java, and Python, and parallel computations on a Spark cluster

GraphX certainly was the first option to consider since it comes natively with Spark. However, all of our tasks
were being conducted with Python and it did not seem sensible to necessarily use Scala just for graph processing.
Neo4j, despite its Python support, was not freely available for parallel processing, making GraphFrames our
pick for network analysis.

2.7.4 Challenges

Data required for constructing the adjacency matrix/list:

1. List of users in the network

2. List of followers for each user

3. Number of re-tweets between two users

We can extract the list of users in the Brexit network from the tweets. We can also count the number of
re-tweets from the Brexit related tweets. However, we do not possess the follower data and cannot extract or
compute the required data from the current data dump.
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2.7.5 Steps Taken

We tried to gather the required data from Twitter. We tried the following to extract the data.

1. Registered for Twitter Developer Account

2. Mined the list of users from Brexit tweets

3. Developed a script using python-twitter library to extract followers for each user

However, due to limitations of API, only 5000 followers can be extracted per minute. Since the influential users
have at least a few million followers each, it would take hours to extract the data of even one user. This made
it infeasible for us to extract the data required for performing network analysis.

3 Results & Discussion

3.1 Timeline Visualization

3.1.1 Timeline analysis dashboard

As explained in the previous section, we chose to make a dashboard using Mapd, below is a description and
justification of the metrics that were chosen. Please see Figure 16 in Appendix for the dashboard, where you
can find the following representations:

– Number of tweets per hashtag: We included a bar graph representing the number of tweets per
hashtag so the user can have at first glance an idea of the ratio of the number of tweets per hashtag.
Not very surprisingly, # Brexit is the most used hashtag (more than 550% times more used than the
second most used hashtag # EURef).

– Correlation of tweet frequency and real-life events: Our main aim was to see how well activity
peaks on Twitter relate to real-life events. So as a second part of the dashboard, we superposed a line graph
showing tweets frequency over time with a bar graph representing the number of events that happened
on a given day. A table with an explanation of the event is provided on the dashboard for understanding
of the data.

Figure 10: Tweet frequency - the bars represent the number of events happening per week

This shows us several interesting peaks of Twitter activity:

– June 5th to June 11th, 2016: There doesn’t seem to be any major Brexit-related event during
that week that could explain this peak - one explanation could be the campaigns of the ”Pro” and
”Against” sides on Twitter and the surrounding debates before the referendum on June 23rd.

– June 19th to June 25th, 2016: This is the week of the Brexit Referendum (June 23rd). It is also
by far the highest peak of activity (approximately 6 times the second biggest peak two weeks before).

22



– October 30th to November 5th 2016: The High Court rules U.K. must hold a vote in Parliament
before starting Brexit process on November 3rd. Concretely, this means that UK ministers cannot
start Brexit Process (triggered by Article 50) without consulting the Parliament as they had hoped.
This event received a lot of public criticism, opposing the ”Remain” and ”Leave” supporters.

– March 26th to April 1th, 2017: On March 29th in Brussels, Tim Barrow (UK’s ambassador to
the EU) hands Donald Tusk (President of the European Council) the letter which begins two years
of talks. Theresay May tells lawmakers in London that “this is an historic moment from which there
can be no turning back.”

We could of course argue that the bar graph event representation is not the best for that kind of visuali-
sation (a display of the event when the mouse hovers over the peak was originally what he had aimed for),
but we were restricted by the possibilities of MapD. That is the disadvantage of using a built-in solution
and not build our dashboard from scratch with the plotly library on Jupyter notebooks... but it is largely
compensated by the speed of MapD.
Moreover, another disadvantage of this representation is linked to the available data for our graph: the
Bloomberg timeline we are using to explain the events onl extends from June 23rd to March 29th, 2017 -
which means that all explanations are not directly available on the dashboard.

– Tweet frequency per hashtag: Seeing how the use of hashtags changes along time, particularly be-
fore/after referendum, is also a good indicator of popular opinion. In our case, #Brexit was used more
than all others, but there is no striking difference in the variation in use of a hashtag over time.

