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Abstract

Automating business processes is an important investment of many companies to simplify
the workflow and accelerate frequent processes. Many companies have large amounts of
documents, often scanned, which are used in the daily business. For instance, consider the
case where an employee has to find specific information about a client out of thousands of
scanned documents. In the average case, the employee has to work through hundreds of
documents, which is very time-consuming.

To provide an automated solution, we worked on a pipeline that is able to classify
documents into predetermined classes, recognize text from the scanned documents, extract
keywords from the documents and serve as a platform that allows the end-user to search
through the documents.

The methods we used to implement such a pipeline include document classification, where
we used transfer learning on convolutional neural networks (CNNs) followed by a meta-
classifier (a multilayer perceptron), serving as a stacked generalization scheme. To extract
text from the scanned documents, we used optical character recognition (OCR) with Tesseract-
OCR. Furthermore, we used named entity recognition (NER) to tag specific keywords in these
documents, deploying CNNs, bi-directional long short-term memory networks (BiLSTMs)
and conditional random fields (CRFs). These keywords belong to predefined classes such as
organizations, locations, people, etc.

On top of that, we deployed a search platform using Solr whose results are visualized on
a Banana dashboard. The whole pipeline is provided as a cloud-based web application using
Flask monitored by OpenNebula.
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1 Introduction

We live in the era of digitization. It has struck most fields (Automotive, Banking etc.) and cor-
porate services (Recruiting, Management etc.). However, there still are many open opportunities
that could accelerate corporate processes and thereby generate benefits and lower costs.
Within our project we decided, together with Capgemini, to tackle the digitization of paper-based
processes, i.e. archiving in the public sector, experiment reports in R&D, medication prescriptions
in healthcare etc.
The need for such a service on the German market has been validated and even mentioned
lately (January 2019) by the Süddeutsche Zeitung in [52] (only available in German). The article
depicts the struggle and the amount of work needed to bring order into the archive of two
municipalities in Munich, Bavaria. Taking the space constraint and the physical work needed
to access information into consideration, the digitization of the archive (or most of it) presents
itself as a very fruitful solution, where unlike now, nothing has to be thrown away and sorting
and retrieving information can be done through a computer program on a remote server.
Together with Capgemini, we designed and implemented an end-to-end solution to tackle the
archiving problem within corporations and institutions.

Solution Architecture

The designed pipeline was proposed by Capgemini and is shown in Figure 1. The solution
is composed of different micro-services that can either be called independently or within the
complete pipeline.
The first micro-service is the document classification component that is handled in Chapter 2. It
takes a scanned document as input and predicts its class among a finite predefined set of classes
(e.g. emails, letters, advertisement etc.).
The second pipeline component consists of the Optical Character Recognition (Chapter 3), which
takes scanned documents as input and extracts the text within these images.

Figure 1: Project Pipeline [28], [27], [29]
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The third micro-service provided by our project is the Named Entity Recognition module that
identifies certain entities in a given text, e.g. people, locations or organizations as explained in
Chapter 4.
Finally, the product is made usable through the Banana User Interface (UI). A Solr search-server
runs in the back-end and organizes the output of our service pipeline. Banana comes on top to
display and make our processed data searchable and beneficial for our user.
With the assistance of Capgemini, the project pipeline was built as a web application using
Flask and runs fully on separate virtual machines on the LRZ cloud using OpenNebula. The
cloud infrastructure and the communication between the different micro-services is depicted in
Chapter 6.
In the conclusion, we wrap-up the whole pipeline and go over some potential extensions for the
final product.

Project Management & Planning

We applied for this project as a team and we decided to work as a team. Therefore, we chose to
follow the Scrum [41] method; an agile software development methodology.

Team Roles

Under the Scrum method, we had the following structure:

• The product owner: Capgemini.

• A Scrum master: One of our team members controlling the work progress, plans and issues.

• 4 developers: The four of us developing the final product.

Used Frameworks

We based our communication on Slack, since it offers a broad team collaboration and organization
services such as work channels, archiving, reminders etc.
The second organization tool we used for our project management was Gitlab. Apart from using
it as a code collaboration platform, Gitlab offers an outstanding backlog tracking board where
we created, revisited and assigned tasks, together with Capgemini.

Working Methodology

The Scrum method implies frequent and regular backlog feedback and discussion with the product
owner, Capgemini. Therefore, we met on a weekly basis to monitor the progress of our project,
resolve issues and plan for the next meeting.
We also organized weekly development task forces, where we, the 4 developers, worked on our
weekly tasks, exchanged information and defined assignments for the next week. One month
before the project submission, we started having daily Scrum calls to fight frustration and quickly
resolve issues.

Gitlab Repository

The complete implementation is to be found on the following Gitlab repository
https://gitlab.lrz.de/ga65red/capgai-doc/.
The master branch contains some README files and some manuals while the code has been
completely deployed on the dev branch.



3

2 Document Classification

One of the first steps in document understanding is to recognize what type of document we are
looking at. There are many possibilities to tackle this. We decided to apply a combination of
procedures presented in [16] by Harley, Ufkes and Derpanis and in [9] by Das, Roy, Bhattacharya,
Parui. Both papers propose an image-based method, i.e. classifying a document without using
its textual content.
Figure 2 depicts the classification pipeline step by step.

Classification Pipeline

Preprocessing Transfer
Learning

Region
Classification

Ensemble
Network

Documents Output

Figure 2: Classification Pipeline

2.1 Problem Definition

Given an email or a scanned letter the task is to recognize the type of the document. Specifically,
the task is to implement a classifier that is trained, validated and tested on the Ryerson Vision
Lab Complex Document Information Processing (RVL-CDIP) dataset [16] using the programming
language Python 3.6 and the machine learning library Tensorflow [1] .
In Figures 3 and 4, two samples of the email and letter classes from the RVL-CDIP dataset are
shown.
One of the challenges in image-based document classification is the intra-class variability [16], i.e.
visual appearance of documents within a same class can strongly vary. Another challenge is the
inter-class similarity [16], i.e. the visual appearance of documents between different classes can
be very similar. For instance, Figure 4 shows the intra-class variability since both documents
belong to the letters class. However, both are not visually similar. On the other hand, both
emails shown in Figure 3 are visually similar to the letter in Figure 4a.
Upon request from Capgemini, we restricted our work to email and letter classes from beginning
on. These two classes are widely used formats in day-to-day business. In particular, these
two classes are well-suited for our use-case because the documents are scans of digital texts.
That means that OCR will perform better than other classes which contain also hand-written
documents. Moreover, we guarantee that the upcoming NER micro-service obtains better quality
data. Lastly, due to intra-class variability and inter-class similarity in emails and letters, we were
interested in how well our proposed solution is going to perform.



4 2 DOCUMENT CLASSIFICATION

Figure 3: Two samples of the email class taken from [16]

(a) (b)

Figure 4: Two samples of the letter class taken from [16]

2.2 First Steps

Once the problem had been defined and discussed with Capgemini, each team member looked
up, read and presented a different paper regarding document classification. We went through the
following papers: [16], [9], [4] and [10].
The paper [4] used handcrafted features from scanned documents which represent the documents
as graphs. This meant that we would have to first label the RVL-CDIP dataset. Therefore,
we decided not to implement the proposed model. The paper [10] proposes to apply a Support
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Vector Machine (SVM) classifier on the content of the scanned documents, which implies that
we would have to extract the text within the scanned documents. This would require a highly
reliable OCR micro-service. At this phase of the project, we could not guarantee that. Thus, we
decided not to implement the SVM classifier.
The papers [9] and [16] present classifiers that are image-based, trained on the RVL-CDIP dataset,
and are using deep convolutional neural networks (CNNs). Since the topic of neural networks
and deep learning matched one of our learning goals, we settled for these classifiers. Moreover,
the implementation can be done conveniently using Tensorflow; one skill we wanted to add to
our toolkit.

