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Abstract

Lane estimation plays a crucial role in driver assistance systems. Moreover, the reliable
detection of driving lines is an important milestone in enabling autonomous driving. Most
of the existing state-of-the-art algorithms already achieved very remarkable results in
simple scenarios.
This project aims to achieve good results also in urban scenarios. In addition to the
classical lane detection challenges, dealing with bad weather conditions, urban driving,
and construction site driving is another challenge. Furthermore, for high autonomous
driving purposes, the detection of the lanes is not enough. It is really important to
extract the meaning associated with the lines, for example, if the lane line is dashed or
solid. Even the color is valuable information that needs to be taken into consideration,
in construction site driving, for example.
For these purposes, an algorithm is implemented to detect the sequence of points that
make up the lines and at the same time is able to extract high-level features such as the
type of lines. Conducted experiments show that this method leads to promising results
and reliable properties estimation thanks to the usage of a�nity fields. Furthermore, the
proposed models are also able to extract a�nity fields that are not limited to this project
but also viable for incoming projects by Robert Bosch GmbH.
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1 Introduction

Highly automated driving (Level 2 to Level 5, SAE-J3016 [14]) demands a range of func-
tionality of advanced driver assistance systems: Lane Assistance, Predictive Emergency

Braking, Turn and Crossing Assistance, Park and Maneuver Assistance, etc. In this re-
port, the terms ”Lane Markings”, ”Lanes”, and ”Lines” were used interchangeably. How-
ever, they all refer to the same meaning which is driving lines, consisting of connected
road markings.
Lane Detection is just one of the detection components, but its role is paramount to
build a solid and reliable autonomous driving system. State-of-the-art algorithms already
achieved high lane detection rates in simple situations, for example, on highways. How-
ever, urban scenarios still represent a major challenge for lane detection algorithms for
several reasons:

• Bad weather conditions: In some scenarios, due to snow, heavy rain, or even
direct sunlight is very hard to detect driving lanes either because the image contains
artifacts, or because it is not properly visible.

• Urban Driving: Especially in city driving, it is easy to stumble across dense
tra�c, static obstacles, pedestrian or advanced lane types like roundabouts and
intersections along the way.

• Construction sites: In order to develop a high automated guidance system, some
exception scenarios must be considered. For example, on construction sites lines
have a di↵erent meaning than usual. Thus, the goal is to understand its semantics
and prioritize the lines accordingly.

1.1 Project Goal

This project aims to develop a deep learning algorithm that operates on front video
camera images. With respect to the latter, was installed behind the rear view mirror.
The algorithm also can detect multiple driving lines along with their associated semantic
meaning in challenging urban scenarios.

2 Datasets

Numerous state-of-the-art algorithms already achieve high lane detection rates in simple
situations like in TuSimple [6], which only contains frames from US highways with no bad
weather conditions. Later on, some other more challenging datasets came out [7], among
them CULane [11] which is the largest available dataset, volume-wise.

2.1 CULane

CULane [11] is a large scale challenging dataset for academic research on tra�c lane
detection. It is collected by cameras mounted on six di↵erent vehicles driven by di↵erent
drivers in Beijing. More than 55 hours of videos were collected and 133,235 frames were
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extracted. Data examples are shown below. The dataset is divided into 88,880 for training
set, 9,675 for validation set, and 34,680 for test set. The test set is divided into normal and
8 challenging categories, as shown in Figure[1]. This dataset covers challenging scenarios,

Figure 1: CULane categories distribution

such as occlusions, and night scenes. CULane [11] contains frames with night scenes,

curved lanes, urban tra�c, shadow, no lane marking and other scenarios. Some examples
are provided in Figure[2].

Figure 2: CULane examples

The annotations of each frame are simply stored as a separate text file in which each line
is represented by a sequence of points (xi, yi).
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2.2 BOSCH Dataset

A dataset of 5,740 front camera images was provided by BOSCH. 1,926 frames out of them
were annotated by the team members. The images were taken from all over the world,
introducing a new challenge: similar lane markings have di↵erent meanings in di↵erent
countries. For example, in Japan, dashed lines are often used as deceleration lanes, or in
the UK, zigzag lane markings are used to indicate that a pedestrian crossing is close by.

