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Abstract

In the context of climate change, the generation of clean and renewable energy has become
increasingly vital. This project systematically compares different modeling paradigms
for temperature prediction in wind turbines. Although deployed on synthetic data, the
framework demonstrates the potential to identify abnormal thermal behavior through
modeling discrepancies. This contributes to improved operational efficiency, enhances
system reliability, and ultimately supports the cost-effectiveness and scalability of wind
energy production.
We evaluate a range of modeling approaches on a high-resolution SCADA dataset from a
single wind turbine, spanning over five years and comprising more than 5 million records.
These approaches include linear regression, XGBoost, a physics-informed empirical model,
and deep learning architectures such as LSTM, BiLSTM, and DSCNN-BiLSTM with at-
tention. The empirical model provides physical interpretability and performs robustly
under healthy operational conditions. However, deep learning models significantly out-
perform traditional baselines, with the DSCNN-BiLSTM-Attention model achieving the
lowest RMSE and highest R2 score of 0.940.
This work demonstrates the potential of hybrid modeling approaches for condition moni-
toring in industrial settings, combining predictive accuracy, domain insight, and practical
deployability in the context of renewable energy systems.
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1 Introduction

1.1 About BayWa r.e.

BayWa r.e. is a globally active renewable energy company engaged in the planning, con-
struction, and management of wind and solar energy projects. In addition to energy
trading and digital energy solutions, BayWa r.e. operates and maintains a large fleet of
wind turbines across multiple geographies. A central focus of their innovation strategy
is to integrate data-driven and physics-informed approaches to improve operational effi-
ciency, reduce downtime, and enable predictive maintenance. This project was carried
out in collaboration with BayWa r.e. to investigate advanced methodologies for predictive
modeling based on real-world wind turbine telemetry data.

1.2 Problem Definition and Goals of the Project

Modern wind turbines are complex cyber-physical systems operating under dynamic envi-
ronmental and mechanical conditions. Deviations in component temperatures—particularly
in the gearbox and generator—often signal mechanical stress, lubrication failure, or in-
cipient faults [1, 2]. If not detected early, these anomalies can lead to costly downtime
and irreversible damage.
Traditional rule-based monitoring systems lack the flexibility to adapt across operational
regimes or detect subtle, early-stage deviations. To address this limitation, we conduct a
comparative study of three modeling paradigms—machine learning methods, empirical-
physical models, and deep learning architectures. By evaluating these approaches side by
side, we assess their respective strengths in leveraging domain knowledge and data-driven
pattern recognition for predictive performance.
By systematically comparing these modeling paradigms, we aim to:

• Improve the accuracy and reliability of temperature forecasts.

• Demonstrate the potential of detecting abnormal trends through modeling discrep-
ancies on artificial data.

This work supports the development of intelligent condition monitoring tools that en-
hance turbine reliability, reduce maintenance costs, and contribute to the broader goal of
sustainable energy system resilience.

1.3 State-of-the-Art Approaches in This Domain

Recent advances in predictive maintenance for wind turbines have shifted from rule-based
heuristics to data-driven and model-based strategies. Traditional statistical models, such
as linear regression and ARIMA, offer interpretability and simplicity but often fall short
in capturing nonlinear and multivariate dependencies present in SCADA data [3, 4].
Gradient boosting algorithms, particularly XGBoost [5], have demonstrated strong perfor-
mance on structured operational datasets, with built-in feature selection and robustness
to missing values [6]. Physics-informed models [7, 8] provide domain-grounded inter-
pretability and numerical stability, particularly under healthy operating conditions, and
are commonly used as baselines for evaluating data-driven alternatives.
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Deep learning architectures—especially Long Short-Term Memory (LSTM) [9] and Bidi-
rectional LSTM (BiLSTM) [10] networks—have proven effective in modeling temporal de-
pendencies and long-range interactions in time series. More recently, hybrid deep learning
models such as DSCNN-BiLSTM [11] combine convolutional and recurrent structures to
better capture both spatial and temporal features in complex operational data.
This project benchmarks these diverse modeling paradigms and systematically analyzes
their predictive performance, interpretability, and robustness in the context of wind tur-
bine temperature forecasting.

2 Data Preprocessing

2.1 Data Acquisition

Our main dataset contains telemetry data from approximately 400 wind turbines, covering
a historical period of 5 years. The data is collected at 10-minute intervals, providing the
mean, minimum, maximum, and standard deviation for each interval.
The measured signals encompass various aspects, including measurement identification,
environmental conditions, mechanical system parameters, power measurements, energy
flow, electrical parameters, grid connection parameters, theoretical power output, avail-
ability, and temperature signals. This dataset offers a comprehensive foundation for
research and applications in wind turbine condition monitoring, health assessment, and
performance modeling.

2.2 Preprocessing Steps

To train device-based models, we first focus on data from a single device (device id =
29) in the wind farm 4 (site id = 4), consisting of 5,592,960 records and 87 variables.

2.2.1 Dataset Cleaning and Splitting

To analyze the impact of operational features on the target temperature, we retained
only operational data by removing unrelated columns, such as temperature gearbox

bearing lss and temperature gear oil sump. Meanwhile, we filtered the data using
the data availability indicator, which marks whether each telemetry record was suc-
cessfully transmitted at the given timestamp. This field is essential for evaluating data
completeness and communication quality. By filtering with this indicator, we exclude
invalid records caused by communication failures or data acquisition errors, ensuring that
our analysis and modeling are based on reliable observations.
To prevent data leakage, we split the dataset as follows: data from 2020–2022 is used for
training, data from 2023 for validation, and data from 2024 and 2025 for testing. The
numbers of records in each set are 154,036, 50,785, and 66,056, respectively.