– Tweets per country and user information: One graph illustrate how tweets are split between different
countries (not surprisingly, a huge majority comes from the UK, followed by the US and mostly European
countries. An important information to bear in mind is that data regarding country of publication of the
tweet was available for less than 25% of our dataset! Indeed, the user chooses whether his location can be
available or not. So even if the results seem coherent with the real-life situation, they will not enable us to
detect possible ”manipulations”. For example, data scientists at the University of Swansea and University
of California, Berkeley found that over 150 000 accounts based in Russia posted content relating to Brexit
in the days leading up to voting day on June 23, 2016 (according to this Cnet article [4]).
Finally, a table giving the number of followers per user show who were the most influential users over this
time period.

The results of this timeline representation coincide with real-life Brexit related events. However, individually
they do not bring great insights or unexpected results regarding the Brexit referendum, and should be considered
as a basis to perform a sentiment analysis over time to identify trends.

3.2 Sentiment Analysis

3.2.1 Word2Vec

We tested 4 different models with different vector sizes to determine how vector-size could affect performance
and similarity between words. To compare each model, we chose 5 words that are highly related to Brexit and
compared the words that came up as the 20 most similar words. 40% of the data was used to evaluate the
models. The results are displayed in Tab. 7. The 20 most similar words were then placed in the categories
Similar, Related, Opposite, and Irrelevant. An example of the output from Word2Vec which then had to
be manually classified is shown in Tab. 6. From observing both tables, it is interesting to note how the similarity
values decrease significantly with vector space, yet the amount of similar and related words increase with vector
space. The results (7) clearly show that larger vector spaces increase similarity. It is also important to note
that a vector space of 200 also performed well and could be used.
Once the best parameters were chosen, the Word2Vec model was trained on 80% of the data. This is the
model used in the Sentiment Analysis Pipeline. The final Word2Vec model contained over 18,000 words in its
dictionary and was especially suited for words pertaining to Brexit events.

3.2.2 Brexit Gold Standard Dataset

On the initial Brexit Gold standard dataset [3] where strength of a tweet was rated between -5 (strongly
against Brexit) and 5 (strongly pro Brexit), we obtained 31% accuracy with neural network approach (10
epochs).
During testing phase, most of the tweets (>90%) were classified as neutral. This can mostly be attributed to the
fact that a major chuck of the training data was neutral (37%) and the rest were split between the corresponding
strengths (1 to 5 in each polarity). This greatly diluted the data available for the network to learn the features
of each strength.
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VectorSpace: 10 Similarity Values VectorSpace: 400 Similarity Values
based 0.9370 control 0.4102
continuously 0.9350 migration 0.3486
peril 0.9289 govern 0.3141
machine 0.9279 doesnt 0.2922
injustice 0.9273 nation 0.2868
enhanced 0.9258 wants 0.2849
commit 0.9214 immig 0.2737
privatising 0.9197 oreillyfactor 0.2732
swamped 0.9179 bilateral 0.2710
native 0.9173 immigrants 0.2693
vanity 0.9161 trea 0.2670
massively 0.9153 screaming 0.2649
petershore 0.9135 borders 0.2640
hurts 0.9131 racist 0.2627
avoid 0.9113 brightest 0.2617
lie 0.9107 333000 0.2607
bbcaq 0.9096 amp 0.2599
wasteful 0.9095 skilled 0.2562
discriminate 0.9095 based 0.2525
falsehood 0.9091 antiimmigration 0.2505

Table 6: Word2Vec Example for the word Immigration. The results on the left are for a Word2Vec model
trained with a vector of size 10 and the results on the right are with a vector size of 400.

Hence we transformed the training set into a binary classification problem, that is, pro-Brexit tweets as 1 and
against as 0. Table 8 show the corresponding results.
Other than the training methods described in Section 2.6.4 we also tested TextBlob, a generic pre-trained library
for Natural Language Processing (NLP) [11]. As observed, TextBlob gives a poor result. This could be due
to the fact that it is trained on a very generic dataset that does not contain the vocabulary necessary for this
classification task. Hence, it seems crucial to learn a word embedding using the use-case specific data.
Of the learning models, we observe a particularly poor result for SVM with RBF kernel. This may be because,
linear kernels perform the best for text classification using SVM as there is a high dimensional input space
and document vectors are sparse [14]. Neural network approach gave the best performance, although not
satisfactorily, among the methods used giving 76% accuracy.

