Creative AI

Garching, 05.08.2019 Felix Altenberger, Vadim Goryainov, Anastasia Litinetskaya, Jongwon Lee, Vitalii Mozin

Our Team

Felix Altenberger

Data Engineering and Analytics Vadim Goryainov Informatics

Anastasia Litinetskaya Mathematics Jongwon Lee Data Engineering and Analytics Vitalii Mozin Data Engineering and Analytics

Introduction

Agenda

- GANs for Image Generation from Text
- Demo Session
- System Architecture
- Summary and Q&A

Agenda

Introduction

- GANs for Image Generation from Text
- Demo Session
- System Architecture
- Summary and Q&A

This bird is red with white and has a very short beak

CreativeAl

Text Encoder -> GAN

Our Implementation

Dash Demo for CreativeAl

this bird is red with white and has a very short beak

AttnGAN

StackGAN

⊖ WGAN-CLS

○ WGAN-CLS + Stage II of StackGAN

StackGAN_v2

GENERATE

Real or Fake?

Conditional GANs

Applications

Pix2Pix: Image-to-Image Translation

Applications

AttGAN: Class-based image generation and modification

Applications

Image Generation from Text

- StackGAN
- StackGAN++
- AttnGAN

This bird is red with white and has a very short beak

- Introduction
- GANs for Image Generation from Text
- Demo Session
- System Architecture
- Summary and Q&A

Dataset: Caltech-UCSD Birds 200-2011

- 11,788 images of birds
- includes annotations and image captions

Idea: stack multiple GANs together!

Idea: stack multiple GANs together!

Idea: stack multiple GANs together!

trained independently from the rest

Idea: stack multiple GANs together!

Idea: stack multiple GANs together!

StackGAN: First Results

The Mode Collapse Problem

StackGAN++

Idea: stack even more GANs together!

Reference: Zhang, Han, et al. "Stackgan++: Realistic image synthesis with stacked generative adversarial networks." arXiv preprint arXiv:1710.10916. 2017.

JCU

 D_1

Idea: stack even more GANs together!

JCU

 D_0

64x64x3

all pairs trained together each step

JCU

 D_2

128x128x3

fake

С

Conditional loss

real

Unconditional

loss

OR

Down-

sampling

StackGAN++

G_0: 64x64 image

G_1: 128x128 image

G_2: 256x256 image

StackGAN++: Results

Wasserstein GAN (WGAN)

Idea: use a different loss function

 $\min_{G} \max_{D} \mathbb{E}_{x \sim P_{data}(x)} [\log D(x)] + \mathbb{E}_{z \sim P_{z}(z)} [\log(1 - D(G(z)))]$ \bigvee $\min_{G} \max_{D \in \mathscr{D}} \mathbb{E}_{x \sim P_{data}(x)} [D(x)] - \mathbb{E}_{z \sim P_{z}(z)} [D(G(z)))]$

standard GAN loss function

using Wasserstein-1 distance

Spectral Normalization

$$\|d_l\|_{Lip} = \sigma(W^l), \ W_{SN} := \frac{W}{\sigma(W)} \Rightarrow \|W_{SN}\|_{Lip} = 1$$
$$\|D\|_{Lip} \leq \prod_{l=0}^k \sigma(W^l) \Rightarrow \|D\|_{Lip} \leq \prod_{l=0}^k \sigma(W^l_{SN}) = 1$$

Spectral Normalization: Results

Different batch size

Different batch size

One-sided Label smoothing

Idea: smooth the label, i.e .9 and .1 instead of 1 and 0

Smooth only positive labels as .9, and leave negative labels as 0 -> one-sided

$$\min_{G} \max_{D} \mathbb{E}_{x \sim P_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim P_{z}(z)} \left[\log(1 - D(G(z))) \right]$$

- It is valuable when the label cannot be believed 100%
- In this case, by smoothing the label, the model can consequently improve its robustness and performance

Mini-batch discrimination

Idea: Check the similarity between samples in the same batch

- If the generator has mode collapse, the similarity should be higher than real image
- The mini-batch discrimination layer is not for just simple similarity calculation, but a trainable layer

Mini-batch discrimination

Idea: Check the similarity between samples in the same batch

- If the generator has mode collapse, the similarity should be higher than real image
- The mini-batch discrimination layer is not for just simple similarity calculation, but a trainable layer

Mini-batch discrimination: Results

Mini-batch discrimination: Results

StackGAN Stage II, no residual layer, 8 conv layers, 8192 latent dim r

StackGAN StageII, no residual layer, 7 conv layers, 1024 latent dim.