2.2.1 Distribution

In this section, some statistical evaluation is presented on the annotated portion of the
BOSCH dataset. In the Table[1] and the Figure[3], the distribution of Frames and Lane
markings for each Country is presented. The following countries are grouped under the
EU: Germany, UK, Ireland.

Country Frames Lanes Curved Frames

United States 326 1210 11
Japan 530 2074 47
EU 570 1678 65
China 500 1842 33

TOTAL 1926 6804 156

Table 1: Frames, Lanes & Curved Frames distribution

Figure 3: Frames,Lanes & Curved Frames distribution

All the distribution looks more or less balanced. It is worth to point out that for the
curved split, the curvature has been implemented based on [9]. Then, an image belongs
to the curved split if exceeds a certain threshold. An interesting finding was that most of
the curved scenarios belong to either Japan or EU sequences.
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Figure 4: Color, Daylight & Type distribution

The BOSCH dataset has way more lane markings compared to the CULane dataset[11].
Furthermore, the goal is to also detect, and classify the type of the lane marking. A brief
analysis of the distribution is presented in Figure[4] along with the Table[2].

Country white yellow red unsure solid dashed zigzag unsure

United States 816 377 0 17 775 393 0 42
Japan 1933 139 0 2 1385 656 0 33
EU 1522 118 18 20 766 849 28 35
China 1534 308 0 0 1107 710 4 21

TOTAL 5805 942 18 38 4033 2608 32 131

Table 2: Type & Color distribution per Country

2.2.2 Manual Annotations

The first task was to understand, and annotate the dataset. CVAT [2], an open-source
computer vision annotation tool developed by Intel, was used to generate the label. There
are di↵erent information to annotate and can be divided in the following categories:

• Scene Tag: Used to specify additional information about the scene, for example
bad weather conditions if there are any.

• Lane Key Point: Used to mark down with a single point an intersection, like
merging lanes or splitting lanes.

• Lane Marking: This is the principal type of marking used to mark down a driving
line. The annotation of the lane follows the middle of it and we can specify additional
information such as:

– details: badly visible, reflectors, interruption, multimarking, occlusion, round-

about

– direction: ego, ongoing, both, unsure

– function: lane separator, bicycle lane, deceleration lane, unsure

– type: solid, dashed, zigzag, unsure
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– color: white, yellow, red, blue, unsure

• Ego Lane: This marking is very relevant for driving purposes. The di↵erence
between lane markings and ego lane markings is that the latter represents the inner
side of the driving lines.

• Horizontal Lane: With this lane marking, stopping lanes are annotated.

In Figure[5], there are some examples of what the annotation look like on the CVAT [2]
interface.

Figure 5: BOSCH Dataset example images

CVAT [2] generates an xml file containing all the points and all additional information as
described before, from this, the labels are parsed and formatted according to the CULane
format [11].

3 Literature Review

3.1 PINet

3.1.1 Architecture

The Point Instance Network (PINet) [8] method to detect lanes is based on the idea of
detecting lane key points that characterize di↵erent lanes instead of predicting whether
each pixel of the image belongs to a lane marking or not. By doing this, one does not
need to generate binary masks as in the LaneAF [12] architecture.
Figure[6] shows the main architecture of PINet. The network takes an image as an input
and passes it through several hourglass modules which are encoder-decoder architectures
as shown in Figure[7]. One of the advantages of PINet is that the user is able to select
how many such hourglass modules one wants to stack together. Therefore, one can also
control the model size. These hourglass modules produce a confidence field, an o↵set field
and a feature field as an output. The confidence values are used to predict whether a
pixel is a key point or not. The o↵set value localizes the position of the line. Last but
not least, the feature values are used to cluster the predicted pixel line key points.
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Figure 6: The architecture of PINet [8]

Figure 7: Hourglass module encoder-decoder architecture [8]

3.1.2 Confidence fields

As explained before, the key points prediction mainly depends on the confidence field.
Next, in order to better understand what is happening inside the neural network, an
example from the BOSCH dataset is demonstrated. The next predictions are produced
by the network in Figure[10b] and trained on 886 BOSCH images from scratch i.e it is
not using any weights of a pre-trained model on CULane [11]. Specific details about the
training can be found [3.1.3].

Figure 8: Image from BOSCH dataset

The shown image [8] is passed through four hourglass modules which. produce the next
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confidence fields.

