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Abstract
Statistical shape models and 2D/3D registration are both important topics for many
tasks in medical imaging. In this report, we discuss these two topics: the construction
of a statistical shape model and registration of thyroid 2D US scans to a 3D thyroid
model. To create a statistical shape model, one needs to find correspondences between
di↵erent shapes. For this, we introduce a learning-based approach that uses functional
maps. The accuracy of the 3D statistical shape model is analyzed and its variation is
examined. For 2D/3D registration, we introduce an approach that uses a U-Net-based
encoder and Procrustes alignment. To combine the results of the statistical shape model
and the 2D/3D registration, we experiment with registering 2D thyroid scans to a 3D
statistical shape model of the thyroid. In particular, we register slices from one thyroid
to a mesh of another thyroid.
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1 Introduction
1.1 Registration of Medical Images
Many di↵erent medical imaging devices have been developed over the years to diagnose
and treat patients. Ranging from ultrasound (US) over computed tomography (CT) to
magnetic resonance imaging (MRI) and much more, each device has its unique character-
istics of use. For example, CT provides fast scanning of skeletal structure and organs, but
the patient gets exposed to radiation. MRI, on the other hand, does not have radiation
risk and provides high-resolution soft tissue images despite having higher costs and a long
scanning time. Compared to CT and MRI, Ultrasound allows real-time scanning at lower
costs and is easy to access. However, it is highly dependent on the operator and gives
lower resolution images. [1]
To combine the advantages of di↵erent medical imaging modalities, registration has been
a popular research topic in the field. By registering images taken with di↵erent settings of
an organ, one can establish the correspondence between the images. This allows the physi-
cians to understand the patient data better and combine the information. Registration
has improved the clinical field by allowing interventional procedures such as navigating
through a needle biopsy or even developing devices with combined modalities such as
MRT, US/CT, and so on.
Registration can also be used with combining data in di↵erent dimensions. Several works
have been done in the field of computer vision to register 3D views with 2D images [2]
[3] [4]. We further extend this to the medical domain by registering 2D scans to a 3D
atlas. Throughout the project, the goal is to locate 2D US slice images on a 3D atlas of
a thyroid.
This research will have the potential to assist physicians to locate and orient better in
which angle and area of the organ they are scanning. It will ease the scanning, and
help figure out if there are any missing details of the scan. Moreover, it could be used
for the education and training of potential physicians using US. Furthermore, it could
help improve robot-guided US technology to capture the entire organ of interest without
missing some parts.

1.2 Understanding Mean Shapes and Variation in Anatomy
What does it imply for clinicians to declare that a structure, such as an organ, is “nor-
mal”? Does the word “normal” signify it is “common” or “average”? Furthermore the
word “abnormal” denotes infrequently observed characteristics. This terminology, which
heavily relays on the observations, indicates a statistical background of the term “nor-
mality”. Identifying patterns in size, form, and relative position is crucial to recognizing
anatomical variances. Such patterns can fluctuate in a range that is seen as normal
variation. [5]
A statistical shape model is a geometric model which describes a group of semantically
similar objects. It represents an average shape derived from a cohort as well as the
variation in shape [6]. Moreover, it is important to note that a shape is defined as a
property that does not change under similarity transformations. This means it is invariant
to translation, rotation, and scaling [7].
The statistical shape model can be applied in di↵erent methods. For example, gained
knowledge of the shape can be used to segment images. Additionally, variations of the
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shape can be di↵erentiated and used for clustering and classification. The variations can
also be adjusted to create realistic shapes for phantom generation.

1.3 Project Goals
The project consists of two main goals. The first goal is the creation of a 3D statistical
shape model (SSM) of the thyroid. At first the correspondences between several thyroids
are found. From these correspondences, the mean shape and eigenshapes are calculated
to create the SSM of the thyroid.
Second, 2D US scans are registered to a 3D thyroid model. With the 3D thyroid shape
obtained from 3D US scan data, 2D US scans are localized within the 3D shape.
Furthermore, these two main tasks are combined by taking first steps towards registering
2D scans to a 3D SSM of the thyroid: namely, by registering 2D scans of one thyroid to
a 3D representation of a di↵erent thyroid.

1.4 Thyroid Anatomy, Physiology and Pathology
The thyroid gland is an organ located in the neck that has the shape of a butterfly. It
consists of left and right lobes that are connected in the middle by a narrow structure
known as the isthmus. The anatomy of the thyroid can be seen in figure 1. The thyroid
works as an important regulatory organ that controls important body functions, such as
metabolism or growth, by producing hormones. [8]
One of the common disorders of the thyroid is hyper- and hypothyroidism. Around 4-5%
of the population of the United States is a↵ected. Hypothyroidism is when a thyroid does
not generate and release enough thyroid hormones leading to a slow metabolism. One
cause of hypothyroidism is thyroiditis, which is the inflammation of the thyroid. On the
other hand, hyperthyroidism is when the thyroid produces more hormones than needed
and the metabolism is sped up. The autoimmune Graves disease is the most common
cause of this [8]. Another disease of the thyroid is Golter, which occurs when the thyroid
enlarges. Moreover, thyroid cancer is the 20th most common cancer in the UK, and the
5-year survival rate is 87% [9].

Figure 1: Anatomy of the thyroid gland [8]

2 Data Acquisition
Ultrasound imaging techniques have been developed over the years allowing us to acquire
not only 2D but also 3D US images. Compared to 2D ultrasound, 3D ultrasound en-
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hance the understanding of physicians of the scanned volume region of interest. It gives
more accurate and less operator-dependent results. Due to its advantages, 3D US has
been frequently used in clinics for diagnostics and image guidance. There are two main
approaches to 3D US scanning: Fixed probe and freehand 3D US. Fixed probe 3D US
acquires 3D volume images while the probe is held still giving high-quality images with
a fast reconstruction time. On the other hand, freehand 3D US scans the 3D volume
by moving a conventional 2D US probe over a volume of interest. It records a sequence
of US scans and probe positions to reconstruct a 3D volume. The freehand US has the
advantage that it can scan an arbitrary large volume, but it requires a longer scanning
time.
The dataset “SegThy” used in this project was acquired using freehand 3D US obtained
from the Department of Nuclear Medicine at Klinikum Rechts der Isar, Munich. Thyroid
US scans of 16 healthy volunteers between the age of 24 - 39 years were scanned. Since
the thyroid consists of two lobes, a total of 32 thyroid US scans were acquired. All
volunteers were informed about the scanning procedures, data storage and management,
any contraindication for participating in the study, and implications in case of clinical
findings. [10][11]
For each freehand 3D US scan, the 3D US volume was generated by compounding each
US sweeps to volumes with a spacing of 0.12 x 0.12 x 0.12. Additionally, the thyroid
was labeled manually by experts using ImFusion Labels for Academia program (version
2.25.1) (ImFusionGmbH, Munich, Germany). The processed 3D US data were provided
in NIFTI file format. Units of length in this report refer to voxel units with respect to
this grid.
Furthermore, the current project works on mesh data of the thyroid. Therefore the
labeled US scans are converted to mesh format (.ply). However, the meshes had more
than 200,000 vertices and 500,000 faces which are too large to train models. Therefore,
the meshes were downsampled to 10,000 faces using the method from [12].