StackGAN StageII, no residual layer, 5 conv layers, 8192 latent dim

Mini-batch discrimination: Results

AttnGAN

Idea: use StackGAN++ model as base architecture

Idea: attention to words for image generation

AttnGAN

Idea: train own Text Encoder (Bidirectional LSTM)

Idea: compare the relevance between final image and word features

AttnGAN: Results

Agenda

- Introduction
- GANs for Image Generation from Text
- **Demo Session**
- System Architecture .
- Summary and Q&A

http://10.195.1.122:8050/

Agenda

- Introduction
- GANs for Image Generation from Text
- Demo Session
- System Architecture
- Summary and Q&A

Users

Users

Architecture: Application

Dash: Give me the image for %description% produced by the %model%

Flask: one moment, I have %model% generate this image for you

-

Architecture: Docker

Architecture: Docker Compose

Users

Architecture: Development

Architecture: Git and Jenkins

Git Branches

- Master
- Feature/frontend/...
- Feature/backend/...
- Bug/...
- Fix/...

Jenkins

Automated software quality checks with four stages:

- Build: Code compiles?
- Test: Unit tests pass?
- Lint: Style guidelines not violated?
- Black: Similar formatting?

	Declarative: Checkout SCM	build	test	lint	black	Declarative: Post Actions
Average stage times: (Average <u>full</u> run time: ~28s)	640ms	20s	1s	3s	495ms	15
#30 Jun 01 1 17:37 commit	581ms	18s	1s	3s	356ms	1s
#29 Jun 01 1 17:27 commit	714ms	20s	1s	3s	379ms	1s
#28 Jun 01 1 16:01 commit	626ms	20s	1s	3s	613ms	866ms
#27 Jun 01 1 15:46 commit	642ms	20s	1s	3s	634ms failed	935ms

pytest

Users

Users

Architecture: Filesharing VM

Architecture: Tensorboard VM

g_sum_256

Agenda

- Introduction
- GANs for Image Generation from Text
- Demo Session
- System Architecture
- Summary and Q&A

- Generative Adversarial Networks
- Models: StackGAN, StackGAN++, AttnGAN
- Techniques for GAN Training Stabilization
- Demo Session
- System Architecture

Sources

- Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. 2017.
- Brock, Andrew, Jeff Donahue, and Karen Simonyan. "Large scale gan training for high fidelity natural image synthesis." arXiv preprint arXiv:1809.11096. 2018.
- He, Zhenliang, et al. "Attgan: Facial attribute editing by only changing what you want." IEEE Transactions on Image Processing. 2019.
- Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- Miyato, Takeru, et al. "Spectral normalization for generative adversarial networks." arXiv preprint arXiv:1802.05957. 2018.
- Salimans, Tim, et al. "Improved techniques for training gans." Advances in neural information processing systems. 2016.
- Xu, Tao, et al. "Attngan: Fine-grained text to image generation with attentional generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
- Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
- Zhang, Han, et al. "Stackgan++: Realistic image synthesis with stacked generative adversarial networks." arXiv preprint arXiv:1710.10916. 2017.

Thank you for your attention!

Q&A Time!

This message contains information that may be privileged or confidential and is the property of the Capgemini Group.

Copyright © 2019 Capgemini. All rights reserved.

About Capgemini

A global leader in consulting, technology services and digital transformation, Capgemini is at the forefront of innovation to address the entire breadth of clients' opportunities in the evolving world of cloud, digital and platforms. Building on its strong 50-year heritage and deep industry-specific expertise, Capgemini enables organizations to realize their business ambitions through an array of services from strategy to operations. Capgemini is driven by the conviction that the business value of technology comes from and through people. It is a multicultural company of 200,000 team members in over 40 countries. The Group reported 2016 global revenues of EUR 12.5 billion.

Learn more about us at

www.capgemini.com