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Project Description

This bird is red with

white and has a
very short beak

CreativeAl

Text Encoder -> GAN




Our Implementation

Dash Demo for CreativeAl

this bird is red with white and has a very short beak
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Generative Adversarial Networks
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Real or Fake?

Image Source: Brock, Andrew, Jeff Donahue, and Karen Simonyan. "Large scale gan training for high fidelity natural image synthesis." arXiv preprint arXiv:1809.11096. 2018.
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Conditional GANs

fake

Image Source: Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

real
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Applications

Pix2Pix: Image-to-Image Translation

Labels to Street Scene Labels to Facade BW to Color

input ¢ output
npd Aerial to Map .
input out input output
Edges to Photo
output output input output

Reference: Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. | 13



Applications

AttGAN: Class-based image generation and modification

Reference: He, Zhenliang, et al. "Attgan: Facial attribute editing by only changing what you want." IEEE Transactions on Image Processing. 2019.
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Applications

Image Generation from Text

StackGAN
StackGAN++

AttnGAN

This bird is red with

white and has a
very short beak
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Dataset: Caltech-UCSD Birds 200-2011

= 11,788 images of birds

= includes annotations and image captions

Dataset available at: http:
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http://www.vision.caltech.edu/visipedia/CUB-200.html

StackGAN

Idea: stack multiple GANs together!

| Conditioning |
| Augmentation (CA) |
Text descriptiont Embedding «,|

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
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StackGAN

Idea: stack multiple GANs together!

| Augmentation (CA) |
Text descriptiont Embedding ¢, | 0

64 x64
real images

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
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StackGAN ‘

Idea: stack multiple GANs together!

| Conditioning |
| Augmentation (CA) |
Text descriptiont Embedding ¢,| 0

Compression and
Spatial Replication

64 x64
real images

trained independently from the rest

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017. 20



StackGAN ‘

Idea: stack multiple GANs together!

Conditioning | | Stage-1 Generator G, |
| Augmentation (CA) | for sketch |
Text descriptiont Embedding «,|

Compression and
Spatial Replication

64 x64

| real images

e
| ket 256 x 256
| Oondltlompg i

| Augmentation

256 x 256

L Stage-ll Generator G for refinement | results

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017. 21



StackGAN ‘

Idea: stack multiple GANs together!

Conditioning | | Stage-1 Generator G, |
| Augmentation (CA) | for sketch |
Text descriptiont Embedding «,|

Compression and
Spatial Replication

64 x64

| real images

= Compression and
Conditioning Spatial Replication

| Augmentation

64 x64
Stage-| results

256 x 256
L Stage-1l Generator G for refinement | results

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017. 22



StackGAN: First Results

StackGAN Stage 1

StackGAN Stage 11
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The Mode Collapse Problem

better would be something like...

StackGAN Stage 1

}Mw
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StackGAN++ ‘

Idea: stack even more GANs together!

IFC with reshape IUpsa mpling IJoining I Residual IConv3x3

Generators in a tree-like structure JCU Discriminator

real fake

M =

-

128x128
X2Ng

256x256
XNg

Z~N(0,1)

i i il S e S ' i s e il e ' A e Sl i s’ ' o e S | s e s i

128x128x3

64x64x3
Unconditional
loss

Conditional

Reference: Zhang, Han, et al. "Stackgan++: Realistic image synthesis with stacked generative adversarial networks." arXiv preprint arXiv:1710.10916. 2017.
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StackGAN++

Idea: stack even more GANs together!

IFC with reshape

IUpsampIing

Generators in a tree-like structure

all pairs trained together each step

lConv3x3

IJoining

IResiduaI

Z~N(0,1)

128x128
X2Ng

256x256
XNg

64x64x3

— Sl e s vt s o i e | e s o i’ b

128x128x3

JCU Discriminator

real

i -

fake

N

Unconditional
loss

Reference: Zhang, Han, et al. "Stackgan++: Realistic image synthesis with stacked generative adversarial networks." arXiv preprint arXiv:1710.10916. 2017.