3 Related Work
3.1 Statistical Shape Model
Statistical shape models have been studied for a long time, as they are a promising ap-
proach for many tasks in medical imaging. The two main steps are finding correspondences
between two 3D shapes and estimating the variation. In the following section, di↵erent
approaches for these challenges are discussed.

A Statistical Shape Model for the Liver The 2002 paper [13] proposes a geometric
approach to build a SSM for the liver. The data consisted of 20 CT scans. At first, a user
has to manually decompose the surface into patches, which are topologically equivalent
to disks. The goal is to map a patch of one liver onto a corresponding patch on another
surface while minimizing distortion. Using the computed correspondences, the SSM is
built. Before computing the mean, the two livers are aligned by the “center of gravity”
method and a mean least squares fit of the displacements. To obtain the variability,
principal component analysis is applied. The compactness of the model is measured and
does not yet reach convergence. This indicates a larger needed training set or improved
correspondences.
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Gaussian Process Morphable Models This paper [14] uses a class of shape models,
the point distribution models (PDMs). The shapes are represented as a normal distri-
bution of point variations, the parameters are estimated from example shapes. To get
a low-dimensional representation of the shape variation in terms of the leading principal
components, PCA is applied. The required input are points which are in correspondence
and all components have to have the same number of points. The x, y, z components of
each point are stacked into vector s. It is assumed that the shape variations can be mod-
eled using a normal distribution S ⇠ N (µ,⌃), with mean µ = 1

n

Pn
i=1 si and covariance

matrix ⌃ = 1
N�1

Pn
i=1(si � µ)(si � µ)T . As the total number of points is usually a large

number, the covariance matrix ⌃ cannot be explicitly represented. However, as is it deter-
mined by the n example data sets, the rank is at most n and can be represented by using
n basis vectors. This is done by performing PCA with the model s = µ+

Pn
i=1 ↵i

p
diui,

where ui are the eigenvectors, di the eigenvalues and ↵i ⇠ N (0, 1). These eigenvectors
represent variations of the statistical shape model.
However, this paper does not elaborate on point-to-point correspondence which is a priori
a very strong assumption. Furthermore, it is not explained how to convert the PDM to a
mesh surface.

Geodesic distances to landmarks for dense correspondence on ensembles of
complex shapes This article [15] tackles the correspondence problem on biomedical
shapes. After manually selecting some landmarks on the shapes, the geodesic distances
between a landmark and any other vertex on the mesh can be e�ciently calculated using
the fast iterative method (FIM) method [16]. Afterwards, one can continuously interpo-
late the geodesic distances onto the faces of the mesh. With these values one aims to
optimize the entropy of the particle distribution of the ensemble of shapes. This entropy
is approximated by the covariance of the geodesic distance features, whose gradient can
be calculated. In this way, the position of the particles are optimized. A downside of
this method is that one requires an expertise to annotate some landmarks. In this work,
6 landmarks on MRI scans of brains are marked, which is only feasible for experts and
time-consuming.

Functional Maps: A Flexible Representation of Maps Between Shapes For rigid
shapes, the deformation of two shapes can be represented as a rotation and translation.
The correspondence task becomes di�cult when trying to match non-rigid shapes. Here
the matchings are commonly represented as pairings of points on the two shapes. These
pairings are also called correspondences. This paper [17] approaches the problem not
by observing correspondence points on the shapes, but by looking at mappings between
functions defined on the shapes. The functional representation has the important prop-
erty that many natural constraints on a map become linear. Using the Laplace-Beltrami
eigenfuctions as the basis for the functional representations lets the map be compact.
This means that the functions are all approximated by using a small number of basis
elements. An algorithm to match the shapes is presented. Given two meshes and the
Laplace-Beltrami eigen-decomposition, the functional constraints that correspond to de-
scriptor and segment preservation constraints are computed. Together with the operator
commutativity, a linear system of equations is formed and solved by least squares.

Deep Functional Maps: Structured Prediction for Dense Shape Correspon-
dence This approach [18] is learning-based and proposes a structured prediction model
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in the space of functional maps and linear operators. The learning process is modelled
through a deep residual network. The input is a dense descriptor fields, defined on two
shapes, the output is a soft map between the two given objects. The computation of the
correspondence is part of the learning procedure.
For the input feature the fast and robust SHOT descriptor is used, which is defined in
paper [19]. Non-parametric layers are added to the network to implement the least-squares
solve.The computation of the soft correspondences follows. The loss can be interpreted
as a soft error, which weights the probabilities of the geodesic distance from the ground
truth.

3.2 Partial Registration
For the partial registration, we are interested in approaches that can correspond 2D and
3D data in order to find an alignment. Matching between 2D and 3D modalities has been
predominantly used for SLAM (simultaneous localization and mapping) applications in
the area of autonomous driving. Our main inspiration is 2D-3D MatchNet [3] which
jointly trains 2D and 3D embeddings and uses them to localize camera images in a 3D
scene represented by a point cloud. A similar approach is taken by [4] which computes
joint 2D/3D features and obtains similarities via a metric network. In 2D3D-GAN-Net
[20], a GAN architecture is used to learn similar embeddings for 2D/3D modalities. Earlier
work is [2] which uses SIFT features and a trained “visual vocabulary” to align images to
point clouds. Another approach that computes descriptors to match between 2D and 3D
modalities is LCD [21], which computes joint 2D/3D features using auto-encoders.
Very recent work from the medical domain is [22], where US images are registered to MRI
scans of the abdominal area. The method uses U-Net-based dense feature extractors,
matches the jointly trained 2D/3D features, and computes an alignment.

2D3D - MatchNet : Learning to Match Keypoints Across 2D Image and 3D
Point Cloud The 2D-3D MatchNet [3] is a deep network model that registers a 2D
camera image with a 3D point cloud by jointly learning the similarity of an image patches
and point cloud patches. They extract keypoints from both modalities and compute
embedding vectors. Then they identify matching pairs of patches based on a distance
threshold in the embedding space and run a perspective projection algorithm to estimate
the camera position. The encoder uses a VGG and a PointNet network and is trained via
triplet learning

Global Multi-modal 2D/3D Registration via Local Descriptors Learning The
objective of [22] is closely related to our goal: registration of ultrasound slices to MRI
images. It uses 2D and 3D U-Net architectures to compute dense feature maps. Simi-
larities between feature vectors are computed using a dot-product similarity, which gives
a soft assignment matrix. Similar encodings are detected as matches, based on which
the ultrasound slice is located relative to the MRI image. A translation and rotation are
computed using a RANSAC-based algorithm.