3.2.3 Automated Labeling Based on Influencers

Given the amount of data we have, there is no way we can manually label all the datasets and an automated
labeling strategy is a must, unless small subset of data with manual labeling gives excellent performance (though
is not the case here as we can see from Section 8). Table 9 shows the accuracy of different trained models.
Regardless of the model used, influencer based automated labeling showed highly inaccurate performance. The
best accuracy results, obtained from neural network approach, only gave 50% accuracy. We must note this
automated labeling approach based on influencers is a very naive method. From the results, we can observe
that automated labeling on its own is a very important task that needs careful thought. Depending on the
labeling strategy, be this any sophisticated or simple as influencer or hashtag based, the results can be very
poor as it is here or even outperform manually labeled datasets (see Section 3.2.4) by hiding the lack of label
accuracy with big set of train data. Such bad performance could be due to influencers’ tweets containing too
much neutral/irrelevant information degrading the quality of labeled data. It is also very likely that, for instance,
the tweets from pro-Brexit influencers contain both pro and against Brexit hashtags, and vice-versa generating
an ambiguous dataset. Considering the high impact of hashtags for classification accuracy (Section 3.2.4), this
mix use of hashtags can significantly degrade the results.

3.2.4 Automated Labeling via Hashtags

This automated labeling strategy along with neural network gave us the best performing model with a
preliminary accuracy of 78%. Due to its highest accuracy we decided to use this model for hyper-parameter
tunning and training on bigger datasets to improve the accuracy. We performed hyperparameter tuning on this
dataset and obtained accuracies as given in Tab. 10.
The best accuracy was noted for a 5-layer network with 64 neurons using no dropout and Adam to update the
gradient. We trained this network for 50 epochs to observe the validation losses and accuracy over time.
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Word VectorSpace Similar Related Opposite Irrelevant
Immigration 10 0 1 0 19

20 1 3 0 16
100 3 1 0 16
200 2 5 0 13
400 4 3 0 13

Independence 10 1 5 0 14
20 2 7 1 10
100 4 6 0 10
200 5 10 0 5
400 3 10 1 7

Referendum 10 2 1 0 17
20 3 3 0 15
100 5 4 0 11
200 5 5 0 10
400 7 3 0 10

Vote 10 7 1 0 12
20 3 9 0 8
100 4 2 0 4
200 4 11 0 5
400 4 11 0 5

Economy 10 1 11 0 8
20 0 15 0 5
100 1 13 0 6
200 3 15 0 2
400 4 13 0 3

Table 7: Results from the qualitative analysis of the 20 nearest synonyms, output by 5 different Word2Vec
models for 5 words.

Method Accuracy
TextBlob 36%

Neural Network with dropout (15 epochs) 76%
SVM (linear kernel) 75%
SVM (RBC kernel) 62%
Linear Regression 72.5%

Table 8: Training results from manually labeled Brexit Gold Standard tweets excluding neutral labels and
sentiment strengths

(a) Model Loss (b) Model Accuracy

Figure 11: Loss and Accuracy for 5-layer network with 64 neurons using no dropout and Adam trained on
Hashtag-based labeled data

We observe that the validation accuracy saturates after 10 epochs at a much lower value than training accuracy.
While this is normal since higher training accuracy may be due to overfitting, we attempted to include learning
rate decays of ε−6 and ε−4 to gauge whether the accuracy was saturated below optimum due to large learning

25



Method Accuracy
Neural Network (10 epochs) 50%

SVM (linear kernel) 30%
SVM (RBC kernel) 12%
Linear Regression 30%

Table 9: Training results from tweet dataset with automated labeling based on influencers

Optimiser SGD RMSProp Adam
Dropout 0 0.5 0 0.5 0 0.5

Layers Neurons
2 32 0.79 0.79 0.82 0.82 0.82 0.82
2 64 0.79 0.79 0.83 0.82 0.82 0.82
3 32 0.80 0.77 0.82 0.81 0.81 0.81
3 64 0.81 0.79 0.82 0.82 0.82 0.82
4 32 0.81 0.78 0.83 0.80 0.82 0.80
4 64 0.82 0.79 0.81 0.82 0.82 0.82
5 32 0.80 0.78 0.81 0.80 0.81 0.80
5 64 0.82 0.78 0.83 0.81 0.83 0.82
6 32 0.82 0.74 0.81 0.79 0.82 0.80
6 64 0.81 0.77 0.82 0.81 0.82 0.80
7 32 0.81 0.57 0.81 0.80 0.82 0.78
7 64 0.82 0.75 0.81 0.81 0.83 0.78

Table 10: Accuracy with different hyperparameters from tweet dataset with automated labeling based on
hashtags

rate. However we did not observe a notable difference in the accuracy in both the above cases. It was concluded
that the accuracy may not necessarily be saturated due to high learning rate. We record the classification scores
and the confusion matrix for the selected model in Tab. 11 and Tab. 12, respectively.