(a) hourglassmodule1 (b) hourglassmodule2

(c) hourglassmodule3 (d) hourglassmodule4

Figure 9: Confidence fields of 4 hourglass modules

Figure[9] shows that after each hourglass module the network becomes more confident
where possible key points might be. However, it does not detect the horizontal line that
is present in Figure [8]

3.1.3 Training from scratch

The PINet architecture shown in Figure[6] was trained from scratch using only images
from the BOSCH dataset. This was performed in May when the labeled images count
was 1,500. The architecture was trained on 800 images and tested on 200. Several
experiments were conducted. In the first case, 3 hourglass modules were used and the
confidence threshold was set to 0.90 and 0.95 respectively. In the second case, 3 and 2
hourglass modules were used with a 0.95 confidence threshold in both cases. The main
goal is to see how the choice of hourglass modules and confidence threshold a↵ects the
training. Moreover, the learning rate was set to 0.001, he weight decay to 1e � 5 and
several data augmentation techniques were used. Specifically, random flipping, random
translation, random rotation, random noise, random intensity, and random shadows were
applied. For all these data augmentation techniques the ratio was set to 0.6.
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(a) Case1 (b) Case2

Figure 10: PINet training from scratch train losses

Figure[10a] shows that changing the confidence threshold from 0.95 to 0.90 does not
greatly a↵ect training performance. However, as it is visible from Figure[10b], choosing a
smaller network using two hourglass modules instead of three leads to a lower loss during
training.

(a) Night scene (b) Urban occluded scene

(c) Urban occluded scene (d) Bad weather scene

Figure 11: Good predictions on test data

Figure[11] shows four good predictions of the trained from scratch model, as illustrated
in Figure[10b], using 2 hourglass modules on four images from the test set.It is visible
that the model performs well in di�cult conditions such as occluded or rainy scenarios.
Nevertheless, there are also scenarios where the model fails to detect lanes or where it
detects false positive lanes.
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(a) Curved lanes scene (b) False positive scene

(c) False positive snow scene (d) Multiple lanes scene

Figure 12: Failed predictions on test data

3.2 LaneATT

Before delving into the details of LaneATT [16], it is worth mentioning another archi-
tecture that motivated the idea of anchor-based lane-detection. It is the architecture of
the well-known two-stage 2D object detector ”Faster R-CNN ” [12]. As depicted in Fig-
ure[13], the network consists of two main stages. The first stage comprises a backbone
CNN architecture to learn the semantic information presented in the image. The second
stage is the Region Proposal Network (RPN) which proposes the regions of interest that
might contain objects of interest in the original image.

Figure 13: The architecture of Faster R-CNN [12]

3.2.1 Line-CNN

Faster R-CNN [12] was the main inspiration for ”Line-CNN” [10] which is a lane-detection
network. As illustrated in Figure[14], the network looks very similar to Figure[13]. How-
ever, instead of having an RPN in Figure[13] there is a Line Proposal Unit (LPU) in
Figure[14]. The LPU does not process the entire feature map, it just processes the three
boundaries of it (left, right, and bottom). It does not consider the pixels at the top
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boundaries to reduce the computations and it is never the case to find lane markings in
any scene where they are extended to the top border of the image, given that the camera
is mounted on top of the vehicle.
It does not consider the pixels at the top boundaries to reduce the computations. Because
it is not possible to find lane markings on the top border of the image, given the fact that
the camera is mounted on top of the vehicle.

Figure 14: The architecture of Line-CNN [10]

The LPU applies 1x1 convolution-kernels on the boundary pixels of the feature map, so
that each pixel can be encoded in 1024-dimensional vector. Then, each vector is passed
through a classifier and a regressor. The classifier outputs 2k scores for each vector, where
k is the number of anchors to be generated for each pixel. An anchor represents a line
proposal according to some angle as depicted in Figure[14]. The regressor outputs k x
(S + 1) outcomes, where S is the number of evenly distributed horizontal slicing lines on
the original image. Also, k is di↵erent for each boundary, thus, the number of anchors
generated for a pixel in the bottom boundary is di↵erent from those generated for a pixel
in the right boundary.