2.2.2 Missing Value Handling Process

Missing values are common in wind power SCADA time series data. We first remove
columns that are completely missing. For partially missing signals, we adopt a systematic
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approach: according to studies by MDPI [12] and Tawn [13], missingness can be cate-
gorized as either random missing (sporadic, non-systematic gaps) or continuous missing
(long gaps caused by sensor failures or communication interruptions). To distinguish be-
tween short and long gaps, we set a threshold (e.g. six consecutive samples, about one
hour). Short gaps are suitable for imputation, while long gaps should be removed to avoid
introducing noise. For short gaps, we use the LOCF strategy, filling missing values with
the most recent valid observation. In Spark, we recommend using last(), which han-
dles leading and trailing gaps better than the traditional lag function. After imputation,
we verify that no residual nulls remain and assess the data by checking extreme values,
means, standard deviations, and visualizations. The same cleaning logic is applied to the
test set to prevent data leakage and support generalization.

2.2.3 Artificial Anomaly and Trend Injection

For further model testing, we generated artificial test data based on the test set. We
systematically injected various trends and anomalies into the temperature time series,
including intervals with constant temperature, stepwise or continuously increasing (linear
or exponential growth), as well as high-temperature spikes and periodic anomalies under
specific conditions. All modifications were made by overwriting or creating new tempera-
ture signal columns. The resulting dataset contains a rich variety of anomalies and trends
for subsequent model evaluation and algorithm development.The modification intervals
are illustrated in Figure 1.

Figure 1: The artificial test set



2 DATA PREPROCESSING 7

2.3 Feature Engineering

2.3.1 Correlation Analysis

Initially, we replaced the raw operational features with their delta values (∆xt = xt −
xt−1) to examine the relationship between short-term feature changes and the target
temperature. However, correlations with actual temperature or temperature deltas were
negligible, so we discarded this method and did not include it in subsequent stages.
To evaluate dependencies between input features and the prediction target, both Pearson
and Spearman correlation coefficients were computed:

ρpearson(X, Y ) =
cov(X, Y )

σXσY

, ρspearman(X, Y ) = ρpearson(rank(X), rank(Y ))

Spearman correlation values were generally higher than Pearson values, suggesting that
many features exhibit nonlinear but monotonic relationships with the target variable. The
top-ranked features based on Spearman correlation are shown in Figure 2. These top 20
features were selected as one of the feature selection strategies for model training.

Figure 2: spearman correlation analysis results

2.3.2 Dimensionality Reduction using Autoencoders

To manage the high dimensionality and complexity of our data, we implemented an
autoencoder as a data compression technique. Autoencoders are unsupervised neural
networks that learn to reconstruct their inputs after mapping them to a lower-dimensional
latent representation, this makes them particularly effective for dimensionality reduction
in large-scale, high-frequency sensor data.
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Formally, an autoencoder consists of two components: an encoder function fθ(x) and a
decoder function gϕ(z). Given an input vector x ∈ RD, the encoder maps it to a latent
vector z ∈ Rd, and the decoder attempts to reconstruct the original input as x̂ ∈ RD:

z = fθ(x), x̂ = gϕ(z)

The model is trained by minimizing the reconstruction loss between the input and its
reconstruction. We used Mean Squared Error (MSE) as the loss function:

L(x, x̂) = ∥x− x̂∥2 = ∥x− gϕ(fθ(x))∥2

Our specific architecture consisted of two fully connected layers in both the encoder
and decoder. The encoder compresses the input from dimension D to an intermediate
hidden layer of size 64 with ReLU activations, and then to a 20-dimensional latent vector.
The decoder mirrors this structure, reconstructing the original input from the latent
representation. The architecture can be summarized as:

• Encoder: x ∈ RD → Linear(D → 64) → ReLU → Linear(64 → 20) → z ∈ R20

• Decoder: z ∈ R20 → Linear(20 → 64) → ReLU → Linear(64 → D) → x̂ ∈ RD

We trained the autoencoder using the Adam optimizer (learning rate = 0.001). The
autoencoder was trained on the training set only, and the encoder was later used to
generate compressed representations of the validation and test sets without retraining.
The resulting 20-dimensional latent vectors served as compact inputs for our models.
This significantly reduced the input dimensionality while preserving essential operational
patterns, improving both training efficiency and model generalization. The close align-
ment between original and reconstructed signals (as shown in Figure 3) demonstrates the
encoder’s ability to capture key features with high accuracy.

Figure 3: The original and ae-reconstructed values of a chosen feature on the test set
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2.3.3 Domain Experts feature selection

Table 1: Mapping of Domain Expert-Selected Features to Dataset Columns

Descriptor Name Unit Description Matched Features in dataset

Gen RPM Max [rpm] Maximum generator rpm generator rpm max
Gen RPM Min [rpm] Minimum generator rpm generator rpm min
Gen RPM Avg [rpm] Average generator rpm generator rpm
Gen RPM Std [rpm] Standard deviation of generator rpm generator rpm standard deviation
Rtr RPM Max [rpm] Maximum rotor rpm rotor speed max
Rtr RPM Min [rpm] Minimum rotor rpm rotor speed min
Rtr RPM Avg [rpm] Average rotor rpm rotor speed
Amb WindSpeed Max [m/s] Maximum wind speed wind speed maximum
Amb WindSpeed Min [m/s] Minimum wind speed wind speed minimum
Amb WindSpeed Avg [m/s] Average wind speed wind speed
Amb WindSpeed Std [m/s] Standard deviation of wind speed wind speed standard deviation
Amb WindDir Relative Avg [°] Average relative wind direction wind direction
Amb WindDir Abs Avg [°] Average absolute wind direction Not Found
Amb Temp Avg [°C] Average ambient temperature ambient temperature
Prod LatestAvg ActPweGen0 [Wh] Active power (generator disconnected) energy export
Prod LatestAvg TotActPwr [Wh] Total active power power
Prod LatestAvg ReactPwrGen0 [VArh] Reactive power (generator disconnected) Not Found
Prod LatestAvg TotReactPwe [VArh] Total reactive power reactive power

In this study, we adopt the feature selection strategy proposed in Jankauskas’s work on
wind turbine gearbox temperature prediction [14], in which input variables are selected
based on domain expert knowledge. As shown in Table 1, these variables are considered to
have strong theoretical or empirical relevance to the target variable. We cross-referenced
the list of features selected by domain experts with the available attributes in our dataset.
Only the overlapping variables were retained to ensure consistency and to make the model
inputs comparable.

