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Project Description
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This bird is red with 
white and has a 
very short beak

CreativeAI
Text Encoder -> GAN



Our Implementation
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Generative Adversarial Networks
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Generative Adversarial Networks
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Generative Adversarial Networks
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Generative Adversarial Networks

10

D(x)=1

D(x)=0



Real or Fake?

11Image Source: Brock, Andrew, Jeff Donahue, and Karen Simonyan. "Large scale gan training for high fidelity natural image synthesis." arXiv preprint arXiv:1809.11096. 2018.



Conditional GANs

12Image Source: Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.



Applications
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Pix2Pix: Image-to-Image Translation

Reference: Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.



Applications
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AttGAN: Class-based image generation and modification 

Reference: He, Zhenliang, et al. "Attgan: Facial attribute editing by only changing what you want." IEEE Transactions on Image Processing. 2019.



▪ StackGAN

▪ StackGAN++

▪ AttnGAN

Applications
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Image Generation from Text

This bird is red with 
white and has a 
very short beak



16

Agenda

▪ Introduction

▪ GANs for Image Generation from Text

▪ Demo Session

▪ System Architecture

▪ Summary and Q&A



▪ 11,788 images of birds

▪ includes annotations and image captions

17

Dataset: Caltech-UCSD Birds 200-2011

Dataset available at: http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

http://www.vision.caltech.edu/visipedia/CUB-200.html


StackGAN
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Idea: stack multiple GANs together!

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
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Idea: stack multiple GANs together!

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.



StackGAN
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Idea: stack multiple GANs together!

trained independently from the rest

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.



StackGAN
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Idea: stack multiple GANs together!

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.



StackGAN
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Idea: stack multiple GANs together!

Reference: Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.



StackGAN: First Results 
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StackGAN Stage I StackGAN Stage II



The Mode Collapse Problem
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StackGAN Stage I better would be something like...



StackGAN++
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Idea: stack even more GANs together!

Reference: Zhang, Han, et al. "Stackgan++: Realistic image synthesis with stacked generative adversarial networks." arXiv preprint arXiv:1710.10916. 2017.



StackGAN++
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Idea: stack even more GANs together! all pairs trained together each step

Reference: Zhang, Han, et al. "Stackgan++: Realistic image synthesis with stacked generative adversarial networks." arXiv preprint arXiv:1710.10916. 2017.



StackGAN++

G_0: 64x64 image 

G_1: 128x128 image 

G_2: 256x256 image 
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StackGAN++: Results 
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StackGAN Stage II StackGAN++



Wasserstein GAN (WGAN)

standard GAN loss function
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Idea: use a different loss function

Reference: Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. 2017.

using Wasserstein-1 distance



WGAN: Results 
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StackGAN Stage I WGAN



Spectral Normalization

31Reference: Miyato, Takeru, et al. "Spectral normalization for generative adversarial networks." arXiv preprint arXiv:1802.05957. 2018.

   …



Spectral Normalization: Results
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StackGAN Stage I StackGAN Stage I, SN in D StackGAN Stage I, SN in D and G



Different batch size
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StackGAN Stage I, Batch Size 8 StackGAN Stage I, Batch Size 64 



Different batch size
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StackGAN++, Batch Size 8 StackGAN++, Batch Size 32



One-sided Label smoothing

▪ Smooth only positive labels as .9, and leave negative labels as 0 -> one-sided

▪ It is valuable when the label cannot be believed 100%

▪ In this case, by smoothing the label, the model can consequently improve its robustness and performance

Idea: smooth the label, i.e .9 and .1 instead of 1 and 0

35Reference: Salimans, Tim, et al. "Improved techniques for training gans." Advances in neural information processing systems. 2016.



Mini-batch discrimination

▪ If the generator has mode collapse, the similarity should be higher than real image

▪ The mini-batch discrimination layer is not for just simple similarity calculation, but a trainable layer

Idea: Check the similarity between samples in the same batch

36
Reference: Salimans, Tim, et al. "Improved techniques for training gans." Advances in neural information processing systems. 2016.