4 Statistical Shape Model
The task of creating a SSM is divided into two sub-tasks. First, one needs to establish
correspondences between the vertices of the thyroid meshes. An approach to solve the
correspondence problem is discussed in section 4.1. Then in section 4.2, we compute the
mean and the variation of the corresponded points to obtain a model for the shapes.
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4.1 Correspondence Problem
Since we do not have ground-truth labels for the corresponding points, an unsupervised
or weakly-supervised method is needed to tackle this problem. For a (weakly-) supervised
approach, one can find landmark points, as in paper [15]. Especially when there are
outliers in the data set, it can be challenging to determine these landmarks without strong
medical expertise. Using an unsupervised approach makes our model fully automatized,
scalable, and applicable to everyone. At future time points when more data has been
acquired, the model can easily be extended.
We chose the unsupervised model SURFMNet [23] to learn correspondences between the
thyroids. This method is based on functional maps [17].

4.1.1 Background

Here, a mesh is modelled as a two-dimensional Riemannian manifold X with the standard
measure dµ induced by the volume form. For such a manifold X , one defines the function
space L2(X ) = {f : X �! R | hf, fiX <1}, where hf, giX =

R
X f · g dµ. A bijective

map T : X �! Y between two shapes X and Y induces a map TF : L2(X ) �! L2(X ) by
mapping f 2 L2(X ) to g = f � T�1 2 L2(Y). In fact, there is an one-to-one correspon-
dence:

{T : X �! Y bijective} !
�
TF : L2(X ) �! LY)

 
(1)

For the other direction, one can retrieve T (x) with x 2 X by considering the indicator
function �x 2 L2(X ). Hence, such maps TF are a generalization of point-to-point cor-
respondences. These functional maps have some useful properties, which is the reason
to consider them. For example, they are linear and can be represented as a (possibly
infinite) matrix with respect to bases on L2(X ) and L2(Y) [17]. As a basis, one uses the
eigenfunctions of the Laplace-Beltrami operator on the given shape. This choice is proven
to be optimal [24]. We will compute a certain number of eigenfunctions of the discrete
Laplace-Beltrami operator for each shape in the preprocessing step. We reference [25] as
good introduction to this topic.

4.1.2 Preprocessing

As a preprocessing method, mesh augmentation is done by deforming the thyroid mesh.
This gives variations of thyroid structure and improves the generalization during training.
The thyroid is deformed locally, deforming only a part of the thyroid mesh. First, a
vertex is selected to define the center of augmentation. Then the surrounding vertices are
obtained within a given radius of augmentation. These vertices are multiplied with a 3D
Gaussian density centered at the center vertex in the direction of the norm of each vertex.
Moreover, the mesh can be augmented in several parts as shown in the right image of
figure 14 in the appendix.

4.1.3 Model

As we do not have ground-truth labels, we cannot use the classical supervised deep func-
tional map approach [18]. Therefore, we use an unsupervised version called Spectral
Unsupervised Functional Map Network (SURFMNet) [23]. This model has the same ar-
chitecture as [18] (see figure 2). However, it uses an unsupervised loss, which forces the
resulting functional map to have some good properties such as :

• Bijectivity of the functional map
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• Orthogonality of the functional map
• Commutativity of the functional map with the diagonal matrix containing the
eigenvalues of the Laplace-Beltrami operator

• Preservation of shape descriptors via commutativity with the functional map

For this, one computes the functional map from shape X to shape Y and from shape Y to
X. Of course, one expects that these maps are inverse, as stated before. Furthermore, if
the point-to-point correspondences are volume-preserving, then the associated functional
map must be orthonormal [17], which explains the second part of the loss. The same
article shows that if the point map is an isometry, then the corresponding functional map
commutes with the Laplace-Beltrami operator. This is motivated by the fact that a non-
trivial map T on function spaces corresponds to a point-to-point map if and only if T
preserves the point-wise product between functions [26]. Using this fact and taking the
fine-tuned descriptors as functions, [27] deduces the fourth part of the loss. These parts
are summed up with associating weights, which are taken from the original article [23].
In this way, the fourth summand gets the largest weight and the third one the smallest.

Figure 2: Model architecture of SURFMNet [23]. From a pair of shapes X and Y, one
extracts the hand-crafted SHOT descriptors [19] and refines them in five residual blocks.
The refined features and the Laplace eigenfunctions of both shapes are then used to
calculate the functional map. Note that the only learnable parameters are in the residual
blocks.

4.1.4 Implementation Details

We used an existing implementation of the SHOT descriptor, which gives a slightly mod-
ified feature dimension than in the original paper [19], namely 336 instead of 352. Having
these features, we refined them in five residual blocks of hidden and output dimension
336. Overall, we trained two models of SURFMNet, one for the left lobes and one for the
right lobes. In order to increase our dataset and add some more variation, we applied the
augmentation technique from section 4.1.2 and random rotations. All thyroids are taken
into the training set since we only have a small number of thyroids available and our SSM
should include all thyroids in the end. After 50 epochs of training with a learning rate of
10�3, we obtained our results which are discussed in section 6.1.
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4.2 Construction of Statistical Shape Model
To generate the model from the corresponded thyroid pairs, a reference thyroid X has
to be chosen. In section 6.1.3 the 16 di↵erent options for the left and right side are
evaluated. After choosing a reference thyroid X, the correspondences of every thyroid Y
to the reference thyroid are calculated with the method from section 4.1.3.
Now, it is possible to compute the mean shape. For each vertex i of the reference thyroid
X, we form the set of vertices from all other thyroids which correspond to this vertex i.
Note that these correspondence sets can have a large variance in the number of elements.
After calculating the mean and the standard deviation on this set, we apply an outlier
detection to exclude all points from this set that are more than 2 standard deviations
away from the mean. Finally, we recompute the mean and standard deviation on this
filtered set.
The calculation of the variance on a per-point basis di↵ers from other SSM approaches.
Other works like [13, 14, 7] represent a variation of the SSM with eigenshapes. For this,
one needs an equal-sized set of points for each shape whose points are in 1:1 correspon-
dence to each other. Otherwise, one cannot compute the covariance matrix of the point
coordinates that leads eventually to the eigenshapes. In our approach, this matrix can
not be derived. While the model learns to minimize the bijectivity loss, not all points
have 1:1 correspondence (see figure 15). So, every point on the reference thyroid can have
a di↵erent number of corresponding points (or there is even no corresponding point).
Hence, it is not possible to form the covariance matrix.
In contrast to our correspondence approach, the authors from [13, 14] use landmarks.
This makes it possible to create eigenshapes. In future work, we will tackle this problem
to encapsulate higher dimensional variance.
Now, the SSM built from these mean points and standard deviations is the form of a
point cloud. Since we want to end up with a mesh it is useful to apply another outlier
detection on the point cloud before generating the mesh. This is a radius outlier removal,
where points that only have a few neighbors in a given sphere around them. We set the
number of points to be 20 and the radius to be 0.05. The mesh is now constructed from
the point cloud by applying a Poisson reconstruction [28]. After having a mesh, we apply
smoothing methods from [29, 30] to improve the quality of the meshes.
The full pipeline can be seen in 3.