2.3 Dataset: RVL-CDIP

RVL-CDIP dataset is a collection of scanned documents from public records of lawsuits against
American tobacco firms [16]. It offers in total 16 different document classes. Each class contains
in total 25.000 scanned documents. As explained in Subsection 2.1, we used the classes emails
and letters. The document classes are all balanced. This is an important property since it will
prevent a possible bias toward a class of our trained classifier. Table 1 shows the balanced
property for email and letter classes.

Table 1: Distribution of the email and letter classes

Emails Letters
Train 20010 20106
Validation 2485 2430
Test 2505 2464

2.4 Data Preprocessing

Firstly, the sizes of the scanned documents were unified. All scanned documents were resized
to 780 × 600 × 3, where the first two dimensions represent the height and width in pixels of
the scanned documents while the last dimension represents the red-green-blue (RGB)-Channels.
Since our data samples are grayscale images, duplicating and stacking them yielded an RGB
representation, as done in [9]. Further, as shown in Figure 5, we extracted from each document
the header, bottom, left and right regions.
The last step was to resize each document to 224 × 224 × 3. This was necessary to get the
classifier working as we will point out later.
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Figure 5: Region based CNN

2.5 Model Architecture

Our implemented classifier is an ensemble network of region-based CNNs and a holistic CNN.
The ensemble itself is a feedforward neural network (FFNN). In the following we describe in more
details the CNNs, and the ensemble network.
Following [16], our model uses transfer learning [36] in order to accelerate the learning slope
and reach a higher performance [50]. Both [16] and [9] use inter-domain transfer learning that
consists in transferring learned features from a model trained on ImageNet [11] to our specific
task. The latter dataset is a collection of images from different domains that go from animals to
vehicles and plants etc., and therefore, very different from our training dataset. According to [15],
transfer learning helps the model with generalization of slightly different data (e.g. letters or
emails that do not originate from RVL-CDIP dataset).

2.5.1 Region-Based CNNs and Holistic CNN

The network architectures of the region-based CNNs and the holistic CNN are identical. However,
the training data varies depending on the region.
The largest part of our CNNs represent the convolutional part of VGG16 [45]. The weights were
imported from a VGG16 image classifier trained on ImageNet [11]. Following [16] and [9] we
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decided to freeze the imported weights. This decision supported also our agile development, since
the convolutional part has 14,714,688 weight-parameters. Training this amount of parameters
would be very time-consuming and would not allow fast feedback loops with Capgemini.
A trainable 256-unit fully connected (FC) layer comes on top of the non-trainable VGG16 block
followed by a trainable 4096-unit FC layer. Both layers have a rectified linear unit (ReLU) as
the activation function. We added a dropout [47] layer between them with dropout rate of 0.5 to
reduce the risk of overfitting.
The output of the second FC layer is fed to the 2-dimensional output layer. The latter is equipped
with a softmax activation function [18] to perform the final classification. The Figure 6 shows
the architecture of our CNNs.

Figure 6: Architecture of the region-based CNNs and the holistic CNNs

2.5.2 The Ensemble Network

Based on the paper [16], we decided that our ensemble network takes the first FC layers of all the
CNNs. In this way, the ensemble network obtains all region-specific and holistic representations
of the scanned document. These representations are concatenated as a 1280-dimensional vector
and fed to an FC layer with a ReLU as activation function, as depicted in the Figure 7. Again,
we use a dropout layer with a dropout rate of 0.75 right after the FC layer. The output layer is
2-dimensional with softmax activation function.
A. Das et al. [9] have compared several machine learning techniques (e.g. Ridge Regression, KNN,
SVM, Extreme Learning Machines etc.) and it turned out that the feedforward neural networks
(FFNNs) perform best in our use-case. These models belong to the stacked generalization schemes,
first introduced in [54].
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Figure 7: Architecture of the ensemble network

2.6 Implementation

We implemented the classifier in Python 3.6 and used the machine learning library Tensorflow
(due to hardware limitations we used version 1.5 as explained later in Subsection 6.1.2) together
with the high level API Keras [8]. For the data processing we used NumPy [35], the scientific
computing package, and Python Imaging Library (PIL) [31]. The compatibility of Tensorflow
with NumPy and PIL has shown to be very practical since all our data processing was done
using the last two libraries. PIL offers a nice interface to switch between PIL image objects and
NumPy arrays. The ensemble network was fully implemented using Keras.

2.7 Infrastructure for Training

Based on the one-day course Introduction to the LRZ Supercomputing & Machine Learning
Infrastructure, we decided to use the LRZ Linux Cluster for training. Especially, the CooLMUC2
and CooLMUC3 Clusters [26]. To store the RVL-CDIP dataset, we used the LRZ Input\Output
server. A cluster is similar to a CPU with a RAM and the Input\Output server is a Hard Disk
Drive.
Since the LRZ Cluster is a shared cloud infrastructure, we had to use a resource and workload
manager (SLURM) [25]. To train our classifier, we wrote bash scripts that can be found on our
Gitlab repository, together with explanatory README files. For the bash scripts, we used special
templates to communicate with SLURM. Once a bash script is submitted, SLURM decides when
to run the (Python) program based on the resource requirements, the user’s previous submissions
and the current load on the LRZ Cluster.

2.8 Training

We trained our CNNs and ensemble network using one hyper-parameter configuration (default
values from Keras) and have achieved satisfactory results. Therefore, we did not perform any
hyper-parameter tuning or changes in our model architecture. As a loss function we used
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the cross-entropy [18]. For optimization we also used Adam [22], a stochastic gradient-based
optimization algorithm. For Adam we used default parameters [20]. Lastly, we trained for 10
epochs, within each epoch there were 1252 iterations with a batch size of 32 scanned documents.
We used the CooLMUC2 Cluster to train our model. We required 2 nodes, so 56 Intel Xeon
CPUs and 128 GB of RAM. The training data was approximately 40.000 scanned documents,
around 5.2 GB. The training runtime of a CNN classifier was approximately 9 hours and that of
the ensemble network around 7 hours.

2.8.1 Accuracy of Region-Based CNNs and Holistic CNN

The region-based and holistic CNNs performed well on their own. We can see that in Table 2.
The overperformance of the individual CNNs was predictable since the CNN classifiers presented
in [16] reached accuracies of around 80% on the whole RVL-CDIP dataset, i.e. 16 classes unlike
our binary classification problem. We should also note that these CNNs had a similarly large
model architecture as our CNN classifier, but with a different CNN baseline than the VGG16.
A quick look at Table 2 discards the fear of our models overfitting the training data, since they
reach comparable results on both validation and test datasets.
Figure 8 shows that the right CNN reached its train and validation convergence accuracy within
the first epoch, that is around 97% and 95%. The classifier converged in the remaining epochs.
We observed the same training behaviour by the remaining CNNs. We can conclude from this
behavior that our model complexity overtakes the problem we had to deal with. However, and
also based on the work done in [16], this model should be able to tackle bigger classification
tasks, depending on the real-life application intended by the product owner, Capgemini.