Conditional

e e B B ]
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StackGAN++

0_sum_64/image/0 o_sum_64/image/1 g_sum_64/image/2

step 88,560Mon Jul 22 2019 10:51:32 GMT+0200 (CEST)  step 88,560Mon Jul 22 2019 10:51:32 GMT+0200 (CEST)  step 88,560Mon Jul 22 2019 10:51:32 GMT+0200 (CEST)
® ]

G_0: 64x64 image

g_sum_128
g_sum_1 28/Image/0 g_sum 128/Image/1 g_sum 128/image/2

step 88,560Mon Jul 22 2019 10:51:32 GMT+0200 (CEST)  step 88,560Mon Jul 22 2019 10:51:32 GMT+0200 (CEST)  step 88,560Mon Jul 22 2019 10:51:32 GMT+0200 (CEST)
. ] @

G_1: 128x128 image

g_sum_256
g_sum_zss/lmage/o g_sum_zsﬁ/]magen g_sum_ZSG/image/z

step 88,560Mon Jul 22 2019 10:51:32 GMT+0200 (CEST)  step 88,560Mon Jul 22 2019 10:51:32 GMT+0200 (CEST)  step 88,560Mon Jul 22 2019 10:51:32 GMT+0200 (CEST)
2 & .

G_2: 256x256 image

27



StackGAN++: Results

StackGAN Stage 11

StackGAN++
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Wasserstein GAN (WGAN)

Idea: use a different loss function
mén mgx E,.p,  llog Dx)] + [EZNP:(Z)[log(l —D(G(2))] standard GAN loss function

min max |Ex~Pd t wlPX®] = E, p »,[D(G(2)))] using Wasserstein-1 distance
G DeZ e o

Reference: Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks.” International conference on machine learning. 2017.
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: Results

WGAN

WGAN

StackGAN Stage I

L

.
* {
.

:

N

_

r

s

:.:,4:

ih¢ ;.
Fv !
: ._. _ 1 .— g

i

- =

= S

30



Spectral Normalization

Discriminator D

>
>

%4
d|l ;= (WY, Wey := —— = ||Wenllzi=1
)l Li,= (W), Wgy (W) | Wanll iy

k k
DN p< [[eWh = 1IDN,< [JeWiy) =1
[=0 =0

Reference: Miyato, Takeru, et al. "Spectral normalization for generative adversarial networks." arXiv preprint arXiv:1802.05957. 2018. 31



Spectral Normalization: Results

StackGAN Stage 1

StackGAN Stage I, SN in D

StackGAN Stage I, SN in D and G
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Different batch size

Batch Size 64

4

StackGAN Stage 1

StackGAN Stage I, Batch Size 8
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Different batch size

StackGAN++, Batch Size 8

StackGAN++, Batch Size 32
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One-sided Label smoothing

Idea: smooth the label, i.e .9 and .1 instead of 1 and O

=  Smooth only positive labels as .9, and leave negative labels as 0 -> one-sided

minmax E__p

& ; log D(x)] + [E3~P:(g)[108(1 - D(G(2)))]

hlta(x)[

= It is valuable when the label cannot be believed 100%

= In this case, by smoothing the label, the model can consequently improve its robustness and performance

Reference: Salimans, Tim, et al. "Improved techniques for training gans." Advances in neural information processing systems. 2016.
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Mini-batch discrimination

Idea: Check the similarity between samples in the same batch

= If the generator has mode collapse, the similarity should be higher than real image

=  The mini-batch discrimination layer is not for just simple similarity calculation, but a trainable layer

f(x)
D(x)

Discriminator

Reference: Salimans, Tim, et al. "Improved techniques for training gans." Advances in neural information processing systems. 2016.

Image Source: https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
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https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b

Mini-batch discrimination

Idea: Check the similarity between samples in the same batch

= If the generator has mode collapse, the similarity should be higher than real image

=  The mini-batch discrimination layer is not for just simple similarity calculation, but a trainable layer

f(x) |

D(x)

(F(x), 0(x)

Discriminator

Reference: Salimans, Tim, et al. "Improved techniques for training gans." Advances in neural information processing systems. 2016.