Reference Thyroid

Left thyroids

Correspondence

Mean SSM

Figure 3: Statistical shape model pipeline
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5 Partial Registration
5.1 Approach
2D US scans give a scan of a thin plane at some arbitrary angle in the body. However, it
is challenging to localize the plane angle and direction according to the organ. Therefore,
in this partial registration section, we aim to localize the 2D US slice in a 3D model of
the thyroid by 2D–3D registration of the US scan.
Using the 3D US scan data, 2D images of US intensity are extracted as a slice. To locate
the 2D slice in a mesh representation of the thyroid, we employ a two-stage approach
which is inspired by 2D-3D MatchNet [3].
In the first stage, a large amount of small patches is extracted from both the 2D slice
data and the 3D thyroid representation. The patches are fed through a neural network
encoder which produces high-dimensional embeddings of the data. The network is trained
to jointly embed patches from the two data modalities such that patches that come from
the same region are mapped to nearby embeddings. Among the given 32 scans of thyroid
lobes, 24 are used for training, 4 for validation, and 4 for the test.
In the second stage, matching pairs between the 2D slice patch embeddings and the 3D
model patch embeddings are determined. Our algorithm assumes that if such a pair of
embeddings is close in the embeddings space, the corresponding patches are close in the
input data. Using a number of such matches, a classical algorithm is run to register the
slice to the 3D model. We use a Procrustes alignment in the simplest case, and introduce
several tweaks to deal with false-positive matches and increase the performance.
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Figure 4: 2D/3D Registration pipeline

5.1.1 Patches from Ultrasound and Mesh Representation

Two types of patches are extracted from the US scans: SDF patches and US slice patches.
To represent the 3D mesh generated from the segmentation labels as a voxel grid, we use
a discretized signed distance field (SDF) representation. We sample box-shaped patches
of size (N⇥N⇥N) from the SDF grid and patches of size (M⇥M⇥D) from the US grid
(see figure 19b in the appendix). In particular, we use ultrasound patches of a certain
depth D instead of a flat 2D image: We conjecture that thicker patches are easier to be
matched to a mesh because they intersect it not only at a line, but at a surface. One goal
is to experiment with relaxing this simplification.
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5.2 Network
5.2.1 Encoder Structure

Our network uses two encoder networks with identical architecture (but di↵erent weights):
one for US patches, and one for SDF patches. For the encoders, the 3D U-Net encoder
is used [31] followed by two fully-connected linear layers that map the features to the
embedding space of dimension Cembedding (128 in our experiments).
The 3D U-Net encoder is a convolutional architecture that consists of several layers of
3D convolutions with batch normalization and ReLU, interleaved with spatial max pool
operations. Originally, in the 3D U-Net, this architecture was used together with a mir-
rored decoder architecture and skip connections to segment medical images. Here, the
3D U-Net is selected because it is a standard architecture known to work well with med-
ical data. Additionally, it can segment the thyroid data in our dataset [11] and has the
potential to be pre-trained on a segmentation task in future extensions to this project.
[31]

3 32 64
64 128

128 256
256

C
features

C
em

bedding

C
em

bedding

CONV (+BN) + ReLU 
Max pool 
Flatten 
Linear + ReLU 
Linear

Figure 5: Encoder architecture (up to the green arrow, equal to the 3D U-Net encoder)

5.2.2 Training and Loss Functions

To train our network, we use a triplet learning procedure (see e.g. [32], [33]). The network
gets a triplet as input: an ultrasound anchor patch p0, a positive SDF patch p+, and a
negative SDF patch p�. These three patches are then passed through the respective
encoder networks to get the embeddings. Then the loss is computed and the weights of
the network are updated using the Adam [34] algorithm.
Two di↵erent loss functions are considered for training the network.
The first loss function is the weighted soft-margin loss which was proposed by [35]. The
motivation behind this loss is to perform triplet learning without having to fine-tune
the distance parameter in the classical triplet loss [36]. The weighted soft-margin loss is
defined by:

Lwsm(e0, e+, e�) = log(1 + e↵ d+�) (2)

with e0, e+, e� as embedding vectors corresponding to p0, p+, p� and d+� = ||e0 � e+||2 �
||e0 � e�||2 as the di↵erence between the positive and negative distance. We set ↵ = 5.0
based on the 2D-3D MatchNet recommendation [3].
Furthermore, when using Lwsm, we normalized the embedding vectors to bring them to
the unit hypersphere at the end of the encoder.
The second loss function, which we call the distance matching loss, is considered as an
alternative loss. Here, we aim to directly match the Euclidean distance in the 3D space our
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patches come from in the high-dimensional embedding space. Similar ideas are pursued
e.g. in [37]. Given the assumption that the patches p0, p+, p� are centered at locations
x0, x+, x�, the distance matching loss is defined as:

Ldm(e0, e+, e�) =
�
||x0 � x+||� ||e0 � e+||

�2
+
�
||x0 � x�||� ||e0 � e�||

�2
(3)

The training is further tweaked using perturbation techniques that are described in detail
in section 5.4.

5.3 Slice Identification
After training our model, the location of the US slice in the thyroid mesh is estimated
using the trained model. For this, the idea from 2D-3D MatchNet [3] that registers images
taken by a camera to a 3D scene is adopted.
First, matching pairs of patches are identified using our encoder network. Afterwards,
using a classical (non-trained) algorithm, slice parameters are computed such that the
matching patches on the slice are brought close to their counterparts in 3D space. For
this last step, we use a combination of Procrustes alignment and a hypothesis generation
step based on kernel density estimation (KDE) which helps with outlier detection.