Next Steps

We trained supervised models to predict turbine component temperatures using three
different feature-processing strategies. The first approach applies Spearman rank corre-
lation to capture strong monotonic relationships without assuming linearity. The second
uses an autoencoder, selecting features based on reconstruction error to represent complex
nonlinear structure. The third relies on expert-curated features to ensure interpretability.
The following sections detail these models and evaluate their performance on the same
test dataset. This framework allows us to assess static feature selection and the additional
benefit of including temporal information.

3 Model Selection and Building

In this section, we explore and implement various modeling paradigms, ranging from
traditional machine learning to deep learning and physics-informed approaches. The goal
is to benchmark their performance in predicting wind turbine component temperatures.
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3.1 Machine Learning Methods

3.1.1 Linear Regression

Linear Regression is a fundamental machine learning model used to estimate the rela-
tionship between input features and a continuous target variable. The model predicts an
output value ŷ = [ŷ1, ŷ2, ..., ŷN ]

T as a linear combination of the weight vector w and the
data matrix X = [x1, x2, ..., xN ]

T .

ŷi =
N∑
j=0

ϕ(xij)wj = ϕ(xi)
Tw therefore ŷ = ϕ(X)w

,
Here, ϕ(·) is a basis function that maps input features to a higher-dimensional space,
allowing the model to capture nonlinear relationships such as polynomial trends.
In the context of time series data, linear regression can model dependencies by incorpo-
rating lagged values—i.e., observations from previous time steps—as additional features.
This allows the model to capture temporal trends and patterns by appending lagged
values to the features of the original data matrix X.
To prevent overfitting, a regularization term is often added, resulting in Ridge Regression.
This approach penalizes large weight magnitudes, encouraging the model to generalize
better to unseen data:

R = ||w||22
The final loss function combines the mean squared error with the regularization term,
weighted by a hyperparameter α

L(X, y, w) = ||y − ϕ(X)w||22 + α · ||w||22

3.1.2 XGBoost

Extreme Gradient Boosting is an efficient and scalable machine learning algorithm based
on the Gradient Boosting Decision Tree (GBDT) framework. It belongs to the family
of ensemble learning methods, specifically the boosting category, where multiple weak
learners (typically decision trees) are combined to produce a strong predictive model.
XGBoost is a supervised learning algorithm that can be applied to both regression and
classification tasks. It utilizes an additive model and employs gradient descent to itera-
tively optimize the objective function.
Given a training dataset D = {(xi, yi)}ni=1, XGBoost makes predictions by summing the
outputs of K regression trees:

ŷi =
K∑
k=1

fk(xi), fk ∈ F

where F denotes the space of regression trees.The overall objective function to be mini-
mized is:

L =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk)
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where l is a differentiable loss function, and Ω(f) is a regularization term to control model
complexity.
At each iteration, a new tree is added to fit the residuals of the current prediction, and
second-order Taylor expansion is used to efficiently optimize the loss.
XGBoost is well suited for this task as it efficiently handles structured tabular data and
provides automatic feature importance evaluation, which assists in understanding how
operational parameters influence the target temperature [15]. Also, its built-in regular-
ization (L1/L2) helps prevent overfitting, ensuring robustness and generalization when
working with large-scale industrial datasets [5]. Moreover, XGBoost natively supports
handling missing values and outliers by learning optimal split directions, reducing the
need for extensive preprocessing. Finally, its computational efficiency during training and
prediction makes it a practical choice for condition monitoring and predictive maintenance
of wind turbines.

3.2 Empirical-Physical Modeling

We employ a physics-informed empirical modeling approach grounded in a reduced-order
thermal system representation, following the methodology established in prior work [8].
This approach provides robust interpretability through the direct correspondence between
observable variables and underlying physical processes governing heat generation and
transfer. The fundamental model structure consists of a first-order linear ordinary differ-
ential equation (ODE):

C · Ṫ (t) = C · dT (t)
dt

= Q̇+(t) + hA · (Text(t)− T (t))

where C is the heat capacitance, T (t) the component temperature, Text(t) the ambient
(sink) temperature, and hA the convective heat transfer coefficient.
The heat input Q̇+(t) is empirically modeled as:

f(t) = f0 + k · Text(t) +
n∑

i=1

(
ai · P i(t) + bi · ωi(t)

)
where f0, k, ai, and bi are regression parameters fitted from operational data to capture
nonlinear effects.
To numerically simulate the system dynamics, the Forward-Euler integration method is
adopted:

∆T =
∆t

τ
(f(t)− k · T (t))

Here, τ is a modeling parameter introduced to represent the system’s thermal time con-
stant. While not derived from first-principles physics, τ effectively captures the thermal
inertia and contributes to numerical stability by smoothing abrupt variations during in-
tegration. This scheme offers a favorable balance between physical interpretability, pre-
dictive accuracy, and computational efficiency in modeling the thermal behavior of wind
turbine components.
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Table 2: Parameter options evaluated in the analytical model grid search.