Table 2: Accuracies in the last epoch

Header CNN Bottom CNN Right CNN Left CNN Holistic CNN
Train 0.9917 0.9876 0.9703 0.9764 0.9940
Validation 0.9782 0.9722 0.9524 0.9565 0.9861
Test 0.9777 0.9720 0.9447 0.9538 0.9855

Figure 9 shows that the right CNN already achieved its train and validation convergence accuracy
within 300 from 1252 iterations and started oscillating between 90% and 97%. So, this might
hint that there are just few features to be learnt that are sufficient to distinguish between an
email and a letter in our dataset.
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Figure 8: Accuracy (left) and loss function (right) plots by iteration of the right-based CNN.
Every x-axis point corresponds to a training epoch (= 1252 iterations)

Figure 9: Accuracy plot of the first 300 iterations of the right-based CNN

2.8.2 Accuracy of the Ensemble Network

Since the ensemble network takes the output of the first FC layers of the region-based and
holistic CNNs (that already perform well), we expected that it would reach a very comparable
accuracy and hopefully a slightly better performance than the best CNN; in our case the holistic
CNN (Table 2). According to [9], the ensemble network should reduce the generalization error
compared to the input models.
Table 3 shows that the achieved accuracies indeed met our expectations. Figure 11 shows that
the ensemble network achieves its convergence accuracy within only 30 iterations and oscillate
around 99% on the training dataset after 300 iterations.
This was predictable since the input comes from the trained CNNs that achieved high accuracies.
One can see from the Figure 10 that the ensemble network converged in the remaining epochs.
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Table 3: Accuracies in the last epoch

Ensemble
Train 0.9998
Validation 0.9877
Test 0.9893

Figure 10: Accuracy plot of each 100th iteration and epoch of the ensemble network

Figure 11: Accuracy plot of the first 300 iterations of the ensemble network

2.9 Troubleshooting

At the beginning of the semester, one of us was not able to submit bash scripts due to a certain
account-related issue. This issue was resolved after contacting the LRZ Helpdesk. Moreover,
at a later time, we decided to train our models once more to obtain better visualizations. At
this time the LRZ Cluster was a bottleneck to one of our member since it was overloaded with
other submissions and the member’s account had low priority due to large amounts of previous
submissions. The LRZ Helpdesk proposed to distribute the submissions among the other team
members.
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3 Optical Character Recognition (OCR)

Optical Character Recognition (OCR) is a technique that recognizes text within digital images.
We use it to find characters and their locations in scanned documents. Typical characters are
letters, numbers and symbols. OCR can not only be used for printed text documents, but also
for handwritten documents. Here, we consider two different OCR software algorithms. On the
one hand, the open source software Tesseract-OCR [46], which runs locally. On the other hand,
OCR.Space [34], which runs fully on a remote server and whose free API is limited in the number
and size of processed images.
Figure 12 shows the main components discussed in the following subsections starting with the
input being a scanned document.

OCR Pipeline

Preprocessing OCR Postprocessing

Documents Output

Improvement Loop

Figure 12: OCR Overview

3.1 Problem Definition

Our aim is to extract characters from scanned documents. Sometimes characters are too small,
blurred or simply unreadable. Therefore, the used software should be able to detect the coherence
of words or even sentences. The number of paper-based documents is enormous and present
in almost every business area. Therefore, there is a strong desire to make scanned documents
digitizable. In the next subsections, we introduce two different software products that perform
this task. In addition, techniques for improving the output quality are presented.

3.2 Performance Metric

Natural Language Toolkit (NLTK) Python package ranks among the most widely used libraries
dealing with natural language processing topics.
NLTK provides an English dictionary, which is the foundation to calculate the performance of
the used algorithms. We compare the number of words that do exist in the mentioned dictionary.
An absolute accuracy value is then given by the ratio of the correctly recognized words from the
total of the string chains produced by the algorithm.

3.3 Preprocessing

One of the issues faced by OCR-software is that the input document images do not necessarily
have a good quality. Therefore, we decided to use three different techniques to increase the
quality of the images. Our aim here, is to illustrate the power of such tools to the reader. We
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are going to discuss contrast, sharpness and upscaling techniques.
Let us start with contrast and sharpness. We used PIL (see Chapter 2), which provides the
necessary pre-implemented functions. The description of these functions was taken from [31].

ImageEnhance.Contrast(image): Creates an enhancement object for adjusting contrast in
an image. A factor of 0.0 gives a solid grey image, factor 1.0 gives the original image.

We provided a demonstration of the contrast function in Figure 13. Particularly, one can see the
original image (13a) and the image after using a contrast filter with factor 2 (13b).

(a) Pure Image (b) Contrast=2

Figure 13: Demonstration of the contrast function

By changing the contrast factor, the luminance is changed, whereby contours can be better
distinguished. This helped our OCR-algorithm perform better.

ImageEnhance.Sharpness(image): Creates an enhancement object for adjusting the sharp-
ness of an image. The factor 0.0 gives a blurred image, 1.0 gives the original image, and a factor
of 2.0 gives a sharpened image.

In the next demonstration, we want to show the impact of the sharpness filter on specific areas.
To see the changes, we take different areas and zoom in with four dissimilar magnifications into
the image. Figure 14 shows the original image.
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Figure 14: Pure image

Figure 15: Sharpness=2

Now, let us look into the sharpened one (Figure 15) and compare the areas to the original image.
We observe that the pixels are less blurry than in the original image. However, around the words,
there is also an increasing of shadows. These shadows could decrease the performance of the
OCR-software. We noticed that some images require stronger/weaker contrast and sharpness
factors.Therefore, it is not optimal to use fixed sharpness and contrast factor for our images. Each
image needs a different parameter configuration to obtain a good quality for the OCR-Software.
An enhanced image can be reached by optimizing the contrast and sharpness factors. Hence,
we implemented a function optimal_params to determine a fairly good configuration. Among a
discrete set of factor configurations, we choose those that maximize the accuracy of our algorithm
(see Figure 16), defined in 3.2.
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Figure 16: Aerial view: Interaction between contrast and sharpness

The bars in the figure represent the accuracy in percentage of a randomly picked image with
different contrast and sharpness factors. The step size in contrast and sharpness direction is of
0.2. In the cloud of blue bars, we have one red bar which shows the maximum accuracy. To see
this, take a look at the front view Figure 17.

Figure 17: Front view: Interaction between contrast and sharpness

The optimum was reached at a contrast factor equal to 1 and a sharpness factor equal to 1.2.
In conclusion, this image is already in a good shape, because the factors are not far away from 1.
This image may not require such optimization. However, our dataset contains images for which
this procedure is strongly recommended.

Now, we want to discuss the upscaling technique. For our tasks, we have fixed the height
and width by twice those of the original image and used a bicubic interpolation. Note that,
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there are many different methods for interpolation available, for example nearest neighbour,
linear, bilinear, cubic interpolation etc. Bicubic interpolation [21] is an extension of cubic
interpolation. It interpolates data points in a two-dimensional regular grid. In contrast to other
interpolation techniques, bicubic interpolation considers 4× 4 pixels and has therefore smoother
transitions between pixels and creates less interpolation artifacts. Bicubic interpolation is more
computationally expensive than the others, but that was no problem thanks to the LRZ cluster.