Precision Recall f1-score Support
0 0.84 0.83 0.84 5486
1 0.80 0.81 0.80 4513

Avg/Total 0.82 0.82 0.82 9999

Table 11: Classification Scores (5 layer NN with 64 neurons, Adam, no dropout, Hashtag based training data)

Here we observe the division in the misclassification of tweets. The misclassification rates seem uniform for
false-positives and false-negatives. Since the text available is uniform, i.e. for every tweet that expresses a
positive sentiment about “Stay in EU”, there may be a positive sentiment about “Leave EU”. Similarly, for
every tweet that expresses a negative sentiment about “Stay in EU”, there may be a negative sentiment about
“Leave EU”. Hence it follows that the false positive and false-negative rates must have a similar distribution.
This is also reflected in the Receiver Operating Characteristic (ROC) curve (Fig. 12).

Figure 12: Receiver Operating Characterstics (5 layer NN with 64 neurons, Adam, no dropout, Hashtag based
training data)
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Pro-Brexit
Pro Against Total

Against-Brexit
Pro 4564 922 5486
Against 879 3634 4513
Total 5443 4556 9999

Table 12: Confusion Matrix (5 layer NN with 64 neurons, Adam, no dropout, Hashtag based training data)

Here we observe that we obtain the maximum true positive rate 0.8 for a false positive rate of 0.2 which also
matches with our accuracy measures of 82%.
In general, we observe that we obtain a larger classification accuracy for hashtag based labeling than manual
labeling or influencer based labeling. This may be explained by the fact that while a single person may express
varying degree of sentiments about a topic, the user uses a strong polarized hashtag only when he expresses a
strong opinion about the topic. However, we believe that the higher accuracy over manually labeled data is due
to the difference in volume of training data.

3.3 Sentiment Analysis over Time

The resulting dashboard (Fig. 17 in Appendix 6.4) is particularly interesting as it brings insights both from
the time-line analysis through tweet frequency and our sentiment classification model. The aim is to draw
conclusion from the association of these two models. To do so, we represented the following graphs:

– Tweet frequency with sentiment over time (Fig. 13): This representation shows the repartition
of pro and against Brexit tweets. Over time, the proportion of pro Brexit tweets diminishes. They are
predominant until June 2016 (approximately 61%), roughly the same as the number of against Brexit
tweets during the week of the referendum, and account for only 39% of all tweets in mid July 2017.

Figure 13: Tweet frequency with sentiment over time

It would seem that people are progressively changing their mind on Brexit from the moment the vote
took place. Let us confirm this fact by correlating changes in sentiment with the events that took place
(Fig. 14).

– Number of tweets and average sentiment over time (Fig. 14): Here, we will analyse the graph we
represented the average sentiment score over time, 1 being completely pro Brexit and 0 being completely
against Brexit. So an alternative way to view this score is a percentage of how strong pro Brexit tweets
are over time.
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Figure 14: Number of tweets and sentiment average over time. Value of 1 and 0 corresponds to all the tweets
being pro and against Brexit, respectively.

We chose to bin the time axis in months as the main peaks and general variation of the average sentiment
are well visible but do not vary too much (there are too many peaks and creases to see a general evolution
when we bin it into weeks). First of all, we see a global decline of Pro-Brexit sentiment over time (from
61% Pro-Brexit in May 2016 to only 31% Pro-Brexit in June 2017). We could say that in roughly one
year, the faith of people in Brexit has been halved. While sentiment is relatively stable between June 2016
and March 2017, let us explain the outstanding points (by spotting the peak in the month-binned axis
and then switching to week bins to refine the time interval and spot the matching event):

– May 1st to May 7th 2016: Highest global pro Brexit sentiment (0.64 sentiment score, i.e. tweets
that are in average 64% pro Brexit) ever recorded over the considered period.

– June 19th to June25nd, 2016: This corresponds to the week of the Brexit referendum. In our
analysis, during that week, the tweets are 51% pro Brexit (global sentiment score of 0.51), which
actually reflects very well the vote: 51.9% of voters voted leave [5].