Parameter Options

Target temperature temperature gearbox bearing hss

Heat sink proxies nacelle temperature, ambient temperature

Rotational speed rotor speed, generator rpm

Power input power

Polynomial order 0,1,2,3,4

Experimental Configuration Model configurations were evaluated as follows:
The top two performing configurations both targeted temperature gearbox bearing

hss, using nacelle temperature as the heat sink. One configuration employed rotor

speed and the other used generator rpm as the rotational speed input. Both achieved
their best performance with a polynomial order of 4.
Across all trials, predictive accuracy improved consistently with increasing order up to 4,
beyond which marginal gains were negligible. As a result, we fixed the polynomial order
at 4 in all subsequent modeling experiments.

3.3 Deep Learning Methods

3.3.1 LSTM

The Long Short-Term Memory (LSTM) network [9] is a specialized architecture within the
family of Recurrent Neural Networks (RNNs), designed to address some of the limitations
of standard RNNs.
Vanilla RNNs typically suffer from the vanishing gradient problem, where gradients be-
come exponentially small as they are backpropagated through time. This makes it difficult
for the network to learn long-range dependencies, as earlier timesteps have diminishing
influence on weight updates.

Figure 4: The structure of a LSTM predicting the future value ht+1 from the input
sequence Xt−1, Xt and Xt+1

(Retrieved from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTMs mitigate this issue through the use of memory cells and gating mechanisms—
specifically, the input, output, and forget gates. The forget gate allows the model to
selectively retain or discard information, effectively controlling the flow of gradients and

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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preserving relevant context over longer sequences. By doing so, LSTMs are able to main-
tain stable gradient propagation, making them capable of learning both short- and long-
term dependencies.
Thanks to these architectural innovations, LSTMs are particularly effective for sequence
modeling tasks such as time series forecasting, anomaly detection, natural language pro-
cessing, and any domain where the temporal structure of data is critical.
This makes them able to catch long-term dependencies which are common in time-series
data. For training LSTMs require data in a sliding window form, i.e. the data is divided
into groups of n consecutive timestamps where the samples 1 till n−1 are used to predict
the nth sample.

3.3.2 BiLSTM

Bidirectional LSTMs (BiLSTMs) are an extension of the standard Long Short-Term Mem-
ory (LSTM) networks. As the name suggests, BiLSTMs process input sequences in both
forward (left-to-right) and backward (right-to-left) directions. This bidirectional process-
ing allows the model to capture context from both past and future time steps, which can
lead to improved performance in tasks where full sequence information is valuable.
In a study by Siami-Namini et al. [10], the authors compared standard LSTMs with BiL-
STMs for time series forecasting, specifically on stock market prediction tasks. Their
results showed that BiLSTMs outperformed standard LSTMs, achieving a 38% improve-
ment in RMSE. This highlights the potential of bidirectional architectures in capturing
complex temporal dependencies more effectively.
Motivated by these findings, we also chose to apply BiLSTMs to our time series data to
explore whether similar performance gains could be achieved.

3.3.3 DSCNN-BiLSTM

Although the BiLSTM model has demonstrated strong performance in temperature pre-
diction tasks, its limitations become apparent when dealing with complex, nonlinear tem-
perature data. A single model often struggles to fully and accurately capture all under-
lying trends. This has led to the increasing use of hybrid models in the literature.
In this chapter, we propose an enhanced version of the BiLSTM model by integrating
a Depthwise Separable Convolutional Neural Network (DSCNN) layer to form
a hybrid model, inspired by the paper from Xinping Li. [11] In the original study, the
input data consisted solely of historical temperature sequences. In this work, we extend
the model by incorporating various combinations of past and present operational data
as input features for prediction. The DSCNN component significantly reduces the num-
ber of parameters and computational complexity while retaining strong spatial feature
extraction capabilities. In parallel, the BiLSTM component captures bidirectional depen-
dencies in the time series, thus enhancing the model’s ability to learn periodic patterns
and long-term dependencies in high-dimensional temperature data.

Overall architecture The detailed model architecture is illustrated in Figure 5.
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Figure 5: The overall structure of DSCNN-BiLSTM Model.

The model is composed of two sequential Depthwise Separable Convolutional Neu-
ral Network (DSCNN) blocks, followed by an LSTM layer and a fully connected
output layer. Each DSCNN block consists of a depthwise separable convolutional layer,
a batch normalization layer, and a max-pooling layer. This design allows for efficient
feature extraction and dimensionality reduction before temporal modeling. The exact
hyperparameter are also the same as those in the paper [11] in Table 12 (Appendix).
To further enhance the model’s capacity for capturing temporal dependencies and se-
lectively focusing on informative features, we extended the original DSCNN-BiLSTM
architecture by integrating an attention layer after the BiLSTM module. This modifica-
tion enables the model to assign dynamic weights to different time steps, allowing it to
concentrate on more relevant parts of the input sequence when making predictions.

4 Results

Our predictive target is the temperature of the gearbox bearing high-speed shaft(reason
reference). We evaluate different feature selection or data-processing techniques across
multiple models.
In this study, we compare the performance of XGBoost, LSTM-based, and Empirical-
Physical models for predicting the temperature of the gearbox high-speed shaft in wind
turbines. The rationale for selecting these models is threefold: XGBoost is well-suited
for structured tabular data and provides automatic feature importance; LSTM excels
at modeling long- and short-term dependencies in time series; DSCNN–BiLSTM com-
bines convolutional layers with bidirectional LSTM to capture both local and temporal
features; empirical-physical models incorporate domain knowledge and offer physically in-
terpretable baselines. Prior research has demonstrated that integrating tree-based, deep
learning, and physics-based approaches can enhance performance and interpretability in
predictive maintenance tasks [11, 8].
All models are trained, validated, and tested using the same datasets, and their perfor-
mance is measured using four evaluation metrics: RMSE, R2, MAE, and MedAE. In this
chapter, we will first explain the meaning of each metric, then compare the best results for
each model, and present the detailed performance of all models. Finally, we focus on the
XGBoost and DSCNN–BiLSTM models and validate their performance on a manually
curated test dataset.
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4.1 Evaluation Metrics

RMSE
The RMSE (Root Mean Squared Error) describes the square of the average difference of
each data point.
It is defined as

RMSE =

√∑N
i=0(ŷi − yi)2

N

Where N corresponds to the number of sampled. yi and ŷi describe the ground truth as
well as the predicted values of the targeted feature respectively.
The smaller the RMSE value is, the closer the predictions are in relation to the ground
truth.