Figure 15: Illustration of how the LPU generates proposals

As illustrated in the Figure[14], the outcome vector for the L3 anchor has the probability
score of being a real-lane marking, a regressed value called ”Length”, and S regressed
outcomes. The ”Length” outcome determines how many points to be considered from the
S next outcomes to add them as horizontal shifts to the original orientation of the anchor
to produce a proposal of a lane marking.
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The configuration of Line-CNN [10] is simple to grasp, fast in terms of the inference speed,
and easy to implement. However, it su↵ers from some drawbacks that can be summarized
into the following points:

• The vector encoding produced in the LPU relies on the local features only. Because
the feature map is generated by applying standard convolutions, thus, small and
regular receptive fields impose restrictions in the encoding. In other words, each
lane marking does not have enough global information about other lane markings in
the scene. This limitation is a↵ecting the performance of the network in the scenes
that contain heavy occlusions.

• The anchors proposed for each boundary rely on a relatively steep anchor angles.
Also, the regressor outputs only horizontal shifts. Both limitations make it very
di�cult for the network to detect horizontal lane markings.

• The representation of the anchors as straight lines, lines of degree 1, hinders the
performance of detecting very curved lane markings. As the horizontal shifts will
not be enough to add the curvature to the straight lines.

3.2.2 Introducing LaneATT

The architecture of LaneATT [16] is mainly inspired from Line-CNN [10]. The architecture
is meant to solve the first short-coming faced by Line-CNN [10], which is the locality
representation of the anchors. Thus, ”ATT” in the name indicates using the attention
mechanism to make the anchor encodings contain global information about other anchors
in the image.

Figure 16: The architecture of LaneATT [16]

The same anchor angles, and the anchor setup used by Line-CNN [10] to generate pro-
posals are used in LaneATT [16]. The anchor-based feature pooling step uses the anchor
angles to define the anchors’ local encoding instead of just applying 1x1 convolutions
like in Line-CNN [10]. The novel idea of the architecture is introducing the attention
mechanism before passing the encodings to the classifier and the regressor. The atten-
tion mechanism consists of a fully-connected layer Latt that processes the local encod-
ings of an anchor i and every other anchor j. Then, it produces a probability output
wi,j for every anchor j. Afterwards, the main representation for an anchor i becomes
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aglobali = alocali �
P

j wi,jalocalj . The attention mechanism improved the performance of
the network, especially in the heavily occluded scenes, as depicted in Figure[17].

Figure 17: Performance of LaneATT on an image from the BOSCH dataset. (Left): un-
annotated image, (Right): annotated image. Green lines are network predictions, and
blue ones are ground truth annotations.

3.3 LaneAF

LaneAF [1] employs an o↵-the-shelf convolutional neural network backbone, DLA34 [17],
that aggregates and refines multi-scale features. This resulted in superior performance
when compared to other architectures and losses previously proposed for lane detection.
LaneAF also proposes two a�nity fields, the horizontal a�nity field (HAF) and vertical
a�nity field (VAF) that are suitable for clustering and associating pixels belonging to
amorphous entities like lane markings. The network takes in the image as an input and
produces a binary segmentation mask, ”HAF” and ”VAF”, which are used to cluster lane
markings and give predictions in the a�nity fields decoder, as shown in Figure[18].

Figure 18: The architecture of LaneAF [1]
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3.3.1 Introducing DLA34

Aggregation is defined as the combination of di↵erent layers throughout a network. Deep
Layer Aggregation(DLA) [17] focuses on e↵ective aggregation of depth, resolutions and
scales. As networks can contain many layers and connections, modular design is used to
help counter complexity by grouping and repetition. Layers are grouped into blocks and
then grouped into stages by their feature resolution.
The DLA family is introduced with the goal of aggregating layers to better fuse semantic
and spatial information for recognition and localization. Two structures are proposed:
the iterative deep aggregation(IDA) and hierarchical deep aggregation(HDA). The DLA
models extend densely connected networks and feature pyramid networks with iterative
and hierarchical skip connections that deepen the representations and refine resolutions.