– December 4th to December 10th, 2016: Another predominance of a desire to remain in the EU
(tweets are in average only 44% pro Brexit): this sentiment is also coherent with real-life events, as it
corresponds to a Supreme Court Hearing (December 5th) to decide whether the Prime Minister has
the right to invoke Article 50 unilaterally (in other words, whether the government can start triggering
the Brexit process without the Parliament). The event provoked a lot of negative reactions from the
media towards Brexit.

– February 18th to February 25th, 2017: There doesn’t seem to be any decisive event during that
period, but it does coincide with the time at which the government was fighting for amendments of
the Brexit bill and could have triggered a revival of pro Brexit sentiment.

– June 4th to June 10th, 2017: The general sentiment reaches its second lowest score of 0.34 after
the snap election requested by Theresa May on June 8th. It was a great failure for Conservatives,
who now have 36.9% of the total seats (lost 13) and a success for Labour and now have 30% of
the total seats (won 29). These election resuts express an overall negative view of Brexit as it was
being proposed by the conservatives, and expresses the fact that more voters leaned towards the
propositions from Labour (who are globally against Brexit). So our sentiment analysis results are
coherent with this event.

– Sentiment by hashtag & Sentiment evolution over time by hashtag (Fig. 15): We plot those two
graphs together to spot en eventual correlation between hashtags and sentiments. unsurprisingly, #ukip,
#LeaveEU, #EURef, #voteLeave are labelled as pro Brexit in average, #Brexit as neutral and #remain
and #bettertogether as anti-Brexit. However, #strongerin is supposed to be against Brexit but is labeled
as pro in average. A more detailed analysis gives us the following (Fig 15):
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Figure 15: Sentiment evolution over time per hashtag

We notice that #strongerin is in fact mainly used with pro Brexit tweets until July 2017 (this correspond to
the snap election failure for the Conservatives). There are several possible explanations. One possibility
is that #strongerin was often associated with pro Brexit hashtags like #leaveEU for example, which
augments its chances of being present on a pro Brexit tweet. Another one is that the hashtag changed its
meaning along time and people started associating it to an against Brexit meaning.
Concerning the other hashtags, the small variations can be explained by the fact they will not necessarily
be used in a pro Brexit tweet if they are pro Brexit (for example in a sentence like ”I hate the #leaveEU
movement”).

Our Twitter data shows us that perception of Brexit globally deteriorates along time, with its peak of popularity
being just at the time of the referendum. It then losing supporters brutally after the vote and the General
Election in June 2017.
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4 Conclusion & Future Works

The association of a sentiment classification model and a timeline representation gave us insights about the
referendum and showed a progressive loss of faith in Brexit. However, we also showed that the sentiment is
tightly linked to political events perceived as successes or failures for the independence of the UK, so a change
in public opinion stays a possibility. Our final prediction on sentiment analysis over time gave surprisingly
accurate results that both correlate with the occurring event and even poll results. Making (accurate) political
predictions, based on social medial data is certainly nothing new as we’ve seen from 2016 Donald Trump’s U.S
presidential campaign [10], and many more. From the results obtained from this work, we can once more remind
ourselves how powerful social media & sentiment analysis can be, and how we, the engineers, ought not forget
the potential negative consequences an irresponsible misuse of big data may bring.

The world of social media analytics is a vast one with many domains to explore. In our particular problem
statement, the network analysis section remains incomplete due to lack of data. Implementing the researched
metrics may give us a much better insight into the real Twitter influencers involved. We may also be interested
in judging the power of Twitter as a media of influence by measuring the opinions of followers of an influencer
before and after the influencer’s tweets. In the area of sentiment analysis, we may attempt to obtain a higher
classification accuracy by including features other than word embeddings itself, such as users who retweeted the
tweet or location of tweet origin. While these are not direct indicators of sentiment, they may tell us something
about the prior probability of the tweet being pro or against an opinion. Apart from this, we could also try
various other labeling strategies such as topic extraction with basic sentiment detection to label or even directly
classify the data. For example, a topic such as “Leave the EU” can be given a pro-Brexit label. Hence any
tweet with general a positive sentiment and a pro-Brexit label may be classified as a pro-Brexit tweet. Latent
Dirichlet Allocation for Topic Modeling may be explored as an approach for the above. However, an exhaustive
list of possibilities for future work in this area is beyond the scope of this report.
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features. In Claire Nédellec and Céline Rouveirol, editors, Machine Learning: ECML-98, pages 137–142,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[15] Veronika LAIPPALA and Filip GINTER. Syntactic n-gram collection from a large-scale corpus of internet
finnish. In Human Language Technologies-The Baltic Perspective: Proceedings of the Sixth International
Conference Baltic HLT 2014, volume 268, page 184. IOS Press, 2014.