R2 Score
Another metric which we use to evaluate the performance of our models is the R2 Score.
It is also called coefficient of determination and is defined as

R2 = 1− RSS

TSS

Where RSS and TSS are the sum of squares of the residuals and the total value, respec-
tively. They are defined as

RSS =
N∑
i=0

(yi − ŷi)
2 TSS =

N∑
i=0

(yi − ȳ)2 with ȳ =
1

N

N∑
i=0

yi

Therefore, in an optimal prediction the sum of squares of residuals would be zero, leading
to a perfect R2 score of 1.

Mean and Median Absolute Error
The Mean Absolute Error (MAE) and Median Absolute Error (MedAE) are common
regression metrics based on absolute residuals.

MAE =
1

N

N∑
i=1

|yi − ŷi|

MAE measures the average magnitude of errors. It is straightforward to interpret but
sensitive to outliers.

MedAE = median (|y1 − ŷ1|, . . . , |yN − ŷN |)

MedAE captures the typical absolute error and is more robust to outliers than MAE.
Both metrics are in the same units as the target variable; lower values indicate better
predictive performance.
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4.2 Results for Each Model

In the following, we will compare the results of different models To make the data compa-
rable we confined ourselves to the data of a specific turbine within a certain timespan with
a presplit test and training set. This makes the model performance more comparable.
Table 3 summarizes the results by comparing the aforementioned evaluation metrics. Note
here that only the best models of each respective model class are mentioned in this table,
in the following we describe our results in detail.

Table 3: The best result of each model class is shown in this table. In-depth results are
described in the following.

Model RMSE R2 MAE MedAE

Linear Regression 9.542 0.682 5.763 5.693
XGBoost 8.407 0.785 6.001 4.493
XGBoost with lags 5.014 0.882 3.934 3.257
Emp-Physical (Healthy) 6.784 0.784 5.050 3.834
Emp-Physical (Total) 35.571 -3.212 19.476 14.661
LSTM 4.6638 0.9276 3.6152 2.8834
BiLSTM 4.3135 0.9380 3.2806 2.5617
DSCNN-BiLSTM 4.866 0.921 3.760 3.000
DSCNN-BiLSTM-Attention 4.250 0.940 3.218 2.499

4.2.1 Linear Regression

Table 4 presents the results of the linear regression model evaluated with varying values
of regularization strength and lag features. The best R2 score achieved was 0.682, which
indicates a suboptimal fit. Furthermore the regularization strength α did not have a high
impact on the performance measures.

Table 4: Prediction results with the Linear Regression Model

Features Regularization Strength α Lag(s) RMSE R2 MedAE

spearman 0 None 9.577 0.680 5.337
spearman 0 [10] 9.706 0.671 5.776
spearman 0 [5, 10] 9.542 0.682 5.693

spearman 1 None 9.818 0.663 5.631
spearman 1 [10] 9.706 0.671 5.779
spearman 1 [5, 10] 9.600 0.678 5.781

The relatively low scores suggests that the underlying data cannot be effectively modeled
using a linear approach. In particular, the model struggles to capture complex temporal
patterns and long-term dependencies inherent in the time series.
Consequently, we chose not to explore linear regression further in this report and instead
focused on more expressive models, such as deep learning architectures like LSTMs.
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4.2.2 XGBoost

In this study, we implemented four XGBoost variants to evaluate different feature selec-
tion methods and the effect of temporal lag. The first uses Spearman rank correlation
to capture strong monotonic relationships without assuming linearity. The second em-
ploys autoencoder-derived features, selected via reconstruction error to represent nonlin-
ear structure. The third relies on expert-curated features for interpretability. The fourth
builds on the autoencoder approach by adding a 10-step sliding-window of lagged vari-
ables, converting static features into a time-aware representation that encodes temporal
dependencies. This systematic framework enabled us to compare static feature selection
performance and the added value of incorporating temporal information.

Table 5: Performance of XGBoost models with different feature selection strategies.

Model Feature RMSE R2 MAE MedAE

XGboost autoencoder 8.0469 0.7848 6.0008 4.4928

XGboost experts 8.4057 0.7652 6.0436 4.3373

XGboost spearman 8.6423 0.7517 6.1744 4.3838

Among the three XGBoost variants, the autoencoder-based model performs best, achiev-
ing an R2 of 0.7848. This indicates that autoencoder-derived features capture complex
nonlinear patterns more effectively, enhancing predictive accuracy. It shows that auto-
matic feature learning can uncover deeper patterns than traditional methods, improving
generalization and practical efficiency. Nonetheless, the overall performance gap remains
small, as all models extract most key information. Details are shown in Table 5.

Table 6: Performance comparison of XGBoost models with and without lagged features.