3.4 Optical Character Recognition Algorithm

In this section, we briefly explain the algorithm behind the OCR module and the pre-implemented
algorithms we tested during the project.

3.4.1 Tesseract-OCR

After inquiring the available algorithms performing OCR and comparing them, we chose to
base our OCR micro-service on Tesseract-OCR [46] [51]; an OCR engine supported by Google.
Apart from the positive user reviews, Tesseract-OCR has several advantages when it comes to its
usability and scalability. It is an open source project developed under the Apache license and can
therefore be deployed totally locally and avoid any data privacy concerns for Capgemini. It also
supports 6 languages, including German. Tesseract-OCR 4.0, the latest Tesseract-OCR version,
also supports multi-columned text, text on images and mathematical equations. Furthermore,
Tesseract-OCR can be easily called through PyTesseract, a Python library.

PyTesseract: (The Python Library) Tesseract-OCR has a Python library that makes the
call of the OCR engine straightforward. We have to pass an image to the predefined function
and we obtain a string of the found characters.

3.4.2 OCR.Space

For the sake of comparison we chose to use OCR.Space [34]. OCR Space is a free cloud-based
service that has a callable but limited API. The API is restricted to 500 calls/day and to 25.000
calls/month. The bigger issue with the OCR Space API is the limitation to the file size to 1MB
and that data is sent to a remote server which could be problematic to Capgemini because of
data privacy issues.
We chose not to include the OCR.Space module in the final OCR micro-service to avoid size and
data issues.

3.4.3 OCR.Space VS PyTesseract

While developing the OCR micro-service, we tested the performance of both algorithms. We
noticed that OCR.Space delivered better results than PyTesseract in transforming the input
images to plain text. However it took more time to process the files, which is probably mainly
caused by the file transfer to and from the cloud.

3.5 Postprocessing

To post-process the outcome of OCR, we used an auto-corrector called TextBlob, which, among
other functionalities, acts as spelling corrector. That works well for general texts, where only a
few named entities such as names, locations etc. appear.
However, our dataset includes emails, letters and other classes, where such named entities are
likely to occur frequently. For instance, we found out that names are sometimes converted into
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vocabulary words, which causes issues with the Named Entity Recognition (NER) part, Chapter 4.
Therefore, we decided to remove this postprocessing part and leave it optional for the user to
activate. The same holds for the two upcoming postprocessing elements we implemented.
Stopwords usually refer to the most common words in a language that hold few to no information
in a sentence. Here is a set of examples of stopwords out of the NLTK package:

Sometimes it makes sense to remove such words, e.g. for classifying documents based on text.
Most of Punctuation characters transport also no information for certain tasks and could be
removed. A possible approach is, to allow only certain characters and that can be done with the
Python package re (regular expression).
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4 Named Entity Recognition (NER)

After performing OCR on the scanned documents and classifying them, we are interested in
further information contained in the documents. The goal is to label important words via NER
and assign them to certain pre-defined tags. After examining different state-of-the-art methods
for NER, we decided to analyze and implement the paper [32] by Ma and Hovy.
Figure 18 places the NER module within our project pipeline. The NER module is intended
to be used after the OCR module generating an output for our web application. The output
from the OCR module has to be converted into a certain structure, which will be described later.
After that, we run the NER model, from which we can either generate an output for our search
server or a visual output for the user. Besides, we can feed any text to the NER module and use
it as an independent tagging unit.

Named Entity Pipeline

Feature-to-id
Mappings Run ModelOCR-Output

Output Solr

Visualisation

Figure 18: NER Overview

4.1 Problem Definition

The goal is to find out, whether a word belongs to a certain class from a set of predefined classes.
Furthermore, the algorithm should be able to correctly classify compound words.

Example (Expectation from NER) Assume we are interested in the classes {Person, Organiza-
tion, Location} and want to tag the following sentence with a NER-algorithm:

’Max Mustermann studies at Technical University of Munich and lives in Munich.’

The expected output of our algorithm is the following:

• ’Max Mustermann’ as one person

• ’Technical University of Munich’ as one organization and

• ’Munich’ as location.

In this example we already see a potential difficulty. We expect the algorithm to label the ’Munich’
in ’Technical University of Munich’ as part of the organization and not as location. So the
algorithm should also analyze the context of each word.

4.2 Tagging Systems

There are several tagging systems to encode the output of a NER algorithm. It is important to
know, whether a word is at the beginning, in the middle or at the end of a sequence of words
which belong to one entity. We used the inside, outside ,beginning (IOB) tagging system to
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represent the position of a word in a sequence belonging to one entity. ’B’ means that a word is
the beginning of a chunk of words belonging to an entity and ’I’ means that a word is inside a
chunk. ’O’ shows that none of the predefined classes correspond to that word. For more details
we refer to Appendix A.1 and [38].
Example (Comparison IOB and IOBES) Let us again consider the same sentence from the
previous example and encode the desired NER-output with both tagging schemes as presented in
Appendix A.1.

Table 4: Comparison of tagging schemes

Token IOB IOBES Entity
Max B B Person
Mustermann I E Person
studies O O Other
at O O Other
Technical B B Organization
University I I Organization
of I I Organization
Munich I E Organization
and O O Other
lives O O Other
in O O Other
Munich B S Location

If we are interested whether a word is the end of a chain of words belonging to one entity then
• for IOB we have to look at the next word in the sequence and determine if it is labeled

with B or O

• for inside outside beginning end singletion (IOBES) we only have to check if the word is
labeled with S or E.

Similarly we check whether a word is the beginning of a chain of words belonging to the same
entity.
In our case, we worked with the IOB system, since we are bounded to the training set that uses
this tagging system.

4.3 Neural Networks vs Classical Statistical Algorithms

In the search of a suitable algorithm for the NER-part of our project we studied the following
four papers: [6], [24], [32] and [44]. These papers use similar neural networks to perform NER,
yet with slight modifications. We decided to implement the proposed architecture of [32] by Ma
and Hovy (with slight modifications according to [39]) as it uses the most sophisticated network
and reaches better results compared to the other papers.
We were aware of other algorithms that use non-neural network approaches such as hidden markov
models [33] or rule based algorithms [12]. We decided to use [32] in our work because the proposed
network perfectly coincides with our learning goals, as it combines a CNN, a bidirectional long
short-term memory network (BiLSTM) and a conditional random field (CRF) component. These
are both mathematically and conceptionally appealing for all of our team members. Moreover, it
performs better than the other investigated methods.
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4.4 Dataset: CoNLL2003

To train our network we use the free collection of newswire articles from the Reuters Corpus
provided by Conference on Computational Natural Language (CoNLL) from the shared task from
2003 (CoNLL2003) [40]. The dataset consists of 22137 sentences in total and of 302811 tokens,
i.e. words and punctuation characters. Moreover, the dataset is split into a train, validation and
test sets which contain 67.6%, 17.0% and 15.4% of the whole dataset respectively. As we can
see in the following example, CoNLL2003 is presented as a 4-column plain text file. Only the
first (the tokens) and the fourth (Named Entity Tag) columns are relevant for our use-case. The
second column represents a part-of-speech tag (e.g. noun, verb etc.) while the third column
contains syntactic chunk information. For instance, consider the example in Table 5.