Figure 19: Di↵erent approaches to aggregation [17]

In conventional classification and regression networks, blocks are composed without aggre-
gation, as shown in Figure[19](a), like the VGG net [15]. Figure[19](b) shows the network
structure that is commonly used for tasks like segmentation and detection, where parts of
the network are combined by skip connections like U-net [13]. However, this aggregation
is only done in a shallow way by merging the earlier parts with the later parts in a single
step each. Therefore, IDA, shown in Figure[19](c), is introduced. By reordering the skip
connections, the network aggregates iteratively such that the shallowest parts are aggre-
gated the most. While IDA e↵ectively merges stages, it is still only sequential. Thus,
a tree-structured aggregation, as shown in Figure[19](d) is also proposed to aggregate
hierarchically. Through the tree structure of blocks, feature channels are preserved and
combined. Shallower and deeper layers are used to learn richer combinations that span
the feature hierarchy. Figure[19](e) and (f) are refinements of (d) that deepen aggregation
by routing the intermediate results back into the the network and improve e�ciency by
merging successive aggregations at the same depth.
DLA is a general architecture family that is compatible with di↵erent backbones. The
internal structure of the blocks and stages is not required. DLA34 makes use of one
typical type of residual blocks [5]: Basic Blocks, which combine stacked convolutions with
an identity skip connection, as the one used in ResNet-34 [4] and has similar number of
layers.
To reach the necessary resolution of a segmentation task, IDA is again used in the upsam-
pling procedure. Outputs of stages 3-6, red boxes shown in Figure[20], are first projected
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Figure 20: DLA architecture with HDA and IDA [17]

to 32 channels and then interpolated to the same resolution as stage 2. Finally, these
stages are aggregated iteratively to learn a deep fusion of low and high level features.
Deformable convolution operations [3] that can adapt the spatial sampling grid for con-
volutions based on their inputs are also incorporated in these architectures.

3.3.2 Deformable Convolution

Deformable ConvNets were first introduced in [3] with the goal to enhance CNN’s capa-
bility of modeling geometric transformations for sophisticated vision tasks, such as object
detection and semantic segmentation. Two new modules are proposed, one of which is
the deformable convolution. It adds 2D o↵sets to the regular grid sampling locations
in the standard convolution, which enables free form deformation of the sampling grid.
Figure[21](a) shows the sampling locations of standard convolution and (b) illustrates de-
formable sampling locations(dark blue points) with augmented o↵sets(light blue arrows).
With learned 2D o↵sets, deformable convolution can generalize various transformations
for scale, aspect ratio and rotation.

Figure 21: Illustration of sampling locations

3.3.3 A�nity Fields

For a given image, the ”HAF” and ”VAF” can be thought of as vector fields that assign
a unit vector to each (x, y) location in the image. The ”HAF” enables pixel clustering
horizontally and the ”VAF” vertically. With the predicted a�nity fields and binary mask,
clustering line pixels is achieved through a row-by-row decoding process from bottom to
top. The a�nity fields are created using the ground truth as follows:
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• First the ”HAF” is calculated. Starting from the bottom row of the segmentation
map, find pixels with positive values, indicating each line in the ground truth.
Assign corresponding values to these pixels according to their relative positions to
the center of their belonging line, as illustrated in Figure[22](a).

• Then the ”VAF” of current row is generated. Compute the normalized vectors
pointing to the center of the row above which belongs to the same line cluster and
assign them to the corresponding pixels of the current row, as shown in Figure[22](c).

Figure 22: Illustration of ”HAF” and ”VAF” creation and decoding processes

Similarly, the a�nity fields are decoded to cluster foreground pixels into lines. Foreground
pixels are first assigned to clusters based on the predicted ”HAF” and the center of the
cluster is found based on the predicted value. This process is illustrated in Figure[22](b).
Next, the horizontal clusters are assigned to existing lines using the ”VAF”. The optimal
assignment is achieved when the error of associating cluster to an existing line is the
minimum. The error is calculated as the mean di↵erence between the predicted ”VAF”
of current row and the ”VAF” generated using the ground truth.
The proposed per-pixel a�nity fields enables LaneAF to successfully cluster line pixels
regardless of the shape and the width of the line and to predict a variable number of lanes
without assuming a maximum number of lines.