Image Source: https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b 37


https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b

Mini-batch discrimination: Results

StackGAN Stage I, with residual layer

StackGAN Stage I, without residual layer
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Mini-batch discrimination: Results

StackGAN Stage 11, StackGAN Stagell, StackGAN Stagell,
no residual layer, 8 conv layers, 8192 latent dim no residual layer, 7 conv layers, 1024 latent dim. no residual layer, 5 conv layers, 8192 latent dim

39




Mini-batch discrimination: Results

StackGAN++, without mini-batch discrimination

StackGAN++, with mini-batch discrimination
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AttnGAN

Idea: use StackGAN++ model as base architecture

Generators in a tree-like structure

Z~N(0,1)

128x128
x2N,

128x128x3

256x256

XN

Reference: Zhang, Han, et al. "Stackgan++: Realistic image synthesis with stacked generative adversarial networks." arXiv preprint arXiv:1710.10916. 2017.
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AttnGAN

Idea: attention to words for image generation

Attentional Generative Network

Attention models

Z~N(0,1)

| v

Fattn
1
E |
P>

atin
k,

hy

64x64x3

128x128x3

Reference: Xu, Tao, et al. "Attngan: Fine-grained text to image generation with attentional generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
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AttnGAN Q

Idea: train own Text Encoder (Bidirectional LSTM)

1 [ e i

I . .
- - Attentional Generative Network

features

|
|
|
| Attention models
|
|
|
|

atin
2~N(0,]) I“Fl
sentence |
feature ho
Text c >
»I » 4 >
Encoder

128x128x3

this bird is red with 64x64x3

white and has a
very short beak

Reference: Xu, Tao, et al. "Attngan: Fine-grained text to image generation with attentional generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. 43



AttnGAN ‘

Idea: compare the relevance between final image and word features

Residual FC with resh u l . . e e . Joini Conv3x3
I o I e I prampine Deep Attentional Multimodal Similarity Model (DAMSM) Imng I o
f A
—
| | - 2
fword : Attentional Generative Network Lc:ccal —
eatures : Attention models eatures
11| ' 1
i v
attn F
2~N(0,]) | i I”E . T
sentence :
Text feature | I ho l_: Image
.I ol Freal €, | Encoder
Encoder |
|
|
|
T e ey S ey sy
this bird is red with 64x64x3 128x128x3

white and has a
very short beak

Reference: Xu, Tao, et al. "Attngan: Fine-grained text to image generation with attentional generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. 44



AttnGAN: Results ‘

in the forest, there is a gray bird with
red head who has a long beak

\'.' ‘}" ‘ » "‘5-

a bird a yellow bird with short beak

. L
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Demo Session

http://10.195.1.122:8050/
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Architecture: Overview

Training

Users

deploy script

training script
trained models
[=l
Train data
Test data
...........

Y

REST API: image

Inference
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Architecture: Overview Appllcatlon
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Architecture: Overview

Development

> Git > Jenkins
[}
(=] Training

Y ! :

| |

| |

i i

DevEnv (Docker) DevEnv (Docker)

Local machine i
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| > \$ &

: mounted folder Big VM with GPU A
deploy script
training script
volume
mounted folder
|
|
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: E
NFS -~
Train data . y . :
Filesharing: data Filesharing: logs and tensorboard
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|
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Dash
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[ Flask |
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Architecture: Overview

Frontend

Dash

REST API: image y

REST API: description, model #

[ Flask

> Git > Jenkins
(=] Training
Y !
I
I
i
DevEnv (Docker) DevEnv (Docker)
Local machine
mounted folder a0 Big VM with GPU A
deploy script
training script
volume
mounted folder
|
|
trained models
Y 2
[=]
2
: E
NFS -~
Train data . y . ’
Filesharing: data Filesharing: logs and tensorboard
ki
(]
: Test data
|

Y

Storage

Inference|
]
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Architecture: Overview Appllcatlon
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Architecture: Application

Users

_____________________________________________ ~

(=] Inference

Frontend

Dash

REST API: description, model #

REST API: image
| Flask |
v v ¥
model 1 model 2 model 3

Dash

Flask

web development,
one drop at a time
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Architecture: Flask

this bird is red with white and has a very short beak

ﬂ ) StackGAN
StackGAN_v2
& Q» WGAN-CLS
StackGAN_MBD
’ —‘i AttnGAN

GENERATE

_____________________________________________ ~

[=] Inference!