Table 5: CoNLL2003 Example

Token POS-Tag SCI NER-Tag

U.N NNP I-NP I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-PP I-LOC
. . O O

4.5 Model Architecture: Embeddings-CNN-BiLSTM-CRF

The model we selected concatenates pre-trained word embeddings, trainable character representa-
tions and trainable casing information. First, to achieve a character representation, we fed a
CNN with input dimension 30× 50 and window size 3, where 30 is the dimension of the character
embedding and 50 is the number of characters per word after padding. The CNN then outputs a
representation of dimension 30 for each word. The word embedding of dimension 100 together
with the output of the CNN and a 10 dimensional casing information vector constitute the input
to a BiLSTM which outputs a 200 dimensional vector for each word. The output of the BiLSTM
layer then is input to the CRF, which computes the most probable sequence of entities for one
sentence. In the following subsections we explain the parts of the model architecture in more
details.

NER Core

CRF BiLSTM

Character Emb.Input Sentence CNN Word Emb.

Output Casing

Figure 19: NER - From sentence to output
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4.5.1 Word Embeddings

We use the GloVe pretrained word embeddings provided by Stanford [37]. This dataset consists
of 6 billion tokens from Wikipedia and from newswire [2] data which were embedded in Rd, d ∈
D := {50, 100, 200, 300}. We trained our algorithm for all dimensions d ∈ D. According to [32],
the GloVe embeddings yield better results compared to other known word embeddings under the
proposed model [32].

4.5.2 Character Representation and Casing Information

As mentioned in Subsection 4.5, we want to use character representations for the words to extract
more fine-grained information than with the word embeddings. Therefore, we first pad every
word to a fixed length of 50 characters and then embed the characters into a d-dimensional array
(d = 30 in [32]) using a trainable embeddings layer. These embedded characters serve as input to
the above mentioned CNN, which then, coupled with a Max Pooling layer, gives us a character
representation of dimension 30 for every word as shown in Figure 20.

Figure 20: From words to character representation [32]

Furthermore, similar to [32], we use casing information of the words as input to the BiLSTM
part of our network. We consider whether a word:

1. is a digit

2. is mainly numeric. That is the case when the ratio of characters in the words which are
digits and the length of the word is larger than 0.5 and smaller than 1

3. is completely lower case and has no digit information from the above two cases

4. is completely upper case and the above conditions do not apply

5. only the first letter is capital and above conditions fail

6. none of the above.

As mentioned above, the casing information is embedded into R10 as trainable parameters of the
model.
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4.5.3 Bidirectional Long Short-Term Memory

Until now, we described how we embed our available characters and casing information in higher
dimensions of R and represent the words as an output from a CNN. To use these embeddings we
concatenate the word embeddings, character representations and casing information into one
vector. After this step, we will be able to feed a whole sentence into the BiLSTM, a special type
of recurrent neural networks that prevents the vanishing and exploding gradient problems [5], [17].

BiLSTMs are useful when the data can be modeled sequentially or is timely distributed. As the
contexts of the sentences are of particular importance when searching for entities, a BiLSTM
architecture is suited due to its ability to consider left and right information of a word. Consider
the above example where it is important to consider the left side of ’Munich’ from ’Technical
University of Munich’ to be able to differentiate ’Munich’ from the entity type location.

A BiLSTM is composed of a backward LSTM that looks at the left side of a word and a forward
LSTM that considers the right side of a word. Moreover, a (Bi)-LSTM, in contrast to RNNs,
controls how much information is let through to the next state and how much information gets
into the actual state [17]. Using the same notation as in [32], we can define an LSTM-network as
follows:

Definition (LSTM cell [32]) Let xt be the concatenated embeddings at input cell t as explained
above, i.e the t-th word belonging to one sentence. Let σ be the sigmoid function and ht be the
hidden state at input state t. A LSTM cell consists of several gates which control the (amount of)
information flow. In particular, there is the forget gate which controls the amount of information
getting in one cell from the previous state, the input gate which controls the amount of update for
the cell and the output gate which controls the amount of output. Defining Ui, Uf , Uc, Uo to be
the weight matrices for the input at time t and Wi, bi,Wf , bf ,Wc, bc,Wo, bo the weight matrices
and bias vectors for the hidden state at time t we obtain for the update formulae for state t:

it = σ(Wiht−1 + Uixt + bi)
ft = σ(Wfht−1 + Ufxt + bf )
c̃t = tanh(Wcht−1 + Ucxt + bc)
ct = ft ⊗ ct−1 + it ⊗ c̃t

ot = σ(Woht−1 + Uoxt + bo)
ht = ot ⊗ tanh(ct) (4.1)

where ⊗ defines the entry-wise multiplication.

Figure 21 shows the above computations of one LSTM cell state t.
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Figure 21: LSTM cell at state t [32]

4.5.4 Conditional Random Field

The CRF is the final building block of the whole architecture, as shown in Figure 22. It outputs
a sequence of entities and operates on one single sentence at a time. The CRF allows us to
jointly consider the correlations of the labels of a word between the words on the right and the
ones on the left. The CRF computes the most probable sequence of labels for a sentence. The
task of the CRF is to maximize the log-likelihood of the conditional probability [32]

p(y|z;W, b) =
∏n

i=1 exp(W T
yi−1,yi

zi + byi−1,yi)∑
y′∈Ω(z)

∏n
i=1 exp(W T

y′i−1,y′i
zi + by′i−1,y′i

)

w.r.t to the trainable parameters W and b where

• z = (z1, . . . , zn) is a vector of the concatenated feature embeddings (word, character, casing)
of a sentence

• y = (y1, . . . , yn) the sequence of labels for z

• Ω(z) is the set of all possible label chains for the sentence z

• Wx,y represents the weight vector for two labels x and y

• bx,y is the bias corresponding to the two labels x and y.

Having the optimal weight vector W and bias b we can choose the label sequence v by

v ∈ argmax
y∈Ω(z)

p(y|z;W ; b) (4.2)
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Figure 22: Complete architecture [7] with IOBES tagging

4.6 Implementation

We mainly used the algorithm implemented by the paper [39] and we therefore, forked the
corresponding repository [23] and continued to work on that. We deployed the model in Python
3.6 together with Tensorflow and Keras. Keras allowed the easier use of embedding layers, CNNs,
LSTMs and BiLSTMs. That means that we have to assign a unique number to every word
embedding from GloVe and we need to create a mappings dictionary which stores distinctly the
’word-to-id’ information, the ’character-to-id’ information, the ’casing-to-id’ and the ’named-
entity-to-id’ information. Furthermore, we worked with a data dictionary which contains a train
matrix, a test matrix and a validation matrix. These three matrices are generated from the
train, test and validation files from the CoNLL2003 dataset. The three matrices are similar:
For instance, the train matrix contains a dictionary for each sentence which contain the ids for
one sentence, each word split into its representation with character ids, the casing ids, the IOB
encoding of the labels from CoNLL2003 dataset again transformed into ids and the raw sentence.

Example (Key Mappings) Let us have a look at one (half) sentence stored in the train matrix
of the data dictionary

{'CoNLL2003':
{'trainMatrix':

[{'tokens': [192629, 11, 35],
'casing': [6, 4, 4],
'NER_IOB': [0, 0, 0],
'characters' : [[41, 27, 26, 18, 21, 16, 17, 26, 15, 17],

[21, 26],
[32, 20, 17]]

'raw_tokens': ['Confidence', 'in', 'the']}]}}

This dictionary contains now the (half) sentence ’Confidence in the’, whereas ’Confidence’ has id
192629, ’in’ has id 11 and ’the’ has id 35. The casing information are that ’Confidence’ has only
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an upper case in the first character and ’in’ and ’the’ have no casing information. Furthermore,
in the ’characters’ key is each word split into its characters with their respective ids.