4 Architecture Comparisons

This section is meant to demonstrate the di↵erences between the 3 architectures mentioned
in the previous section. Several experiments were conducted on the 3 architectures to
choose one of them to improve its performance.
First, to compare the performance of these architectures, 3 metrics are used: precision,
recall and the F1 score. Precision is defined as the number of true positives over the
number of true positives plus the number of false positives:

Precision =
TP

TP + FP
, (1)

Recall is defined as the number of true positives over the number of true positives plus
the number of false negatives:

Recall =
TP

TP + FN
, (2)
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Figure 23: Architecture performance comparison

The F1 score is defined as a harmonic mean of precision and recall:

F1 = 2 · Precision⇥Recall

Precision+Recall
. (3)

The table in Figure[23] shows the performance of all three architectures both on the
BOSCH dataset and on the CULane test set. These results refer only to the models
that were already pre-trained by the authors of the respective papers using the CULane
dataset. It is evident that the best F1 score is achieved by the LaneAF architecture, both
for the BOSCH dataset yielding F1 = 0.625 and the CULane test set yielding F1 = 0.825.
The anchor representation used in LaneATT leads to a poor performance on curved
scenarios. On the other hand, LaneAF’s architecture does not have any disadvantage for
detecting curved scenarios. Since curved scenarios frequently appear during driving, it is
crucial that the network is able to correctly perform on them. For this reason, LaneAF
was prefered over LaneATT.
The PINet architecture does perform well on curved scenarios as LaneAF. Since PINet
detects lane key points, it is able to recognize all types of lines. However, it only outputs
information regarding the line’s location. On the other hand, LaneAF produces a�nity
fields which yield more information then just the location of the line. These a�nity fields
enable to extract the next two line characteristics in a post-processing step:

• The horizontal a�nity fields can be used to compute the line width. One can
horizontally detect where the first and last a�nity field vectors of a line are located
and then compute the width.

• The inner edge of the ego lines can be predicted using the a�nity fields. For this
purpose, a post-processing code was developed which starts from the middle of
the image and looks for the first left and right detected lines respectively. Then,
it computes the left and right ego line using the a�nity fields of these lines. An
example is shown in Figure[24] .

Last but not least, to confirm that each architecture, especially LaneAF is able to learn
from the BOSCH images, an overfitting experiment was carried out. In this case, the goal
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Figure 24: Ego line detection from a�nity fields

is to overfit a complicated scenario from the BOSCH dataset and see the performance of
each model.

Figure 25: (Top to bottom) Overfitting experiments on PINet, LaneATT and LaneAF,
(Left): Before overfitting, (Right): After Overfitting

From the top down, Figure[25] shows the prediction results of PINet, LaneATT and
LaneAF respectively, before and after the overfitting experiments. In this scenario, there
are occluded lines and multi-marking lines, which are di�cult to predict. PINet recognizes
all lines that are close to the car, but neglects short lines at the end of the road. LaneATT,
on the other hand, extends the predictions to the end but has troubles predicting multi-
marking lines. LaneAF shows good performance after overfitting but cannot distinguish
multi-marking lines that are close to each other, which can be taken care of by decreasing
the width of lines in the ground truth. In addition to this scenario, the overfitting exper-
iments have been conducted on more di�cult scenes such as scenes with multiple parallel
curve lines and scenes with lane key points. In general, LaneAF outperforms the other 2
model in several di�cult scenarios.
After carefully evaluating the performance and characteristics of all architectures, the
decision was made to focus on LaneAF.
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5 Lane Type Prediction

In this section, the discussion is about the methodology adopted to change the architecture
of LaneAF [1] to predict the lane type as well as the lane coordinates. Two approaches
were devised in order to tackle this problem.

Figure 26: (Left): The conventional pipeline of LaneAF[1]. (Middle): First approach to
predict lane type. (Right): Second approach to predict lane type.

As shown in Figure[26], the original implementation has 3 heads as explained in the litera-
ture review section. The first head meant to predict a binary mask to distinguish between
foreground and background pixels. Thus, the original implementation does not take the
lane type into account while producing the foreground pixels. In the first approach, ev-
erything is almost the same except the first head. The binary mask head is replaced by a
5-channel head. Each channel represents a pixel type. The values (0, 1, 2, 3, 4) represent
background, solid, dashed, zigzag, and unsure types, respectively. The second approach
is very similar in spirit to the first approach. However, it keeps the old architecture as is
with an extra head for the 4 types to be predicted excluding the background type.
In order to understand how the architecture is changed to accommodate the type in the
output, there are 3 main parts to be explained in the following subsections.