[16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems, pages
3111–3119, 2013.

[17] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

31

https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/OverviewofMturk.html
https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/OverviewofMturk.html
https://www.bloomberg.com/news/features/2017-03-20/brexit-timeline-from-eu-referendum-to-theresa-may-and-article-50
https://www.bloomberg.com/news/features/2017-03-20/brexit-timeline-from-eu-referendum-to-theresa-may-and-article-50
https://bitbucket.org/ssix-project/brexit-gold-standard
https://www.cnet.com/news/russian-accounts-tried-to-influence-brexit-vote-says-twitter/
https://www.bbc.com/news/politics/eu_referendum/results
http://bionlp-www.utu.fi/wv_demo/
https://code.google.com/archive/p/word2vec/
http://jupyterhub.readthedocs.io/en/latest/index.html
https://ahmedbesbes.com/sentiment-analysis-on-twitter-using-word2vec-and-keras.html
https://ahmedbesbes.com/sentiment-analysis-on-twitter-using-word2vec-and-keras.html
https://www.itweb.co.za/content/2j5alrvQA19vpYQk
https://textblob.readthedocs.io/en/dev/#
https://textblob.readthedocs.io/en/dev/#
https://code.google.com/archive/p/word2vec/


5 Author Contribution

5.1 Project Contribution

– A. Duplaa:
Time Visualization pipeline, Word2Vec model (Training and Testing),Tokenization pipeline, Automated
Labeling (Hashtags), Data ETL for models, Sentiment Analysis pipeline,Environment Setup, Environment
monitoring/maintenance,Code Refactoring

– A. Muralidharan:
Network Analysis (Data representation, Data collection, Metrics for influence measure), Brexit Gold
Standard classification using TextBlob, Classification using learning algorithms (SVM, Logistic Regression,
Neural Networks), Hyperparameter tuning, Metrics for measuring classification scores

– J. Yang:
Environment Setup, Network Analysis Research (Tools), Sentiment Analysis (Application), Word2Vec
(Training and Applications), Brexit Gold Standard Dataset (pre-processing), Automated Labeling (Influ-
encers), Structuring of the final report

– M. Delacourt:
Methodology for timeline visualization, Methodology for sentiment analysis (Word2Vec), Visualization
dashboards, Insight discovery from timeline & sentiment analysis results

5.2 Report Writing Contribution

Abstract: J.Y

1. Introduction
1.1. Project Description: M.D.
1.2. Project Scope

1.2.1. Timeline Analysis and Visualization: M.D.
1.2.2. Sentiment Analysis: M.D.
1.2.3. Network Analysis: A.M

2. Methodology
2.1. Working Methodology

2.1.1. Agile Software Development: J.Y
2.1.2. Communication Tools: J.Y

2.2. Tools
2.2.1. LRZ Cloud: A.D
2.2.2. Hadoop File System: A.D.
2.2.3. Apache Spark 2.3.0: A.D.
2.2.4. JupyterHub: A.D.
2.2.5. GitLab: J.Y
2.2.6. Docker: A.D
2.2.7. Kubernetes: A.D.
2.2.8. Keras: A.M
2.2.9. Databases

2.2.9.1. PostgreSQL: A.D.
2.2.9.2. MapD: A.D.

2.3. Infrastructure Architecture: A.D.
2.4. Data Description: A.D.

2.4.1. Data Discovery: A.D
2.5. Timeline Visualization

2.5.1. Data Processing: M.D.
2.5.2. Data Visualization: M.D.

2.6. Sentiment Analysis
2.6.1. Our Approach: A Double Neural Network Pipeline: M.D.
2.6.2. Word2Vec Continuous Bag of Words (CBoW)

2.6.2.1. Introduction to Word Encoding: M.D.
2.6.2.2. The General Idea Behind Embedding Learning: M.D.
2.6.2.3. Continuous Bag of Words: M.D.
2.6.2.4. Pre-trained Word2Vec Models: J.Y

32



2.6.3. Vector Representation Neural Network A.D
2.6.3.1. Tokenizing and Data Processing: A.D
2.6.3.2. Vectorization of Tokens: A.D