Finding Matching Patches To find pairs of matching patches, a set of kslice 2D patches
Pslice are sampled from the ultrasound data given as a 2D slice. Also, a set of kthyr patches
Pthyr from the 3D space are sampled. These 2D and 3D patches are sampled near the
surface of the thyroid mesh. The US and SDF patches are encoded into the embedding
space and the nearby embeddings are identified. To this end, the closest SDF embedding
to each of the US embeddings is found. Of the kslice pairs constructed in this manner, we
pick the kmatch pairs with closest distances.

Procrustes ApproachGiven the 2D coordinates Cslice = {(xi, yi)> | i 2 [k]} of the
ultrasound matches with respect to the slice (see figure 6a), and the 3D coordinates
Cthyr = {c̃i = (x̃i, ỹi, z̃i)> | i 2 [k]} of the SDF matches (see figure 6b), we map the slice
coordinates to 3D space to obtain coordinates Cslice-3D = {ci = (xi, yi, 0)> | i 2 [k]} 1.
Then the Procrustes algorithm [38] is used to find an a�ne transformation A 2 SE(3)
such that the Procrustes loss

P
i2[k] ||Aci � c̃i||22 is minimized (where ci is assumed to

be in a homogeneous coordinate representation). In this particular flavor of Procrustes
analysis, A may translate and rotate, but not mirror or scale the point clouds (see figure
6c).

Hypothesis Generation with Kernel Density Estimation The Procrustes alignment
was observed to work well if the matching patch pairs correspond to the same region.
However, it is not robust to noise and can be significantly perturbed in the presence of
outliers (i.e. false-positive matches). On the other hand, if the matches lie roughly in the
correct region, the Procrustes algorithm also predicts the slice well (see 6c).
For this reason, we adopt an approach that first generates hypotheses about potential slice
regions. Then the matching algorithm is run for each region with SDF patches sampled
only from the specific region. For this step, the slices are assumed to be roughly axis-
aligned to the x-y plane (see 6b). In a clinical setting, one would assume the slices to be
rotated by a small angle only, which justifies this simplification,

1The location is arbitrary, as the result of Procrustes registration is invariant under translation.
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Concretely, we first generate matching patch pairs on the whole thyroid, and project
the SDF match coordinates Cthyr to their z coordinates Cthyr,z 2 R. On this set of
projections, we run kernel density estimation (KDE) [39] that fits a Gaussian mixture
density to Cthyr,z 2 R: The resulting density � is a convex combination of Gaussian
densities corresponding to N (c̃i, �2) for c̃i 2 Cthyr and a bandwidth parameter �2. We
then use the mKDE biggest local maxima {zj | j 2 [mKDE]} of the KDE density as
our hypotheses z coordinates. We go on to run mKDE more iterations of the matching
algorithm, and in each iteration j sample SDF patches only within the z coordinate
region [zj �wrestr-z, zj +wrestr-z], where the z restriction width wrestr-z is a hyperparameter
(typically chosen to be 10.0). This generates mKDE candidate slices, of which we pick the
one with the lowest Procrustes loss as our prediction.

0 50 100 150

150

100

50

0

(a) Ultrasound patches (b) SDF Patches/True slice (c) Procrustes result

Figure 6: Example of approximately matching 2D/3D patches with Procrustes

5.4 Refinements and Implementation

5.5 Patch Generation and Refinements
We generate coordinates for the US anchor patches and corresponding positive SDF
patches by sampling patch centers uniformly from the mesh surface which are taken as
centers. We assume that patches close to the mesh are more useful for registering to the
mesh. Furthermore, we assume that at test time such patches can be generated as there
are accurate thyroid segmentation methods available (see e.g. [11]). We generate negative
samples by sampling centers uniformly from the mesh surface, and ensuring they are at
least a certain threshold tneg (typically 40.0) way from their anchor patch. To prevent
overfitting, we reshu✏e negative samples after each epoch.
During registration at test time, we cannot assume to have US and SDF patches in exactly
the same locations. To allow for patches in slightly di↵erent locations to match, we add
random perturbations of up to ✏pert (typically 10.0 or 25.0) voxel units to the positive
patch coordinates.

5.6 Cross-Thyroid Registration
Towards combining the partial registration with the SSM, we want to be able to perform
cross-thyroid slice registration. That is, given an ultrasound slice from one thyroid, we
want to be able to determine its position with respect to another thyroid mesh. This
can be useful if the full shape of the currently scanned thyroid is unknown, but another
reference thyroid shape – for example the mean shape constructed in section 4.2 – is
available.
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5.6.1 Cross-Thyroid Training

To achieve this, we perform cross-thyroid training using the functional map correspon-
dences from section 4.2. We keep the triplet learning approach, but within a triplet
use samples from di↵erent thyroids: If the anchor patch comes from thyroid lobe Li, we
transport its positive and negative sample patches to another thyroid lobe Lj with which
correspondences exist (i.e. it is also a left or also a right lobe, respectively). We transport
the patches by finding the nearest mesh vertex v in Li, selecting the corresponding vertex
ṽ in Lj, and placing the patch at the same o↵set to ṽ as the original patch was to v. For
each anchor patch, the partner lobe that its positive and negative sample patches are sent
to is randomly selected in every epoch.

5.6.2 Cross-Thyroid Slice Matching

Using the model trained on cross-thyroid patches, we perform the slice identification
algorithm described in section 5.3 in a modified form, where SDF patches are used from
the lobe we want to match to, while US patches come from another thyroid.

6 Results
6.1 Statistical Shape Model
6.1.1 Evaluation of Correspondences

It is not obvious how to evaluate the correspondences without having ground-truth values.
Besides the visual evaluation (figures 16 a 17), we found out that it is important for the
SSM “how bijective” the correspondences are. That is why we computed the bijectivity
rate, which is the ratio of points that are mapped to the reference thyroid and via the
inverse functional map back to the starting point. This ratio is calculated for one fixed
thyroid to all other thyroids and the mean of these rates is taken. In figure 15 in the
appendix, we visualized these results for all fixed thyroids. One can see that for both
lobes there are some significant outliers like thyroid 16 and 21. In figures 16 and 17, this
fact is confirmed visually. There, one sees that these thyroids have an atypical shape and
therefore it is more di�cult for the model to find the correct correspondences.
Furthermore, the left lobes have slightly better correspondences than the right lobes with
respect to this evaluation matrix. Additionally, it also has a lower standard deviation.
This is observed multiple times during the development of the SSM (see table 1 and 2).

6.1.2 Evaluation Metric of Statistical Shape Model

We now want to evaluate the performance of the correspondences used for the statistical
shape analysis. For this, we use the evaluation metrics defined by Davies [40]. As it is
proposed for SSM including eigenshapes, we have to adapt some measures, while preserv-
ing the basic characteristics. In the following sections, we will describe how each of these
is measured. The results in each of the three metrics are ranked and finally, we take the
sum of ranks (the lower the better).