5.1 New Ground-truth Maps

This step is a common one for both approaches adopted. The original implementation
relied on the segmentation maps generated for each scene. In these segmentation maps
each lane is assigned to a unique id value that is greater than 0. Thus, each 0-valued
pixel in the segmentation map is a background pixel. Having this, a ground-truth binary
mask is easily obtained from each segmentation map and compared against the binary
mask produced by the first head of the network. The introduced implementation replaces
the normal segmentation map with a segmentation map for the lane type. This type map
assigns each pixel a value between 1 to 4 if the pixel is part of a lane, and 0 otherwise.
The value obtained is dependent on the lane type, as explained in the introduction of this
section. As shown in Figure[27], all dashed lanes in the image are colored yellow and the
only solid lane has a di↵erent color.
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Figure 27: (Top-Left): The original image. (Top-Right): The image with lane annota-
tions. (Bottom-Left): Original segmentation map. (Bottom-Right): Type segmentation
map.

5.2 Training Modification

5.2.1 Approach 1

In order to allow for a similar training scheme to the original one, each channel in the
5-channel head, depending on the approach, is treated as a binary mask. In other words,
a sigmoid activation is applied to the first channel so that it produces a binary mask,
where each 1-valued pixel represents a background pixel and each 0-valued one represents
a foreground pixel. Similarly, on the rest of the channels where each channel has its own
type of pixels. Also, 5 ground-truth binary masks were generated from the type map
using similar logic as the original one. For example, pixels with value 2 in the type map,
dashed lane pixels, will be in a mask where they have a value of 1 and the rest are 0-valued
pixels. Following this approach, the same type of losses for the original segmentation can
be applied on each channel of the type segmentation maps. The ”HAF” and the ”VAF”
heads along with their losses are una↵ected by the new modifications.

5.2.2 Approach 2

In approach 2, besides the original implementation, the additional type head is estab-
lished as the one mentioned in approach 1 except that it only contains 4 channels, each
representing solid, dashed, zigzag and unsure, respectively.

5.3 Inference Modification

5.3.1 Approach 1

The inference is done in the following order:

1. The 5-channel head is passed through a softmax head that is applied over the channel
dimension. In other words, each pixel location becomes a probability distribution
over the 5 channels.
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2. A new map is generated, where the pixels values are the indices of the channels with
the maximum probability outputted from the previous step.

3. The decoding process in the original implementation required a map with values
in the range [0, 1], a single ”HAF” channel, and a double-channel ”VAF”. The
aim was to use the same decoding and clustering algorithm devised in the original
implementation. Thus, another new map was generated from the output of the
previous step. In the new map, each pixel with value in the range (1, 2, 3, 4) is
replaced with 0.7 and the 0 values are left as they are.

4. The output of the previous step is a list of clusters, where each cluster represents a
unique line. The pixels of each cluster are obtained along with their corresponding
pixels in the output of step 2. Then, the majority index from the pixels outputted
from step 2 is the type of the predicted lane. In other words, if the majority index
is 1, then the line type is solid, and so on.

Following the above steps, the network will be capable of inferring the line coordinates
along with their types using almost the same post-processing procedure used for the
original implementation.

5.3.2 Approach 2

The inference of approach 2 is done as the following:

• The ”HAF”s and ”VAF”s are decoded using the binary segmentation mask to get the
line instances as the original implementation. This step produces the line clusters
with line ids.

• The type head outputs 4 binary segmentation masks, after rounding the sigmoid
outputs. The number of positive pixels in each mask is counted based on the indices
of the foreground pixels predicted in the previous step. Then, the type of each line
is decided using the majority vote.

6 Results

In this section, the results of the two type approaches are shown. Each model in this
section is fine-tuned, validated, and tested on the same train, validation, and test splits.
The train split contains 1,348 frames, and the validation, and test splits each contains 289
frames. Green lines presented in the images in this section indicate dashed lines, yellow
is for solid ones, and red is for zigzag.

6.1 Approach 1

Several experiments have been conducted on approach 1. Di↵erent learning rates, freezing
several parts of the network, trying di↵erent combination of loss functions for the type
channels, and loading pre-trained weights on di↵erent parts of the network. The setup
with the best F1-score (CULane metric) and best classification scores is obtained by
following the scheme mentioned below.
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• The network’s backbone is frozen with pre-trained weights from ImageNet and CU-
Lane.

• The ”VAF” and ”HAF” heads are loaded with the CULane pre-trained weights and
are not frozen while fine-tuning.