Model Feature RMSE R2 MAE MedAE

XGboost experts 8.4057 0.7652 6.0436 4.3373

XGboost lags10 experts 5.4244 0.8650 4.2308 3.5556

XGboost autoencoder 8.0469 0.7848 6.0008 4.4928

XGboost lags10 autoencoder 5.0142 0.8821 3.9342 3.2570
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Figure 6: Prediction results for testing set by XGBoost using autoencoder

Figure 7: Prediction results for testing set by XGBoost with lags10 using autoencoder

In this experiment, we extended both expert-selected and autoencoder-derived feature
sets with a 10-step lag window to enhance temporal awareness and capture autocorre-
lation in the target variable. Across both models, RMSE, MAE and MedAE decreased
noticeably while R2 increased substantially. This aligns with widely observed results in
time-series forecasting: incorporating lagged values of the features notably improves XG-
Boost’s predictive accuracy. Detailed outcomes are given in Table 6, with Figure 6 and
Figure 7 illustrating performance before and after lag feature inclusion.

Table 11(Appendix) illustrates how the same XGBoost model, using autoencoder-derived
features, performs on the original versus a synthetic test set. Its R2 = 0.7848 drops to
–1.280, indicating robustness of the model.

4.2.3 Empirical-Physical

Impact of Data Quality: Healthy vs. Total The empirical-physical model esti-
mates temperature based on initial conditions, external temperature, power, and rota-
tional speed over continuous time intervals. As it is sensitive to missing or anomalous
inputs, we first identified continuous intervals marked as valid=1, as shown in Table 7.
From this, we extracted a continuous high-quality interval (healthy: 2024-01-02 to 2024-
01-11). For comparison, the model was also evaluated on all valid periods (total).
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Table 7: Example of filtered time segments with validity flag

valid start ts end ts duration

1 2024-01-01 00:00:00 2024-01-02 09:40:00 203
0 2024-01-02 09:50:00 2024-01-02 09:50:00 1
1 2024-01-02 10:00:00 2024-01-11 13:40:00 1319
0 2024-01-11 13:50:00 2024-01-17 14:20:00 868
. . . . . . . . . . . .

Figure 8: Impact of missing data on model fit.

As shown in Figure 8, missing data leads to poor interpolation and large post-gap resid-
uals. The model misaligns with system dynamics, reducing reliability. Comparing per-
formance on the healthy and total subsets quantifies this sensitivity and emphasizes the
value of clean data.

Model Complexity: Effect of Polynomial Order Table 8 summarizes the perfor-
mance of the Empirical-Physical model under different polynomial orders of ω (genera-
tor rpm and rotor speed).
Model accuracy improves notably from order 0 to 3, with R2

te increasing from roughly
−0.86 to 0.78 and RMSE dropping by over 10 units. The most substantial gain occurs
from order 0 to 1. However, the improvement from order 3 to 4 is minimal (e.g., R2

te

increases from 0.782 to 0.784), indicating diminishing returns. In practice, using order 3
or 4 achieves a good balance between accuracy and model complexity.
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Table 8: Empirical-Physical model performance (fixed temperature gearbox bearing hss
→ nacelle temperature). Abbreviations: Order = polynomial order; tr/te = train/test.

ω Order R2
tr RMSE tr MedAE tr R2

te RMSE te MedAE te
generator rpm 4 0.828 7.525 4.411 0.784 6.782 3.833
generator rpm 3 0.826 7.579 4.422 0.782 6.819 3.211
rotor speed 4 0.829 7.518 4.442 0.782 6.824 3.868
rotor speed 3 0.826 7.580 4.422 0.781 6.832 3.210
rotor speed 2 0.809 7.935 4.479 0.716 7.787 4.016
generator rpm 2 0.809 7.934 4.481 0.714 7.810 4.054
rotor speed 1 0.767 8.772 5.031 0.592 9.326 5.321
generator rpm 1 0.764 8.820 5.080 0.580 9.467 5.472
rotor speed 0 -0.404 21.527 17.780 -0.864 19.936 19.808
. . . . . . . . . . . . . . . . . . . . . . . .

4.2.4 LSTM Family

Table 9 presents a comprehensive comparison of several LSTM models under various con-
figurations. Several key trends emerge from the results:
BiLSTM achieves better performance compared to plain LSTM. In most configurations,
the BiLSTM improves model performance, especially regarding R2. It also supports prior
findings in the literature [10].
Model complexity also has obvious impact on the observation. More sophisticated
architectures such as DSCNN BiLSTM Attention generally outperform simpler models
across most evaluation metrics. However, the improvement depends heavily on the com-
patibility between the model architecture and the feature selection method. Autoencoder-
based features provide the most robust and consistent performance among the three
feature selection methods. In contrast, while offering reasonable baseline performance,
domain-based features tend to yield less consistent results, especially in attention-based
models. Spearman correlation-based features perform well in specific configurations (e.g.,
BiLSTM with large window and batch size), but are generally unstable in deeper archi-
tectures, sometimes leading to extreme outliers (e.g., MSE > 75).
Window Size plays a critical role in model performance. For relatively simple archi-
tectures such as LSTM and BiLSTM, increasing the window size from 10 to 20 does not
yield performance gains and may, in some cases, lead to degradation—potentially. In con-
trast, more complex architectures like DSCNN BiLSTM Attention tend to benefit from
longer input sequences generally, though some outliers can still be observed, the highest
observed R2 score (0.9398) was achieved with a window size of 20 in combination with
autoencoder-derived features.
Batch Size has a notable influence. A batch size of 128 generally provides a good balance
for shallow models. However, larger batch sizes can introduce instability when used with
weaker features such as those based on Spearman correlation, suggesting that batch size
should be carefully tuned with respect to both model depth and feature type.
In summary, the experimental results confirm several key insights. First, model com-
plexity contributes positively to performance, but its benefit is contingent on the quality
of the input features. Autoencoder-based features offer the highest overall adaptability
and are particularly effective when used with deep, attention-based models. While Spear-
man and domain-based features can perform adequately under specific configurations,
they generally lack robustness across architectures.
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Table 9: Performance of LSTM, BiLSTM, DSCNN-BiLSTM and DSCNN-BiLSTM-
Attention Model under different conditions