Dash

Frontend

Dash

REST API: description, model #

Flask

REST API: image

I Flask I web development,
one drop at a time
¥ v v
model 1 model 2 model 3
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Architecture: Flask

this bird is red with white and has a
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Architecture: Flask

this bird is red with white and has a
Users
ﬁ StackGAN
StackGAN_v2
y % WGAN-CLS
StackGAN_MBD

_:* AttnGAN
[=] Inference!
Frontend
Dash

REST API: description, model #

REST API: image

| Flask |
v v v
model 1 model 2 model 3

very short beak

Dash

-

\_

Flask: one moment, | have
%model% generate this image for
you

\

/

Flask

web development
one drop at a time
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Architecture: Flask

Dash Demo for CreativeAl

Frontend

Dash

REST API: description, model #

REST API: image
| Flask |

\

Flask

web development
one drop at a time

Flask: Done. Please take it as an

array

~
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Architecture: Docker
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Docker Container
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https://medium.com/platformer-blog/practical-guide-on-writing-a-dockerfile-for-your-application-89376f88b3b5

Architecture: Docker Compose
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Architecture: Overview
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Architecture: Overview

Development
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Architecture: Development

> Git ————>» Jenkins
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Architecture: Git and Jenkins

Git Branches

= Master
= Feature/frontend/...
= Feature/backend/...

=  Bug/...
= Fix/...
Jenkins

Automated software quality checks with four stages:

= Build: Code compiles?

* Test: Unit tests pass?

*= Lint: Style guidelines not violated?
= Black: Similar formatting?

Stage View
Declarative: o
Checkout build test lint black Sncleiutiion;
Post Actions
SCM
640ms 20s 1s 3s 495ms 1s
Jun 01 -
581ms 18s 1s 3s 356ms 1s
e al commit
[ 20 }
Hun ot 714ms 20s is 3s 379ms is
17:27
.
kL 626ms 20s 1s 3s 613ms 866ms
16:01
#27
S0 642ms 20s 1s 3s 634ms 935ms
15:46
failed|

L
L @ pylint

$4<4<4<> Star your Python code!

ot
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Architecture: Overview

Training

Users

deploy script

training script
trained models
[=l
Train data
Test data
...........

Y

REST API: image

Inference
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Architecture: Overview

Frontend
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REST API: image y
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Architecture: Filesharing VM

Train
Data

Test
Data

. :-!.-l.'" -
.f”"’ s

oy oS ES R

e R ek
P 'uy;- B i

B e o o
BA kR fxa r-,.-.\
R I o F e R
E‘.’.‘}‘_":- Ve R e Vi Y
|';k-}..£...."..; o X
“’-.,;::-‘-'_ SR ey 0%
T R S S |
LeViaw R
e -
‘.‘ '.::.g.'.
R
Wy
_J.N,A...,_.a.
e P R B o e
Jv-‘h-*&-"" B
re .y,.--ﬁ--.r- e P %
& ; y e oy kR
e — o 3 e e Ry
,m-n--:-f. ek P TR :,'-'im-«..-“l- Bt o ‘.". SR S5
g__.{ l.-_'.,ph:-f'. - T e t‘_v-'_‘:‘,,.‘ s ‘....._.'-.;
OS] KIS ---’, E- ,,_,;_.y_,,,.}..,_,“__ i S S S L g
&v ------_--: ‘--"-;_-_ FX g o A T g pw B SR SN D |
e S o e kY WO NV N % Ve 9 R L ok kg P
P SR S S | %,"--'--. A o S AR
O R AN AN e s 2 AT OV e VaSIP
AL A R e D e B x e
L *-.g;:.-.'g B R S T | e
LW g g B s &

o

LSy - -~-=--"‘v’
X ‘;.

o
Wy

Trained
models

67



Architecture: Tensorboard VM
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Summary

= (Generative Adversarial Networks

= Models: StackGAN, StackGAN++, AttnGAN
= Techniques for GAN Training Stabilization

= Demo Session

= System Architecture
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