After that we can plug these id information into the model starting with a non trainable
embeddings layer for the word embeddings and a trainable embeddings layer for the character
embeddings and casing embeddings followed by a CNN layer for the character representation.
After that we can apply the LSTM (forward and backward) layers and finally the CRF classifier.

4.7 Training

We used dropout and recurrent dropout [42] of rate 0.25 for both, forward and backward,
LSTMs. We trained on randomly shuffled batches with approximately 32 sentences in each batch.
Furthermore, we used the Adam optimizer for the model with default parameters [22] together
with clip norm 1 to control gradient clipping to prevent gradient explosions [19]. The character
embeddings are initialized with uniform samples in

(
−
√

3
d ,+

√
3
d

)d
, where d is the character

embedding dimension [32], [39]. Training was performed on the LRZ Linux Cluster as explained
in Subsection 2.7.

4.8 Model Performance

We need a metric to measure how well our classifier labels each word. Moreover, the CoNLL2003
dataset is heavily unbalanced [40], i.e. the training set contains approximately 88% tokens that
are labeled with ’O’. So imagine if we defined an extremely biased classifier toward this label.
The classifier would label all tokens as ’O’ and the final accuracy on the training set would be
very high. However, it may be that the classifier has not captured any entities outside of ’O’. For
this reason we decided to use the so called F1-measure since it is able to capture the accuracy
across all labels. For the definition of the F1-measure (harmonic sum of recall and precision)
and the definition of the recall and precision we refer to Appendix A.2. With this underlying
definition of a measure for accuracy, we now compare results for our model.

4.8.1 Training with Different Word Embedding Dimensions of GloVe

Figure 23: F1 scores for different word embedding dimensions for test (left) and validation (right)

We trained with different dimensions of the GloVe word embeddings to examine the effects of the
embedding dimension on the model performance. As we can see in the F1-scores in Figure 23,
the 100-dimensional GloVe embeddings perform better, both for the test and the validation sets.
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The model achieved its maximal score of 90.8% for the test set on epoch 21 with a validation
score of 94.2%.

4.8.2 Training with No Casing Information

Figure 24: Comparison of F1-scores for test and validation

We tested whether the casing information we take into account contributes to the performance
of the model when we use 100 dimensional word embeddings. We see in Figure 24 that the
F1 scores for the test and validation dataset are barely distinguishable. However, we notice a
difference of around 4% between the validation and test accuracy. This is comparable to the
results found in the original paper. The difference in validation and test was expected, since
we have fine-tuned our model hyper-parametrs and architecture (word embeddings dimensions)
based on the validation data. A difference of 4% is not uncommon in this context.

4.8.3 Training with Different Character Embeddings Dimensions

Figure 25: Comparison of F1 scores with different character embedding dimensions for test and
validation

In our model, we also needed to define an embedding dimension for the characters to be able
to feed the CNN. Therefore, we also experimented with the dimension of these embeddings
with fixed 100 dimensional word embeddings and 10 dimensional casing information embeddings.
We see that there are barely no differences in the model performance and again, we notice a
difference of 4% between the validation and test accuracy. The same interpretation as above
applies here as well.
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Recall and Precision metrics that have been defined together with the F1-measure in 4.5, are
plotted as well in the same section in the Appendix.
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5 Entity Search Tool & User Interface

The goal is now to provide the end-user with a web interface for their scanned documents. They
should be able to search within found named entities with the web interface. To achieve this we
used Solr and Banana.

5.1 Solr

Solr is a free and open-source software under the terms of Apache license [14]. Furthermore, it is
a Java search server which makes it possible to search for the named entities within the scanned
documents. These documents need to be first transformed into a certain JSON format.
The search server searches a so-called index. The procedure of searching an index can be compared
to the procedure of searching a list of keywords at the end of a book. Once the keyword is found,
we open the corresponding page in the book. The same happens in the server, it serves the user
with the JSON file containing the right index [48].

To allow the server to perform the index searches, we must first index the JSON files. The
indexing procedure may be compared to the procedure of creating an index for keywords in a
book. The content extracted by indexing the JSON files is stored in a so called Core. It is an
instance of a class called Lucene index [53]. An instantiated core contains configuration files such
as managed-schema.xml, that are later modified by the user. For an instantiated core, one has
to add the structure of the JSON files before indexing it.
In our case, we added to the file managed-schema.xml the needed fields that describe the
structure of the JSON-files. Basically, a field is an abstraction of the key-value pair defined in
JSON.

5.2 Set Up Solr as Service

Figure 26 depicts our steps to set up Solr as a service for the end-user.

Setup Solr as Service

Create Core Add Fields Index JSON Files

Figure 26: Solr setup

5.3 Set Up Banana as Service

Banana sits on top of Solr and provides a web interface that can connect to a specific core. The
web interface is presented as a dashboard. Configuring the dashboard for the needs of an end-user
can be conveniently done with a few mouse clicks.
Banana dashboard consists of panels [30]. We decided to use the query panel, table panel and hits
panel. In the query panel, the search entities are typed, e.g. the user might search for a person
that was mentioned somewhere in the emails. The hits panel gives the total number of found
JSON files, i.e. the number of emails containing the looked-up person, and the table panel shows
the found files in a readable manner.
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5.4 JSON Structure and Banana Dashboard

The challenging part has turned out to be the appropriate design of the JSON structure that is
fed into the Solr search server. We tried to find a JSON structure that meets the expectations of
the product owner, Capgemini: We needed to visualize the required information in the dashboard.
However, after trying many different JSON structures and tweaking the source code of the Banana
dashboard, we were not able to find a solution that satisfied all the requirements. The reason
was that Solr depends heavily on the JSON structure that could not capture every information
for the required visualizations.
The final JSON structure is shown in Listing 1. The open issue here consists in the hits panel
that does not show the correct number of found documents which contain the searched entity.

1 [{" Entity ": name of found entity ,
2 " Context ": the context where the entity appeared ,
3 " Document_Name ": name of the document ,
4 " Document_Class ": class of the processed .txt document ,
5 " Found_Personas ": list of personas and their frequencies

extracted from the document ,
6 " Found_Locations ": list of locations and their frequencies

extracted from the document ,
7 " Found_Organisations ": list of organisations and their

frequencies extracted from the document ,
8 " Found_Other_Entities ": list of important entities and their

frequencies extracted from the document
9 }, ... , {...}]

Listing 1: Re-worked JSON Structure

5.4.1 Final Banana Dashboard

In Figure 27 we can see our final web interface provided to the end-user. The blue frame
represents the query panel. For more information on how to formulate queries, please refer to
Appendix B. The red frame is supposed to display the number of scanned documents that contain
the searched entity. However, it now shows the total number of entities that were found within
the documents that contain the searched entity. The green frames represent the table panel:
they display the found JSON files in a readable way.
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Figure 27: Final Banana Dashboard
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6 Web Application
Once all the pipeline modules are successfully built and tested, the next step is to connect the
different services and guarantee the usability of our product.
The connection of the different project components was built as a RESTful web application using
Flask, together with Python, where every component runs on an independent virtual machine
(VM). The VMs are created and monitored by the OpenNebula cloud infrastructure provided by
LRZ.