• For the type head, the weighted binary cross entropy loss, a standard loss for im-
balanced binary segmentation tasks, is used. The loss is calculated as:

LBCE = � 1

N

X

i

⇥
w · ti · log(oi) + (1� ti) · log(1� oi)

⇤
, (4)

where ti is the target value for the pixel i and oi is the sigmoid output. To further
account for the imbalanced dataset, an additional intersection over union (IoU) loss
[18] is employed:

LIoU =
1

N

X

i


1� ti · oi

ti + oi � ti · oi

�
, (5)

Each loss is applied on each channel separately.

• The learning rate = 0.004, and the batch size = 2. The fine-tuning lasted for 40
epochs. The best model’s performance on the validation set was obtained in the
28th epoch.

6.2 Approach 2

The same experiments, including di↵erent learning rates, di↵erent batch sizes, di↵erent
loss functions, and freezing parts of the network, have been carried out on approach 2. The
setup with the best F1-score (CULane metric) and best classification scores is obtained
by following the scheme mentioned below.

1. The original LaneAF model was fine-tuned over the BOSCH split for 30 epochs
without freezing any layers.

2. The new type head is added to the output of the previous step. Then, the network’s
backbone along with the old 3 heads were frozen while fine-tuning.

3. For the type head, a combination of the weighted binary cross-entropy loss with a
weight and IoU loss is utilized as loss for each channel.

4. The new type head is trained for 40 epochs. The best model performance on the
validation set was achieved in the 32th epoch.

5. The learning rate = 0.0005 and the batch size = 8.

As illustrated in Figures[28,29], both approaches produce very similar line predictions.
However, the second approach coordinates are smoother and more accurate than the first
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Figure 28: Left images are the original images. Middle images are the first approach
predictions. Right images are the second approach predictions.

Figure 29: Left images are with ground truth annotations. Middle images are the first
approach predictions. Right images are the second approach predictions.

approach ones. Both approaches failed to detect any type other than dashed or solid.
Since the other types represent less than 2% of the dataset. Also, both approaches get
confused between solid and dashed types in the curved scenarios as presented in Figure[29]
in the first row. From the confusion matrices in Figure[30], it is clear that the second
approach is capable of detecting more TPs compared to the first approach. This findings
results in a higher recall value and slightly better classification scores per type, especially
in the solid type. Both approaches were compared against a new version of LaneAF. This
new version does not predict the lane type as the original implementation. However, it
has just been fine-tuned on the same splits used for both approaches. Also, the backbone
was freezed and the original 3 heads were fine-tuned. The fine-tuning happened on the
best LaneAF weights mentioned in the o�cial repository. The comparison is summarized
in table[3].
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Figure 30: Left is the confusion matrix of the first approach. Right is the confusion matrix
for the second approach. The targets are on the Y-axis, and the predictions are on the
X-axis.

Model TP FP FN Precision Recall F1-score

LaneAF fine-tuned 497 190 529 0.72 0.48 0.58
Approach 1 506 208 520 0.71 0.49 0.582
Approach 2 723 158 303 0.82 0.7 0.76

Table 3: The original CULane metric evaluation on the two approaches and the fine-tuned
version of LaneAF. These metrics account for lane lines coordinates and not for the type.

7 Conclusions

In the first part of this project, a large portion of the BOSCH dataset was annotated which
helped the team to be familiar with the problem setup and the dataset corner-cases. Then,
several state-of-the-art architectures have been evaluated, they were originally trained on
CULane but fine-tuned on the BOSCH dataset. LaneAF resulted to be the most promising
one, both in terms of performance, and in terms of the modularity of the code to integrate
new features. From the results of the fine-tuned model on the BOSCH dataset, it is
clear that the obtained line coordinate accuracy outperforms the original implementation
accuracy.
In the second part of this project, several experiments to adapt LaneAF code to detect also
additional features have been conducted, like the inclusion of line’s type. The achieved
results seem to be promising, considering that the model has been trained on roughly
1,500 images. Furthermore, one key feature of this algorithm is to be able to generate the
a�nity fields with respect to the lines. This enables further research and applications, for
example, line width estimation and many more.
To conclude, an algorithm that detects lines along with their types has been developed.
Furthermore, possible future developments concerned with the inclusion of additional
line semantic features like color, the line’s function, or intersection points’ detection are
possible due to the presence of the a�nity fields in the current model.
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