Feature Selection Method Model Type Window Batch MSE RMSE MAE MedAE R2

domain

lstm 10 128 46.8631 6.8457 5.2888 4.4456 0.8440
bilstm 10 128 46.4933 6.8186 5.5803 4.9408 0.8452
dscnn bilstm 10 128 30.2608 5.5010 4.1524 3.2320 0.8992
dscnn bilstm attention 10 128 28.5499 5.3432 3.9389 2.9428 0.9049

domain

lstm 10 256 43.3165 6.5815 5.2453 4.4956 0.8558
bilstm 10 256 41.0292 6.4054 5.0652 4.3004 0.8634
dscnn bilstm 10 256 29.9366 5.4714 4.0626 3.0433 0.9003
dscnn bilstm attention 10 256 33.6480 5.8007 4.4034 3.4011 0.8880

domain

lstm 20 64 35.0755 5.9225 4.5664 3.6917 0.8831
bilstm 20 64 46.5697 6.8242 5.5109 4.7850 0.8447
dscnn bilstm 20 64 27.6979 5.2629 4.0874 3.2981 0.9077
dscnn bilstm attention 20 64 29.0443 5.3893 4.2662 3.5765 0.9032

domain

lstm 20 128 37.9601 6.1612 4.9810 4.3367 0.8734
bilstm 20 128 33.9604 5.8276 4.4679 3.5695 0.8868
dscnn bilstm 20 128 32.4723 5.6984 4.4593 3.6839 0.8917
dscnn bilstm attention 20 128 22.6985 4.7643 3.5934 2.8187 0.9243

domain

lstm 20 256 41.7540 6.4617 5.2639 4.6392 0.8608
bilstm 20 256 41.9241 6.4749 5.2665 4.5981 0.8602
dscnn bilstm 20 256 26.9407 5.1904 3.8305 2.8775 0.9102
dscnn bilstm attention 20 256 28.5172 5.3401 4.0834 3.2241 0.9049

spearman

lstm 10 128 44.3302 6.6581 5.2600 4.5191 0.8524
bilstm 10 128 46.4765 6.8174 5.6139 5.0051 0.8453
dscnn bilstm 10 128 34.1637 5.8450 4.3072 3.3557 0.8862
dscnn bilstm attention 10 128 28.8699 5.3731 3.8276 2.7802 0.9039

spearman

lstm 10 256 43.3672 6.5854 5.0620 4.2007 0.8556
bilstm 10 256 48.1710 6.9405 5.5218 4.7700 0.8396
dscnn bilstm 10 256 34.8278 5.9015 4.4227 3.5435 0.8840
dscnn bilstm attention 10 256 31.2525 5.5904 3.9585 2.9697 0.8959

spearman

lstm 20 128 41.2750 6.4246 5.2404 4.7040 0.8624
bilstm 20 128 41.2759 6.4246 5.2465 4.7389 0.8624
dscnn bilstm 20 128 27.7215 5.2651 3.8459 2.9026 0.9076
dscnn bilstm attention 20 128 30.6733 5.5384 4.1601 3.2731 0.8977

spearman

lstm 20 256 40.8959 6.3950 5.1908 4.6238 0.8637
bilstm 20 256 35.2753 5.9393 4.7510 4.1518 0.8824
dscnn bilstm 20 256 31.9399 5.6515 4.3137 3.5503 0.8935
dscnn bilstm attention 20 256 24.3491 4.9345 3.4714 2.5398 0.9188

autoencoder

lstm 10 128 29.2981 5.4128 4.3218 3.6841 0.9024
bilstm 10 128 30.3312 5.5074 4.3383 3.8120 0.8990
dscnn bilstm 10 128 45.9006 6.7750 5.1201 3.9551 0.8472
dscnn bilstm attention 10 128 24.9320 4.9932 3.9058 3.1650 0.9170

autoencoder

lstm 10 256 21.7509 4.6638 3.6152 2.8834 0.9276
bilstm 10 256 18.6059 4.3135 3.2806 2.5617 0.9380
dscnn bilstm 10 256 41.1618 6.4157 4.8142 3.7265 0.8629
dscnn bilstm attention 10 256 27.1009 5.2059 3.9302 3.1070 0.9098

autoencoder

lstm 20 64 33.8614 5.8191 4.0255 3.1907 0.8871
bilstm 20 64 23.9705 4.8960 3.7750 3.1602 0.9201
dscnn bilstm 20 64 23.6793 4.8661 3.7601 2.9999 0.9211

dscnn bilstm attention 20 64 18.0617 4.2499 3.2179 2.4986 0.9398

autoencoder

lstm 20 128 29.0480 5.3896 4.3524 3.8293 0.9032’
bilstm 20 128 27.9985 5.2914 4.0355 3.2492 0.9067
dscnn bilstm 20 128 36.7077 6.0587 4.7477 3.8951 0.8776
dscnn bilstm attention 20 128 31.8762 5.6459 4.2848 3.3574 0.8937

autoencoder

lstm 20 256 32.5618 5.7063 4.6322 4.0893 0.8914
bilstm 20 256 40.4010 6.3562 5.3022 4.8146 0.8653
dscnn bilstm 20 256 36.6161 6.0511 4.4933 3.3459 0.8779
dscnn bilstm attention 20 256 22.5264 4.7462 3.6270 2.8843 0.9249
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4.3 Results for different wind speed subsets

We further investigate the performance of our prediction models under different wind
turbine operational states. The operational states are categorized based on wind speed:
low (< 4 m/s), medium (4–13 m/s), and high (> 13 m/s). We selected representative
models and summarized their performance metrics under each wind regime, as shown in
Table 10.
When employing domain-expert feature selection, both DSCNN-BiLSTM-Attention and
XGBoost models achieve their best predictive accuracy on medium wind speeds. However,
under the autoencoder feature selection, both models perform poorly across different wind
speed regimes.