Generalisation AbilityA SSM should be able to represent any instance of the class. To
measure this, we look at the performance of the model when it has to represent unseen
instances. We use the leave-out method, meaning we build the SSM including all thyroids
except N = 3. These are chosen randomly in each iteration. We then look at the average
Chamfer Distance of the unseen thyroids to the mean shape of the resulting SSM. This
is repeated ten times to reduce the impact of randomness. Overall, for a SSM based on
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reference thyroid Xj with a left-out set M , we have

G(Sj) =
1

N

X

Xi2M

ChamferDistance(Xi, Sj\M)

Specificity For a model to be specific, it should only generate instances of the object
which are similar to those in the training set. We assess this qualitatively by generation
instances using the SSM and then compare it to raw examples from the training set.
We take N = 10 shapes Rij we randomly generated from the SSM Sj and find the nearest
of the 16 training set thyroids Xi.

S(Sj) =
1

N

X

iN

min
k2train

(ChamferDistance(Ri, Xk))

CompactnessA SSM is compact if the variance is as little as possible and requires as
few parameters as possible. For this, we look at the standard deviations �i over all N
points i.

C(S) =
1

N

NX

I=1

�i

6.1.3 Choice of Reference Thyroid

For building the SSM we need to find a reference thyroid. To this thyroid all correspon-
dences for each thyroid are computed. We evaluate all 16 SSMs for each side and compare
the results, which can be found in tables 1 and 2 in the appendix.
For the left thyroid lobe using thyroid 10 gives the best results. For the right lobe we use
the thyroid 17 as the reference thyroid. The results are consequently better for the left
lobes than for the right lobes.

6.1.4 Analysis of the Statistical Shape Model

The computed correspondences for the chosen reference thyroids can be found in figures
16 and 17 in the appendix. As described in section 4.2, we then create a SSM for each
side of the thyroid, which can be seen in figure 7.
We also compared our proposed model with some modified versions. As can be seen in fig-
ure 15, the bijectivity measure of thyroids 19 and 21 are significantly worse in comparison
to the rest. Therefore, we created a SSM with the same reference thyroid without these
two outliers. Table 3 shows that this clearly improves the compactness and generality
of the model. One can conclude that these shapes bring much variation to the model,
which can also be seen in figure 17. Instead of reducing our dataset by the two shapes,
we decided to take all thyroids into account.
Furthermore, one can deduce from 3 that smoothing steps in the mesh reconstruction
improves the generality score. A figure comparing the mean shape with and without
smoothing can be found in figure 18. At last, the results show the great impact of our
outlier detection methods, which are crucial to obtain reasonable meshes in the end.
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(a) SSM for left lobes with reference thyroid 10

(b) SSM for right lobes with reference thyroid 17

Figure 7: The mean shape of the model is located in the middle, i.e. at the 6th place.
Going from the mean to right, more standard deviation is added to the mean. When
going to the left, standard deviation is subtracted.

6.2 Partial Registration
6.2.1 Evaluation Metrics

We employ several evaluation metrics for the two stages of our approach.

• For the neural network encoder, di↵erent network architectures with di↵erent train-
ing hyperparameters are compared based on the training/validation loss. Addi-
tionally, the runs are compared on both loss functions using the metric.

• We use positive/negative distance histograms to evaluate how well the two
classes of triplet learning samples – positive and negative samples – are separated.
For each 2D anchor patch, the distance between its embedding vector and the em-
bedding of the positive sample and of the negative sample is measured. The results
of these distances are displayed in histograms.

• To determine the best-matching slice at test time, we use the candidate slice which
minimizes the Procrustes loss described in Section 5.3.

• To evaluate slice matching, we introduce the slice mean distance metric which
indicates how similarly two slices are located and oriented. Let S be a ground-
truth slice and Ŝ a predicted slice. Let x be uniformly distributed on S, and
x̂ be the point corresponding to x on Ŝ. We define the slice mean distance as
dmean(S, Ŝ) = E(||x�x̂||). We estimate this integral via discretization. For examples
that help interpret this metric, refer to figure 19a. All the results of slice mean
distance are shown in section A.2.

6.2.2 Encoder Evaluation

In the following, the e↵ect of di↵erent hyperparameter choices on the encoder training
and validation loss is described. The plots of the loss curves are found in the appendix
(section A.2).
For di↵erent experiments, we use between 40 - 60 epochs of training and generally observe
a convergence of the validation loss within that period.
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(a) Subset of 50 slices (b) True/Candidate slices (c) Selected candidate slice

Figure 8: Examples of slices used in slice identification experiments

6.2.2.1 E↵ect of Patch Sizes and Slice DepthWhen the patch size is increased in
the x and y direction, there are slight improvements in the loss curves. When the slice
depth is decreased, there are slight deteriorations in the loss curves. This is an expected
e↵ect, and presents a tradeo↵ between embedding quality on one side and computational
cost and depth of available ultrasound data on the other side. One can also observe that
pairs of patch sizes that represent a voxel grid of the same volume but with thinner slices,
such as (32⇥ 32⇥ 32) vs. (64⇥ 64⇥ 8) vs. (128⇥ 128⇥ 2), the thinner but wider patches
tend to give better results. This can be caused by the fact that only the US patches, not
the SDF patches, are made thinner. The absence of su�cient depth in the US data is
covered by the bigger size of the patches, although this comes with a higher computational
cost (figure 20).

6.2.2.2 E↵ect of Shu✏ing and PerturbationAs described in section 5.5, the neg-
ative samples are reshu✏ed to prevent overfitting. This e↵ect is achieved as shown in
figure 21: without reshu✏ing the validation curves increases after 10-20 epochs, while
with shu✏ing there is no overfitting.
The goal of positive sample perturbation is to make the identification outputs more robust,
which cannot be evaluated on the loss curves. Nonetheless, the losses increase with higher
pertubation, showing that perturbation makes the training harder for the networks.(figure
22)

6.2.3 Slice Identification Experiments

To evaluate the slice identification method, experiments are run on the train and vali-
dation data. For each thyroid lobe, 50 axis-aligned slices evenly spaced along the z axis
(figure 8a) are used. Then the slice identification algorithm (section 5.3) extracts 6 can-
didate slices for each ground-truth slice (figure 8b). The candidate slices are ordered
by their Procrustes loss with candidate 1 having the lowest loss, which is the selected
candidate (figure 8c). For each candidate, slice-mean distance loss is computed. Further-
more, the influence of di↵erent hyperparameters and the results of the configurations are
investigated.