6.1 Computing Infrastructure

OpenNebula is a cloud computing platform on LRZ, which allows customers to upload and create
their own VM images. These images can contain different operating systems or serve as a storage
device. For our virtual machines, we use Ubuntu 16.04 LTS, which is a Linux-distribution based
on Debian.

6.1.1 Infrastructure on OpenNebula

To make our system powerful and consistent, we decided to distinguish between two kinds of
VMs. On the one hand, there is the Filesystem which acts as memory location for the raw and
processed data. This VM is connected to all other VMs in the system [Figure 28].

Filesystem

VM_Classification

VM_OCR

VM_NER

VM_Solr

. . .

Figure 28: Interaction of VMs

On the other hand, we have the clients. In our system there are four different clients that
are mounted to Filesystem. The mount is required to read and write data from and to the
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Filesystem. The client then executes a specific job with this data and stores the processed
data to a new directory on the server. Clients in our associated system are named after their
particular jobs: VM_Classification, VM_OCR, VM_NER and VM_Solr.
We provided more information about the Filesystem, Client and an instruction sheet for
OpenNebula in Appendix C.1, C.2 and C.3 respectively.

6.1.2 Troubleshooting

We would like to point out some of the issues we have had with the OpenNebula cloud service.
When we started using OpenNebula, we had trouble with the amount of available resources.
Our cloud had already been used by other groups working with Capgemini. Thus we had fewer
resources than we needed.
We also had some problems with the set up of our cloud infrastructure. The provided docu-
mentation to the OpenNebula cloud by LRZ is outdated and therefore, confusing and has some
missing components. Therefore, we had to get in touch with the LRZ support quite often, which
brings us to the next point.
The LRZ support was always friendly and tried to help us with questions. But the long waiting
times for an answer and the limited support at the weekends have disturbed our workflow.
Lastly and most relevant, the VMs are fragile in the BOOT and SHUTDOWN processes. This
was frustrating because we had to contact the LRZ support each time and wait for an intervention
to be able to get access back to our VMs.
The computing nodes accessible with OpenNebula operate with old CPU’s which was problematic
since we used Tensorflow v1.12.0 until we wanted to deploy our services on OpenNebula VMs.
Unfortunately, the old CPU’s in the cloud could only support up to Tensorflow v1.5.0, which
meant a lot of extra work and debugging.

6.2 Web Application Microframework

When designing the final product of this project together with Capgemini, we decided to
modularize the whole pipeline. Each module runs on a separate virtual machine as explained
above to guarantee the independence of the micro-services.
This requires a steady communication between the different virtual machines and that is where
Flask and the RESTful API come in handy.

6.2.1 The RESTful API

The different micro-services of our project communicate through a RESTful-API: an API that
follows the representational state transfer (REST) architecture. The API uses the Hypertext
Transfer Protocol (HTTP) [13] governing the GET, PUT, POST and DELETE requests.

6.2.2 Flask & Flask-restful

Flask is a Python-based web microframework. It provides the means to build and deploy a
web application, i.e. a computer program stored and running over a remote server. Together
with flask-restful, a Flask extension, it covers all the tools required to guarantee an instant
communication protocol between our different micro-services using the predetermined requests
to manage data: the GET, POST and DELETE requests.
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6.3 The Web Application Building Blocks

In this part, we explain the communication protocol between the different VMs.

6.3.1 Master node server

The master is the code entity that controls the flow and the processing of data. It uses the
POST request to start a certain micro-service once the data is ready. It is connected to all the
components. It can be started from anywhere.

6.3.2 Micro-service servers

Each micro-service is assigned to a separate Flask server defined as a Python class and running
on the same VM. Each server is started and keeps listening to the master node requests. Once a
POST request is sent, the corresponding data file is transmitted to the right VM using a GET
request sent to the Filesystem.
Once the job is done, the processed data, i.e. the output of the micro-service, is sent to the
Filesystem using a POST request. The communication is, however, exclusively done with the
master node.
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7 Conclusion
Many decisions within companies rely on information extracted out of documents. In many cases
the key information has to be extracted by hand. To simplify the information extraction we built
a pipeline that automates key information extraction from (scanned) documents.
In this project we delivered an implemented pipeline that matches the solution architecture
designed together with Capgemini. The pipeline consists of different micro-services: Image Docu-
ment Classification, Optical Character Recognition and Named Entity Recognition. We built
an ensemble network that, based on region-specific and holistic representations of a document,
classifies the document type.
As expected, the ensemble network has reached satisfactory results on two types of classes. Fur-
thermore, with Tesseract, we were able to apply OCR on our scanned documents. By changing
the contrast, sharpness and size of the scanned documents, we have improved the number of
correctly recognized characters.
Moreover, with BiLSTM, CNN and CRF we successfully deployed the NER module. With NER
we label relevant entities within documents such as locations, organizations and people.
To make the found entities searchable and the output of the NER module visually convenient,
we used Solr and Banana. Finally, with Flask, we run the pipeline as a web application that was
deployed using OpenNebula.

Outlook

A possible fine-tuning of the pipeline could be to make use of the postprocessing implementations
after the NER tagging and thereby avoid the auto-correction of named entities non-existing in
the English dictionary. This would improve the output of the OCR module.
We can further increase the performance of the OCR module by performing a more sophisticated
search procedure for the optimal parameters than the one presented in Subsection 3.3, e.g.
random search or using bayesian optimization.
The classification micro-service can be easily retrained to classify more than two classes. Therefore,
the pipeline is able to accept more different types of documents. By increasing the number of
classes we expect that the test accuracy might decrease. As a counter-measure, we propose the
document clustering technique [3] or the intra-domain transfer learning used in [9]. Intra-domain
transfer learning consists in performing transfer learning from the trained holistic CNN to the
region-based CNNs and counts as an ’inter-domain’ operation since the training data are basically
the same.
Y. Shen et al. [44] have proposed an amelioration to the NER module proposed by [32]. They
suggest to use active learning [43] as a means of reducing training time and especially overcoming
the issue of new training data that requires labeling. The main idea behind it, is to actively
choose the examples to first annotate from the chosen dataset, use it to fine-tune the model and
let the model choose the next round of data to be annotated (based on how uncertain the model
is about their labels). This training loop is then repeated until a desired model performance is
attained.
Finally, due to lack of time, we were not able to put Jenkins, our Continuous Integration (CI)
tool to work. Nevertheless, we have prepared it and all that still needs to be done, is to write to
test scripts and integrate it with our Gitlab repository. This would allow future teams that work
on our project to automate the testing procedure and generate test reports live, while working
on the project and therefore, avoid bigger coding issues and conflicts.



Appendices
A Named Entity Recognition

A.1 Tagging Systems

Definition (Tagging Systems [38]) Let n ∈ N and C := {L1, . . . , Ln} be a set of classes we want
to use to tag a sequence of words S := (W1, . . . ,Wm), m ∈ N, with.

• The IOB (inside outside beginning) tagging scheme is used to encode, whether a word
is at the beginning or inside an entity or does not belong to any L ∈ C, i.e there are
i1, . . . , im ∈ {’I’, ’O’, ’B’} and j1, . . . , jm ∈ {1, . . . , n} such that Wk is in class Ljk

and
is the beginning of a chain of words belonging to one entity if ik = ’B’, inside a chain if
ik = ’I’ or does not belong to any class if ik = ’O’.

• The IOBES (inside outside beginning end singleton) tagging scheme is an extension of
the IOB scheme as it further characterizes words. With this extension we can also encode
when words are singletons, only one word belongs to an entity, and if a word is the end of
a chain of words belonging to one entity.