Table 10: Performance comparison of models under different windspeed levels

Model Feature Selection Windspeed RMSE R2 MAE MedAE

DSCNN-BiLSTM-Attention
experts Low 8.3246 0.5132 6.6737 5.5792
experts Medium 4.7971 0.8553 3.6026 2.9135
experts High 15.7048 0.7677 14.3839 11.9403

DSCNN-BiLSTM-Attention
autoencoder Low 20.5182 -1.9571 17.1665 15.5979
autoencoder Medium 12.9806 -0.0595 8.1430 5.2526
autoencoder High 30.1337 0.1448 26.4102 19.8749

XGBoost
experts Low 9.6103 0.3579 7.6433 6.5129
experts Medium 7.0150 0.6945 4.7983 3.3195
experts High 14.2430 0.7758 7.9414 2.0791

XGBoost
autoencoder Low 19.8399 -1.7365 16.7205 15.6021
autoencoder Medium 13.3820 -0.1119 9.0337 6.7918
autoencoder High 32.4921 -0.1666 23.5458 12.7409

4.4 Scenario-based Intervention Validation

To assess the sensitivity of the models to variations in key input features, we employed
a scenario-based intervention validation approach. Specifically, we manually modified
the remote sensing data for the years 2024 and 2025 to introduce hypothetical trends,
as illustrated in Figure 1. This technique allows us to evaluate whether the models are
capable of capturing anticipated patterns that are not present in the original dataset. We
applied this modified dataset to three different models: a Deep Separable Convolutional
Neural Network (DSCNN), XGBoost, and a traditional statistical model. By comparing
their predictions against the manually embedded trends, we aim to examine each model’s
ability to respond appropriately to the imposed data shifts and assess their prediction
accuracy.
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Figure 9: DSCNN BILSTM residual graph between prediction temperature and artificial
temperature

Figure 10: XGBoost residual graph between prediction temperature and artificial tem-
perature

Figure 9 and 10 respectively display the prediction residuals for the DSCNN BiLSTM and
XGBoost models (in their optimal configurations) after injecting artificial temperature
trends. The residuals represent the differences between the synthetic (manually altered)
temperature and the model’s predicted temperature. Both residual plots clearly highlight
two distinct upward trend periods and two high-temperature peak regions, marked in
red boxes. These patterns indicate that, despite the presence of anomalous trends, both
models maintain a degree of predictive stability and robustness when confronted with
such abnormal patterns.

5 Conclusions

In this project, we benchmarked a variety of modeling approaches—including statistical
methods, gradient boosting, and deep learning architectures—for the task of temperature
prediction in wind turbines based on SCADA data.
Among all models, the DSCNN-BiLSTM with attention achieved the best performance,
reaching an R2 score of approximately 0.940 across all test scenarios. This demonstrates
the strong ability of hybrid deep learning models to capture both spatial and temporal



dependencies in complex operational data. In contrast, traditional models such as linear
regression and XGBoost showed lower accuracy, particularly under dynamic or nonlinear
conditions. A simple physics-informed model was also included as a baseline, offering
interpretability and stability under healthy conditions.
Overall, our results highlight the effectiveness of deep learning—especially convolutional-
recurrent architectures—in predictive maintenance tasks for wind turbines, offering high
accuracy and strong potential for practical deployment.

5.1 Future Work

5.1.1 Multi-Turbine Data Preparation

The existing data preparation pipeline can be extended to extract operational telemetry
from multiple turbines. To retain turbine-specific context, one-hot encoding of device IDs
can be incorporated as an optional feature.
Cleaned datasets across turbines can be combined to create a unified multi-turbine dataset
for testing and training. This would allow previously trained models to be evaluated on
unseen turbines enabling the study of spatial generalization and model robustness.

5.1.2 Model Deployment and Monitoring

Future work should explore the deployment of trained models into real-time monitoring
pipelines. This includes integrating models with SCADA systems for live prediction,
adding alert thresholds for anomaly detection, and designing dashboards for condition
monitoring. In addition, drift detection and retraining strategies should be investigated
to ensure long-term model reliability in production environments.

5.1.3 Integration of Domain Knowledge

Further research could also explore improved integration of physical constraints and do-
main knowledge into deep learning models. For example, hybrid physics-informed neural
networks (PINNs), constraint-aware loss functions, or causal modeling approaches may
enhance model interpretability and safety—especially in mission-critical applications.
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Appendix

Table 11: Performance of XGBoost (autoencoder features) on original and artificial test
sets.

Model Feature Test Set RMSE R2 MAE MedAE

XGboost autoencoder original 8.0469 0.7848 6.0008 4.4928
XGboost autoencoder artificial 26.570 -1.280 21.739 19.707

Table 12: Definition and Parameters of Network Layers for DSCNN-BiLSTM model

Definition of Layers Parameters of Layers

Input layer Size: (1, n)
DSCNN D1 Channel number: 32, kernel size: 3, padding: 1
Batch Normalization layer -
Pooling layer Kernel size: 2, stride: 2
DSCNN D2 Channel number: 64, kernel size: 3, padding: 1
Pooling layer Kernel size: 2, stride: 2
Batch Normalization layer -
BiLSTM Hidden units: 64
Activation layer Activation function: ReLU
Dropout layer Dropout number: 0.3
Output layer -
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