E↵ect of Patch Size The e↵ect of di↵erent patch sizes is investigated. Patch sizes
are varied in x-y by increasing the M, N in figure 19b. If patch sizes are increased,
we conjecture that the model can “see” more of the surrounding thyroid and use this
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information to better locate the patch. This can be seen in figure 23, that the bigger
the patch size the training loss reduces dramatically. Validation loss also decreases, but
this is not always the case. Additionally, one can notice that bigger patches overfit.
However, more experiments should be conducted to further explain the reasoning for
this. Furthermore, bigger patches are computationally more expensive resulting in longer
training time.

E↵ect of Slice ThicknessAs mentioned in section 5.1.1, US patches are assumed to
have a certain depth. On the other hand, reducing the thickness of slices brings it closer to
an actual 2D slice, potentially making the algorithm more useful for practical applications.
The performance degrades for thinner patches, but still shows a considerably good result.

E↵ect of matching patch amountAs in section 5.3, kslice US slice patches and kthyr
SDF patches are sampled. Among this, kmatch pairs are considered as matches. We
experiment with varying these numbers. It shows that a larger number of sampled patches
improves the result with a computational cost. The ratio kmatch

kslice
influences the accuracy

of the orientation: if too big, US patches are forced to take SDF matches although no
close match exists. If too small, fewer matches are found, which causes the false-positive
matches to have a greater e↵ect. (figure 24)

E↵ect of Loss FunctionAs described in section 5.2.2, two types of loss functions were
used to train the encoder, the weighted soft-margin triplet loss Lwsm and the distance
matching loss Ldm. The distance matching loss gives better results on the training data,
but worse results on the validation data compared to the weighted soft-margin loss (figure
25). However, the violin plot shows that distance matching loss has fewer outliers and
has better distribution in data.

Best Model Selection Based on the full evaluation results, a few trends stand out:
Using a higher number of samples tends to give better results, but is proportionally more
expensive. The distance matching loss leads to considerably better results on the training
data, but comparable or slightly worse results on the validation data compared to the
triplet loss. However, it tends to have fewer outlier slice predictions and can therefore be
seen as more robust.
Based on these observations and the validation errors, we select three model configurations
A, B and C for di↵erent use cases. A is the configuration that gives the best results but
at a high computational cost. B is the configuration that gives the best results among
the less expensive runs (fewer patch samples). C is a configuration that has a slightly
higher validation error than B, but with fewer outlier predictions. The configurations of
A, B, C are as follows:

kslice kthyr kmatch US patch size SDF patch size Loss Slice mean dist.
A 500 1500 250 (32⇥ 32⇥ 32) (32⇥ 32⇥ 32) Lwsm 29.27
B 100 300 50 (50⇥ 50⇥ 8) (50⇥ 50⇥ 32) Lwsm 22.28
C 100 300 50 (64⇥ 64⇥ 8) (64⇥ 64⇥ 32) Ldm 31.58

These selected models are evaluated on the test set. The errors on the test set are similar
to the validation error and are shown in figure 28. They are also reported in the above
table.
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6.3 Cross-Thyroid Slice Identification
We train a cross-thyroid encoder with patch sizes (32 ⇥ 32 ⇥ 32) and Lwsm loss. The
results of the cross-thyroid slice identification between the two left lobes are qualitatively
evaluated. We observed examples of slices where the slice transfer works well, but also
observe that the task is harder than intra-thyroid slice identification (see figure 9).

Figure 9: Cross-Thyroid result (blue: surrogate ground truth, by section 7.3 method)

7 Use Cases
7.1 Random Thyroid Generation
When dealing with medical data, the amount of available data is often limited. Also in
our project we had to work with the sample size of 16 thyroids. Therefore, it can be
of great importance to generate new sampled data. For this one can use the SSM to
create realistic representations of the thyroid. We sample uniformly a standard deviation
coe�cient between -1 and 1. Then, we form the associating SSM shape. To increase the
variation, we add a normal-distributed sample to each point of the shape. In figure 10 we
can see the di↵erent generated thyroid shapes.

(a) Randomly generated left thyroids (b) Randomly generated right thyroids

Figure 10: Creation of random thyroids

7.2 Partial Correspondence
Using deep functional maps also allows for computing partial correspondences. The frame-
work learns from the categories of shapes that are represented in the training data, hence
it does not depend on any specific shape model. Particularly, the objects don’t need to
be complete shapes. Instead, it is su�cient if di↵erent types of partiality are su�ciently
represented in the training set. [18]
In the medical setting 3D shapes can show partiality such as missing parts or having holes
due to acquisition errors [41].
In figure 11, we have partial shapes with missing parts of the thyroid corresponded to the
SSM.
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Figure 11: Each partial thyroid is corresponded to to full mean shape on the left

7.3 Slice Transfer
Having a located slice on a thyroid through the method of partial registration, one is
capable to transfer the slice to the SSM, for example to the mean shape. Because of the
simplifications made in section 5.3, a slice is uniquely determined by the center. Given
center of a slice, which intersects the thyroid mesh, one can find its k nearest neighbors
within the vertices of the mesh. For this, we use the algorithm from [42]. From the
SURFMNet model, we have now correspondences to mean shape which are used to find
the k corresponding point on the target mesh. Now, we take the mean of these points to
obtain the predicted center of the slice on the target mesh.
In order to evaluate this method, we first predict the slice on the target mesh. Then,
we transfer the predicted slice back to the source by the same procedure. Now, we can
measure the distance between the center of the original slice and resulting slice after two
transfers. X slices were generated on each thyroid and the distances between the centers
can be seen in a histogram in figure 12, One can deduce that the right lobes have much
more outlier. This can be traced back to the fact that the correspondences are more
robust for the left lobes. In figure 13, one can see an example of a slice transfer. Its
distance of centers is 13.57. The mean distance is 11.52 for the left lobes and 14.04 for
the right lobes. So this example reflects approximately the mean error.

Figure 12: Evaluation of the slice transfer
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Figure 13: From the original slice on the source (left) to the predicted slice on the mean
shape from the SSM (middle) and again back to source with the predicted slice (right).