A.2 Model Performance

Definition (F1-Measure) If class of a word, not ’O’, has been classified correctly we call it a true
positive (tp), If a class of a word, not ’O’, has been classified wrong we call it a false negative (fn).
If a word with class ’O’ has been classified wrong we call it a false positive (fp). The precision P ,
the recall R and the F1-measure F of a classifier are defined as

P := tp

tp+ fp
, R := tp

tp+ fn
, F := 2 · P ·R

P +R
.

A.2.1 Precision and Recall for Different Word Embedding Dimensions of GloVe

Figure 29: Precision for different word embedding dimensions for test (left) and validation (right)



Figure 30: Recall for different word embedding dimensions for test (left) and validation (right)

The precision and recall of the test and validation dataset in the Figures 29 and 30 show similar
behaviour compared to the scores with the F1 measure in Figure 23 with both datasets.

A.2.2 Precision and Recall for Training With No Casing Information

Figure 31: Comparison of precision and recall with and without casing information

A.2.3 Precision and Recall with different character embeddings dimensions

For the precision and recall, Figure 32, one can not make clear distinctions between the three
casing dimensions due to similar behaviour of the scores.



Figure 32: Comparison of precision and recall for different character embedding dimensions

B Formulating Solr Queries
With Solr we are able to search within indexed JSON files. In the following we demonstrate how
to perform searches.
Assume we are looking for a person named Winston within our JSON files. To formulate a query
that returns all files containing an entity named Winston, we type in the query panel:

"Winston"

This might return files that contain Winston as an organization or a place. To obtain files that
contain Winston as a person we execute:

(Entity:"Winston") AND (Entity_Type:"Person")

The AND operation means that the found files must contain both terms.
To find files that contain Winston, but not the entities Germany or France:

((Entity:"Winston") AND (Entity_Type:"Person")) -("Germany" OR "France")

The minus sign in front of ("Germany" OR "France") means logical not. Further, the OR
operation means that one of the terms must be contained in the files. Thus, Solr will return files
not containing the term France or Germany.
There are many other possible query operations that Solr offers [49]. However, the above presented
operations are sufficient to cover basic needs to search within files.



C OpenNebula

C.1 Server (Filesystem)

Let us take a deeper look into the Filesystem. Additionally to the Ubuntu image, a datablock
image runs on the Filesystem, which provides us with an extra amount of storage. For our
needs, we decided to add a 500GB datablock. To use such an image, we had to mount it in to
the VM. This can be done as follows:

1. Start the VM in the OpenNebula application.

2. Open a Terminal in Ubuntu and connect to your VM:

ssh root@my-server-IP

3. Create a shared folder (storage) and mount it to the datablock image (vdd), execute:

mkdir storage
mkfs -t ext3 /dev/vdd
mount /dev/vdd /root/storage

4. To have a persistent mount, execute

vim /etc/fstab

and add into fstab the following line:

/dev/vdd /root/storage ext3 defaults 0 0

Now, the datablock image is persistently mounted to the VM. In the next step, we install Network
File System (NFS) for the server. NFS is a network protocol, which allows you to exchange data
into a local network. Execute:

sudo apt-get update
sudo apt-get install nfs-kernel-server

We also want that VMs starting with IP’s 10.155.208.xxx or 10.155.209.xxx are able to mount to
the server. For that reason, execute

vim /etc/exports

and add into exports the following two lines:

/root/storage 10.155.208.0/24(rw,sync,no_subtree_check,no_root_squash)
/root/storage 10.155.209.0/24(rw,sync,no_subtree_check,no_root_squash)

After a change in exports execute always:



sudo exportfs -a

Before we are able to mount a client to the server, we need changes in the firewall settings. You
can check the status of the firewall by executing

sudo ufw status

The predefined status should be inactive. To activate the firewall execute

sudo ufw enable

and add the required changes:

sudo ufw allow from 10.155.208.0/24 to any port nfs
sudo ufw allow from 10.155.209.0/24 to any port nfs
sudo ufw allow ssh

To make our changes persistent run:

sudo systemct1 disable netfilter-persistent

C.2 Client

The setup of a client is straightforward compared to the server. Note that, the server has a fixed
IP address in contrast to the clients. The subsequent procedure must be done for each client
separately. So, start the VM in the OpenNebula application. Afterwards, start a Terminal in
Ubuntu and connect to your VM with:

ssh root@my-client-IP

At first, we install NFS for the client. This is usually done by:

sudo apt-get update
sudo apt-get install nfs-common

Let us create a folder called filesystem:

mkdir filesystem

Assume that 10.155.208.226 is the IP of the related server. To have a persistent mount to the
server, we need to add into fstab the following line:

10.155.208.226:/root/storag /root/filesystem nfs
auto,nofail,noatime,nolock,intr,tcp,actimeo=1800 0 0

Mounting the client to the server can be done by:

sudo mount 10.155.208.226:/root/storage /root/filesystem



C.3 Instruction Sheet for OpenNebula

To work with the previous created setup without problems, please follow the belated steps:

1. Log in to the portal: https://www.cloud.mwn.de/login
-use your LRZ identification

2. In the left-hand menu, click on Instances and then on VMs.

3. Mark the checkbox of Filesystem next to the VM and press the start button. After a
couple of seconds refresh the website. The status of your VM should be now on RUNNING.
The IP address of the Filesystem is fixed.

4. Unmark the checkbox of Filesystem and mark one of the clients,
e.g. VM_Classification. Press the start button and after a couple of seconds refresh the
website. The status should be also on RUNNING. Keep in mind the IP address of the
started VM.

5. Open a Terminal on your Ubuntu machine. Execute:

ssh root@<IP-address>

Enter your Password.
Now you have full access to the VM.

The following receipt gives instructions on how to shut down a VM.

1. Open the Terminal, where you run your VM.

2. Execute:

logout

3. Go back to the OpenNebula application

4. In the left-hand menu, click on Instances and then on VMs.

5. Mark your RUNNING VM and click on the shut down button on the top to click: Undeploy

6. Now your VM has shut down and is not using resources. This procedure has to be done
always and is necessary to save resources.

The Filesystem should be started always before the clients. Only that way we can guarantee
that the mount between the VMs is set correctly.

D Web App In Use
In this section, we will exhibit the functional logic behind our Flask app. For the sake of simplicity,
we restrict the explanation to the communication between the flask master node and the OCR
host server.
The first part includes configuring the name and the address of the OCR host server. This will
later on allow the master node to request and post data to the intended service.
Calling

https://www.cloud.mwn.de/login


python ocr\_server.py

will start the OCR server on the predetermined address. The server is based on the OCR_Controller
class:
1. Define the OCR_Controller: A high level API that calls the OCR_Worker object. It requires
the fileclient object that is called in its obj.process(id) method. The id refers to the image to be
processed. The latter is streamed through fileclient.get_file method. OCR_Controller stores the
output using the fileclient.postfile method.
2. Define the OCR_worker: Python object with the needed attributes and attribute functions to
perform OCR. Most importantly it has the method obj.process(image) that returns the output
string.
Once the OCR_controller is up and running, we can post requests for the OCR worker to process
using

requests.post(<url of the to-be-processed image>)

The main assumption for the pipeline to work is that all images are saved under ./img/ folder
and have an unified data type (e.g. .png, .tif etc.).
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