2.6.4. Classification into Pro/Against Brexit: A.M
2.6.4.1. Input to Learning Algorithm: A.M
2.6.4.2. Learning Algorithms: A.M

2.6.5. Data Labeling: J.Y
2.6.5.1. Manual Labeling: J.Y
2.6.5.2. Automated Labeling Based on Influencers: J.Y
2.6.5.3. Automated Labeling Based on Hashtags: A.D

2.7. Network Analysis
2.7.1. Model Representation: A.M
2.7.2. Metrics: A.M
2.7.3. Tools: J.Y
2.7.4. Challenges: A.M
2.7.5. Steps Taken: A.M

3. Results & Discussion
3.1. Timeline Visualization: M.D.
3.2. Sentiment Analysis

3.2.1. Word2Vec: A.D
3.2.2. Brexit Gold Standard Dataset: J.Y, A.M
3.2.3. Automated Labeling Based on Influencers: J.Y
3.2.4. Automated Labeling via Hashtags: A.M

3.3. Sentiment Analysis over Time: M.D

4. Conclusion & Future Works: A.M, M.D, J.Y
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6 Appendix

6.1 Appendix 1: Hashtag classification

Hashtag Sentiment Comment
#TakeControl Pro Many tweets with this hashtag concerns health/fitness/inspiration
#VoteLeave Pro

#Brexit Neutral General info regarding Brexit (future of UK, conferences, etc)
#BrexitWound Against
#ProjectHope Against Many tweets with this hashtag concern a charity

#LeaveEU Pro
#EUreferendum Neutral

#OutofEU Pro
#EUref Neutral

#Remain Against
#UKIP Pro & author UK Independence Party

#StrongerIn Against
#BetterTogether Against

#LeaveChaos Against
#VoteLeaveGetChaos Against

Table 13: Full list of Hashtags considered for automated labeling.
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6.2 Appendix 2: Description of schema fields

Fields Data Type Description
user id string User id

retweet count long Number of retweets
tweet language string Language of the tweet

tweet countrycode string Country code
tweet city string City where the tweet is posted
tweet text string Tweet text

tweet favoritecount long Number of times tweet was favorited
tweet favorited boolean Whether tweet was favorited or not

user favouritescount long Whether user was favorited or not
friends count long Number of friends
user language string User’s language
user location string User’s location

user screenname string Screen name of mentioned user
user name string Name of the user

tweet latitude double Latitude where tweet is posted
tweet longitude double Longitude where tweet is posted

tweet id string id of the tweet
hashtags string Hashtags

Table 14: List of selected schema fields and their descriptions
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6.3 Appendix 3: List of influencers considered for automated labeling

Account Occupation Pro/Against Brexit
OwenJones84 Author & Guardian columnist Against
MhairiBlack Scottish National Party MP Against
tom watson Labour Party deputy leader Against

GuidoFawkes Right-wing political blogger Pro
stellacreasy Labour MP Pro

JohnRentoul Independent chief political commentator & author Against
Kevin Maguire Daily Mirror associate editor & New Statesman columnist Against
MrHarryCole The Sun Westminster correspondent Pro
sunny hundal Author & journalist Against

DouglasCarswell UK Independence Party MP Pro
ShippersUnbound Sunday Times Political Editor & author Pro

montie The Times columnist Against
LouiseMensch Author & former Conservative MP Pro
DavidLammy Labour MP Against

RuthDavidsonMSP Scottish Conservative Party leader Against
georgeeaton New Statesman Political Editor Against

SamCoatesTimes The Times Deputy Political Editor Against
jessphillips Labour MP Against
AbiWilks Freelance political journalist Against
stephenkb New Statesman special correspondent Against
jreedmp Labour MP Against

NadineDorriesMP Conservative MP Against
PatrickStrud BuzzFeed UK LGBT editor. Against

JolyonMaugham Tax expert & political and legal commentator. Against
PaulbernalUK Law lecturer, political commentator, and author. Against
robfordmancs Politics professor & author Against
Tom Slater Spiked Deputy Editor Pro

asabenn The Telegraph comment editor Pro

Table 15: Full list of influencers considered for automated labeling.
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6.4 Appendix 4: An overview of the MapD dashboards

Figure 16: Screenshot of the time line analysis dashboard

37



Figure 17: Screenshot of the sentiment over time dashboard
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