8 Conclusion
First, we introduced a 3D statistical shape model of the thyroid. One of the biggest
steps in creating a reasonable statistical shape is finding the correspondences between
the shapes, for which we presented an unsupervised neural network built on the deep
functional maps framework. With these correspondences, we were able to find the best
reference thyroid and construct a mean shape with variation. We analyzed the variations
of the 3D model and compared the left and right lobes of the thyroid gland. Applications
can be found in the random generation of realistic representations or partial correspon-
dence findings.
The presented method is an easy, scalable, and e�cient approach to creating a 3D statis-
tical shape model using a small data set. In further steps, we plan to include landmarks in
the correspondence method to obtain 1:1 point correspondences. This weakly-supervised
method could lead to eigenshapes taking higher dimensional variability into account.
Second, we presented a method to locate 2D thyroid US scans in a 3D thyroid model. For
this 2D / 3D registration, an encoder network was trained and patches were put through
the learned encoder networks to produce embeddings. Then, slices were located using
the best of several Procrustes predictions. We selected three model configurations for
di↵erent use cases and evaluated them on the test set. Our results show good orientation
results of 2D US slices on a 3D thyroid model, as seen in section 6.2.
Regarding future directions, there are several promising approaches to improve partial
registration. One could pre-train the 3D U-Net on a segmentation task, as was done in [11].
Furthermore, one could try di↵erent ways of computing (dis-)similarities of embeddings,
such as dot products, or even train a classifier that predicts whether the two samples come
from the same region. With such a soft match prediction, one could use matches with high
certainty for the orientation task. Another direction would be to test the method on non-
axis-aligned slices and train it on rotated patches to improve its performance. Moreover,
one could incorporate keypoints for choosing patches to have a higher probability of
generating 2D and 3D patches in similar positions. Finally, there is potential to try
other methods for hypothesis generation than the KDE-based algorithm we described,
and compare what approach performs best.
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A Appendix
A.1 Statistical Shape Model
A.1.1 Preprocessing

Figure 14: Left: original thyroid; Right: augmented thyroid

A.1.2 Evaluation of Correspondence Problem

(a) (b)

Figure 15: Average bijectivity rate from one thyroid to all other thyroids
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Figure 16: Correspondences of left thyroids to reference thyroid 10 in the lop left corner.
Areas of the same color correspond to each other.
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Figure 17: Correspondences of right thyroids to reference thyroid 17 in the lop left corner.
Areas of the same color correspond to each other.
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A.1.3 Evaluation of Statistical Shape Model

Specificity Compactness Generality sum of ranks
Thyroids
0 2.5667 0.0329 5.9980 13
2 2.5816 0.0362 5.8861 19
4 2.7452 0.0359 6.3516 27
6 2.2326 0.0384 6.0292 22
8 2.8708 0.0341 6.9807 32
10 2.5309 0.0331 5.9491 12
12 2.7830 0.0333 5.3484 17
14 2.8130 0.0314 6.8765 23
16 6.6219 0.0471 7.2458 48
18 2.4773 0.0374 7.1914 29
20 4.3107 0.0376 5.3259 29
22 2.6774 0.0350 6.8993 27
24 2.6444 0.0365 5.9159 22
26 2.4864 0.0406 6.3714 27
28 2.6954 0.0335 6.9147 26
30 2.8783 0.0348 7.1255 35

Average 2.9947 0.0361 6.4006

Table 1: Evaluation results of SSM including the left lobes

Specificity Compactness Generality sum of ranks
Thyroids
1 2.4170 0.0473 7.4411 26
3 2.6173 0.0448 7.2130 23
5 3.0658 0.0446 8.1198 36
7 2.2644 0.0445 7.8554 21
9 2.5451 0.0438 7.0325 17
11 2.4392 0.0415 7.7205 19
13 2.4163 0.0410 7.9260 18
15 2.6310 0.0432 8.0451 29
17 2.2752 0.0411 6.5976 6
19 7.4713 0.0536 6.8980 32
21 33.2593 0.0729 7.7591 43
23 2.6213 0.0409 7.7440 20
25 3.6217 0.0449 7.2119 28
27 2.4257 0.0467 8.4313 34
29 5.0830 0.0438 7.3322 26
31 2.7750 0.0461 7.3353 30

Average 4.9955 0.0463 7.5414

Table 2: Evaluation results of SSM including the right lobes
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Specificity Compactness Generality
Proposed model 2.2752 0.0411 6.5976
Without outliers 19 and 21 2.3766 0.0355 6.4479
Remeshing without smoothing 2.1732 0.0411 8.3491
Without any outlier detection 9.7650 0.0629 7.7882

Table 3: Analysis on SSM on right lobes with reference thyroid 17

Figure 18: Left: SSM without smoothing; Right: SSM including smoothing

A.2 Partial Registration: Additional Figures
Figure 19a illustrates corresponding points in the definition of slice mean distance. Figure
19b shows the patch dimensions.

Partial Registration: Network training Loss curves

Figure 20 demonstrates the e↵ect of di↵erent patch sizes on the loss curves. Figure
21 shows that reshu✏ing prevents overfitting. Figure 22 illustrates that perturbation
increases the loss.

(a) Measurement of slice mean distance (b) SDF patches and US patches

Figure 19: Additional illustrations for partial registration part
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Figure 20: Distance matching loss with di↵erent patch dimensions
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Figure 21: E↵ect of reshu✏ing

Partial Registration: Selected Slice Mean Distance Statistics

Figure 23 and figure 24 illustrate the e↵ect of patch sizes and hyperparameters. Figure
25 shows the e↵ects of the two di↵erent loss functions and that there are less outliers with
Ldm. Figures 26 and 27 show the results of all mentioned runs in one plot. Figure 28
shows the performance of the three selected configurations A, B, C on the test set.

Selected slice mean angle and centroid distance

Figure 29 and 30 show the alternative metrics of slice centroid distance and slice angle
for all experiments.

Slice matching results

Figure 31 illustrates how to interpret the slice mean distance metric: we sampled 9 es-
timations (yellow) for ground truth slices (green) and report their slice mean distances.

Slice distribution graphs

Figures 32, 33 and 34 show the distribution of selected candidate slice mean distances on
the train, test and validation set for selected model A, B and C, respectively.
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Figure 22: E↵ect of perturbation
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Figure 23: Slice mean distance of di↵erent patch size and slice thickness
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Figure 24: Slice mean distance of di↵erent amount of matching patches (notation: “num-
ber of taken matches/number of 2D slice patches; number of SDF patches”)
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Figure 25: Slice mean distance bar plot and violin plot using di↵erent losses
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Figure 26: Slice mean distance of all experiments
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Figure 27: Slice mean distance violin plot of all experiments
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Figure 28: Three models slice mean distance test set performance
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Figure 29: Slice mean angles of all experiments (in degrees)
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Figure 30: Slice centroid distances of all experiments
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Slice mean distance: 5.55787 Slice mean distance: 6.89499 Slice mean distance: 7.15474

Slice mean distance: 11.5833 Slice mean distance: 24.0241 Slice mean distance: 26.0881

Slice mean distance: 32.2282 Slice mean distance: 32.6463 Slice mean distance: 42.2658

Slice mean distance: 47.9794 Slice mean distance: 64.4426 Slice mean distance: 84.8076

Figure 31: Samples of slice matching results with mean distances
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Figure 32: Slice distribution of model A
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Figure 33: Slice distribution of model B
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Figure 34: Slice distribution of model C
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