Image Source: https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
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Reference: Salimans, Tim, et al. "Improved techniques for training gans." Advances in neural information processing systems. 2016.
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https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b


Mini-batch discrimination: Results

StackGAN Stage I, with residual layer StackGAN Stage I, without residual layer
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Mini-batch discrimination: Results

StackGAN Stage II,
no residual layer, 8 conv layers, 8192 latent dim

StackGAN StageII, 
no residual layer, 7 conv layers, 1024 latent dim.

StackGAN StageII, 
no residual layer, 5 conv layers, 8192 latent dim
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Mini-batch discrimination: Results

StackGAN++, without mini-batch discrimination StackGAN++, with mini-batch discrimination
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AttnGAN

41Reference: Zhang, Han, et al. "Stackgan++: Realistic image synthesis with stacked generative adversarial networks." arXiv preprint arXiv:1710.10916. 2017.

Idea: use StackGAN++ model as base architecture



AttnGAN
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Idea: attention to words for image generation 

Reference: Xu, Tao, et al. "Attngan: Fine-grained text to image generation with attentional generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.



AttnGAN
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Idea: train own Text Encoder (Bidirectional LSTM)

Reference: Xu, Tao, et al. "Attngan: Fine-grained text to image generation with attentional generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.



AttnGAN
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Idea: compare the relevance between final image and word features  

Reference: Xu, Tao, et al. "Attngan: Fine-grained text to image generation with attentional generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.



AttnGAN: Results
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a bird a yellow bird with short beak in the forest, there is a gray bird with 
red head who has a long beak 
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Demo Session
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http://10.195.1.122:8050/

http://10.195.1.122:8050/
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Architecture: Overview
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Architecture: Overview
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Application



Architecture: Overview
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Development



Architecture: Overview
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Storage



Architecture: Overview
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Application
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Architecture: Application
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Architecture: Flask
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Architecture: Flask Dash: Give me the image for 
%description% 

produced by the %model%
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Architecture: Flask

Flask: one moment, I have 
%model% generate this image for 

you
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Architecture: Flask

Flask: Done. Please take it as an 
array



Architecture: Docker
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Image Source: https://medium.com/platformer-blog/practical-guide-on-writing-a-dockerfile-for-your-application-89376f88b3b5

https://medium.com/platformer-blog/practical-guide-on-writing-a-dockerfile-for-your-application-89376f88b3b5


Architecture: Docker Compose
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Architecture: Overview
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Architecture: Overview
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Development



Architecture: Development
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Architecture: Git and Jenkins

▪ Master

▪ Feature/frontend/...

▪ Feature/backend/...

▪ Bug/…

▪ Fix/...
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Git Branches 

Automated software quality checks with four stages:

▪ Build: Code compiles?

▪ Test: Unit tests pass?

▪ Lint: Style guidelines not violated?

▪ Black: Similar formatting?

Jenkins



Architecture: Overview
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Architecture: Overview
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Storage



Architecture: Filesharing VM
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Train 
Data

Test 
Data

Trained 
models



Architecture: Tensorboard VM
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▪ Generative Adversarial Networks

▪ Models: StackGAN, StackGAN++, AttnGAN

▪ Techniques for GAN Training Stabilization

▪ Demo Session

▪ System Architecture

Summary
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Sources

71

▪ Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." 
International conference on machine learning. 2017.
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arXiv preprint arXiv:1710.10916. 2017.



Thank you for your attention!

Q&A Time!
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A global leader in consulting, technology services and digital transformation, 
Capgemini is at the forefront of innovation to address the entire breadth of clients’ 
opportunities in the evolving world of cloud, digital and platforms. Building on its 
strong 50-year heritage and deep industry-specific expertise, Capgemini enables 
organizations to realize their business ambitions through an array of services from 
strategy to operations. Capgemini is driven by the conviction that the business value 
of technology comes from and through people. It is a multicultural company of 
200,000 team members in over 40 countries. The Group reported 2016 global 
revenues of EUR 12.5 billion.

About Capgemini

Learn more about us at

www.capgemini.com

This message contains information that may be privileged or confidential and is 
the property of the Capgemini Group.

Copyright © 2019 Capgemini. All rights reserved.

People matter, results count.

http://www.linkedin.com/company/capgemini
http://www.slideshare.net/capgemini
http://www.twitter.com/capgemini
http://www.youtube.com/capgeminimedia
http://www.facebook.com/capgemini

